Levi-flat Plateau Problem

Jiří Lebl
joint work with Alan Noell and Sivaguru Ravisankar

Department of Mathematics, Oklahoma State University
Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.
Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3: Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.
Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3: Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.

In \mathbb{R}^3 a minimal surface is an isometric immersion of a Riemann surface using harmonic functions.
Plateau problem: Given a boundary M, find a minimal surface H with the given boundary.

Physical solution in \mathbb{R}^3: Take a bent wire M, dip it in soap water then the bubble (soap film) it makes is H.

In \mathbb{R}^3 a minimal surface is an isometric immersion of a Riemann surface using harmonic functions. (That sounds like complex analysis is involved !)
Problem: Given $M \subset \mathbb{C}^m = \mathbb{R}^{2m}$ of real dimension $2p - 1$, find a complex manifold (or variety) H of complex dimension p such that the boundary of H is M ...

(Complex manifold of dimension p is locally an immersion of a neighborhood of \mathbb{C}^p via holomorphic functions)
Problem: Given $M \subset \mathbb{C}^m = \mathbb{R}^{2m}$ of real dimension $2p - 1$, find a complex manifold (or variety) H of complex dimension p such that the boundary of H is M . . .

(Complex manifold of dimension p is locally an immersion of a neighborhood of \mathbb{C}^p via holomorphic functions)

Harvey–Lawson ’75: Not possible in general, but in the right sense (in the sense of currents) and under some natural condition on M, it is true.
Consider a smooth
\[f : S^1 \to \mathbb{C}^m \]

Is there an analytic disc with boundary \(f(S^1) \)? That is, is there
\[F : \overline{D} \to \mathbb{C}^m \]

holomorphic in \(\mathbb{D} \) and smooth up to the boundary such that
\[F|_{S^1} = f \]
Consider a smooth
\[f : S^1 \to \mathbb{C}^m \]

Is there an analytic disc with boundary \(f(S^1) \)? That is, is there
\[F : \overline{D} \to \mathbb{C}^m \]
holomorphic in \(D \) and smooth up to the boundary such that \(F|_{S^1} = f \)?

We solve the Dirichlet problem, and for \(F \) to be holomorphic we need all the negative Fourier coefficients of \(f \) to be zero:
\[
\int_{S^1} f(z) z^k \, dz = 0
\]
for all \(k = 0, 1, 2, 3, \ldots \)
So $M = f(S^1)$ was given as an image of a subset of \mathbb{C} and by extending the function to all of $\overline{\mathbb{D}}$ we found that $H = F(\overline{\mathbb{D}})$ is our solution.
Simple example: Analytic disc with smooth boundary

So \(M = f(S^1) \) was given as an image of a subset of \(\mathbb{C} \) and by extending the function to all of \(\overline{\mathbb{D}} \) we found that \(H = F(\overline{\mathbb{D}}) \) is our solution.

Singularities might crop up even if \(M \) is not singular:

\[
f(z) = F(z) = (z^2, z^3)
\]

Then \(M = f(S^1) \) is a nice smooth curve, but \(F(\mathbb{D}) \) is a cusp.
Levi-flat as a “minimal surface”

We want a real hypersurface...
We want a real hypersurface...

Harvey–Lawson talk about complex manifolds \mathbb{C}^m, but those have at most (real) dimension $2m - 2$.
Levi-flat as a “minimal surface”

We want a real hypersurface...

Harvey–Lawson talk about complex manifolds \mathbb{C}^m, but those have at most (real) dimension $2m - 2$.

Consider a hypersurface H (dimension $2m - 1$) with as much structure of a complex manifold: foliated by complex hypersurfaces; locally a one parameter family of complex hypersurfaces. Such a hypersurface is Levi-flat.
Levi-flat as a “minimal surface”

We want a real hypersurface...

Harvey–Lawson talk about complex manifolds \mathbb{C}^m, but those have at most (real) dimension $2m - 2$.

Consider a hypersurface H (dimension $2m - 1$) with as much structure of a complex manifold: foliated by complex hypersurfaces; locally a one parameter family of complex hypersurfaces. Such a hypersurface is **Levi-flat**.

Complex hypersurfaces

A simple example: $\mathbb{C}^n \times \mathbb{R} \subset \mathbb{C}^{n+1}$.
Given $M \subset \mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M?
Given $M \subset \mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M?

For $n = 1$ studied extensively (Bishop ’65, Bedford–Gaveau ’83, many many others ...)

Levi-flat Plateau problem
Given $M \subset \mathbb{C}^{n+1}$ a compact real codimension 2 submanifold, is there a Levi-flat hypersurface H with boundary M?

For $n = 1$ studied extensively (Bishop ’65, Bedford–Gaveau ’83, many many others ...)

In $n \geq 2$, Dolbeault–Tomassini–Zaitsev (’05 and ’11) found a possibly singular solution given some conditions on M (elliptic CR singular points, nowhere minimal at CR points).

The nowhere-minimality is necessary, the ellipticity is not.
If $M \subset \mathbb{C}^{n+1}$ is a real submanifold, the CR vectors are

\[T^{0,1}_p M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_k}, \frac{\partial}{\partial \bar{w}} \right\} \cap \mathbb{C} \otimes T_p M \]

If $\dim T^{0,1}_p M$ (the CR dimension) is constant, then M is a CR manifold.
“CR” and “CR singular” submanifolds

If $M \subset \mathbb{C}^{n+1}$ is a real submanifold, the CR vectors are

$$T_{p}^{0,1}M = \text{span}_{\mathbb{C}}\left\{ \frac{\partial}{\partial \bar{z}_k}, \frac{\partial}{\partial \bar{w}} \right\} \cap \mathbb{C} \otimes T_p M$$

If $\dim T_{p}^{0,1}M$ (the CR dimension) is constant, then M is a CR manifold.

A function f on M is a CR function if CR vectors kill it.
If $M \subset \mathbb{C}^{n+1}$ is a real submanifold, the CR vectors are

$$T_p^{0,1} M = \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_k}, \frac{\partial}{\partial \bar{w}} \right\} \cap \mathbb{C} \otimes T_p M$$

If $\dim T_p^{0,1} M$ (the CR dimension) is constant, then M is a CR manifold.

A function f on M is a CR function if CR vectors kill it.

If $\dim T_p^{0,1} M$ is not constant in any neighborhood of a point, the point is a CR singularity.
"CR" and "CR singular" submanifolds

If $M \subset \mathbb{C}^{n+1}$ is a real submanifold, the CR vectors are

$$T_{p}^{0,1}M = \text{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial \bar{z}_k}, \frac{\partial}{\partial \bar{w}} \right\} \cap \mathbb{C} \otimes T_p M$$

If $\dim T_{p}^{0,1}M$ (the CR dimension) is constant, then M is a CR manifold.

A function f on M is a CR function if CR vectors kill it.

If $\dim T_{p}^{0,1}M$ is not constant in any neighborhood of a point, the point is a CR singularity.

Real hypersurfaces in \mathbb{C}^{n+1} are always CR submanifolds of CR dimension n.

Real codimension two submanifolds generically have isolated CR singularities.
Let M be a CR submanifold and $p \in M$. If necessarily $M = N$, then M is minimal at p. (and nowhere minimal just means... nowhere minimal) Let's stick to real-analytic submanifolds, and let N be the smallest such submanifold. N is then the CR orbit, the submanifold reachable by CR vector fields, their conjugates, and all the commutators. A hypersurface is Levi-flat iff it is nowhere minimal. The CR orbits then give a foliation by complex hypersurfaces.
Nowhere minimal

Let M be a CR submanifold and $p \in M$.

Let $N \subset M$ be a CR submanifold, $p \in N$, such that $T_{p,1}^0 M = T_{p,1}^0 N$.

If necessarily $M = N$, then M is minimal at p.

(and nowhere minimal just means ... nowhere minimal)
Let M be a CR submanifold and $p \in M$.

Let $N \subset M$ be a CR submanifold, $p \in N$, such that $T_p^{0,1}M = T_p^{0,1}N$.

If necessarily $M = N$, then M is minimal at p.

(and nowhere minimal just means ... nowhere minimal)

Let’s stick to real-analytic submanifolds, and let N be the smallest such submanifold.

N is then the CR orbit, the submanifold reachable by CR vector fields, their conjugates, and all the commutators.
Let M be a CR submanifold and $p \in M$.

Let $N \subset M$ be a CR submanifold, $p \in N$, such that $T_p^{0,1} M = T_p^{0,1} N$.

If necessarily $M = N$, then M is minimal at p.

(and nowhere minimal just means ... nowhere minimal)

Let’s stick to real-analytic submanifolds, and let N be the smallest such submanifold.

N is then the CR orbit, the submanifold reachable by CR vector fields, their conjugates, and all the commutators.

A hypersurface is Levi-flat iff it is nowhere minimal.
The CR orbits then give a foliation by complex hypersurfaces.
Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.
If M is CR, it is of CR dimension n (M is complex) or $n - 1$.
If M is compact, it cannot be complex.
Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.

If M is CR, it is of CR dimension n (M is complex) or $n - 1$.

If M is compact, it cannot be complex.

The CR vector fields of M also are CR vector fields of H, and H being Levi-flat means that we can’t travel from one leaf of H to another.
Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H. If M is CR, it is of CR dimension n (M is complex) or $n - 1$. If M is compact, it cannot be complex.

The CR vector fields of M also are CR vector fields of H, and H being Levi-flat means that we can’t travel from one leaf of H to another.

Supposing M is CR, unless M is a whole “leaf” of H, which would mean that M is complex, M must have CR orbits that are of smaller dimension . . .
Suppose $M = \partial H \subset \mathbb{C}^{n+1}$ for a Levi-flat hypersurface H.

If M is CR, it is of CR dimension n (M is complex) or $n - 1$.

If M is compact, it cannot be complex.

The CR vector fields of M also are CR vector fields of H, and H being Levi-flat means that we can’t travel from one leaf of H to another.

Supposing M is CR, unless M is a whole “leaf” of H, which would mean that M is complex, M must have CR orbits that are of smaller dimension . . .

\Rightarrow

M is nowhere minimal.
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let’s first ask locally:
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let’s first ask locally:

Near CR point?
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let’s first ask locally:

Near CR point? Yes if CR orbits are all of real codimension 1, possibly no otherwise (example in L. ’06). (Trivially yes if $n = 1$, but not unique!)
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let’s first ask locally:

Near CR point? Yes if CR orbits are all of real codimension 1, possibly no otherwise (example in L. ’06).
(Trivially yes if $n = 1$, but not unique!)

Near a CR singular point?
The question is: Is $M \subset \mathbb{C}^{n+1}$ being nowhere minimal at CR points enough to be a boundary of a Levi-flat?

Note that when $n = 1$ every codimension 2 real submanifold is nowhere minimal (it is totally real).

Let’s first ask locally:

Near CR point? Yes if CR orbits are all of real codimension 1, possibly no otherwise (example in L. ’06).
(Trivially yes if $n = 1$, but not unique!)

Near a CR singular point? Yes ($n \geq 2$) if the CR singularity is nondegenerate (or an exceptional case), Fang–Huang ’17.

In $n = 1$, not always. Yes if the CR singularity is e.g. elliptic.
(e.g. Bishop ’65, Moser–Webster ’82, Moser ’85, Huang–Yin ’09 ...
... lots of others)
A codimension 2 CR singular submanifold M is locally

$$ w = \rho(z, \bar{z}) = A(z, \bar{z}) + B(z, z) + \overline{B(z, z)} + O(\|z\|^3) $$

$(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.
A codimension 2 CR singular submanifold M is locally

$$w = \rho(z, \bar{z}) = A(z, \bar{z}) + B(z, z) + \overline{B(z, z)} + O(||z||^3)$$

$(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.

M is A-nondegenerate (or just nondegenerate) if A is nondegenerate. ($elliptic$ if A is positive definite, and B has small eigenvalues)
A codimension 2 CR singular submanifold M is locally

$$w = \rho(z, \bar{z}) = A(z, \bar{z}) + B(z, \bar{z}) + \overline{B(z, \bar{z})} + O(\|z\|^3)$$

$(z, w) \in \mathbb{C}^n \times \mathbb{C}$, A sesquilinear, B bilinear.

M is A-nondegenerate (or just nondegenerate) if A is nondegenerate. (*elliptic* if A is positive definite, and B has small eigenvalues)

To be locally boundary of a Levi-flat hypersurface, we need to have, after a change of variables, A to be real-valued (Hermitian) and also the "$O(\|z\|^3)$" to be real valued.
A theorem

Theorem (L.–Noell-Ravisankar ’17, ’18)

Let \(\Omega \subset \mathbb{C}^n \times \mathbb{R} \), \(n \geq 2 \), be a bounded domain with connected real-analytic boundary such that \(\partial \Omega \) has only A-nondegenerate CR singularities. Let \(\Sigma \subset \partial \Omega \) be the set of CR singularities of \(\partial \Omega \). Let \(f: \partial \Omega \rightarrow \mathbb{C}^{n+1} \) be a real-analytic embedding that is CR at CR points of \(\partial \Omega \) and takes CR points of \(\partial \Omega \) to CR points of \(f(\partial \Omega) \).

Then, there exists a real-analytic CR map \(F: \overline{\Omega} \rightarrow \mathbb{C}^{n+1} \) such that \(F|_{\partial \Omega} = f \) and \(F|_{\overline{\Omega}\setminus \Sigma} \) is an immersion.

In other words, \(F(\overline{\Omega}) \) is the solution of the Levi-flat Plateau problem for \(f(\partial \Omega) \).
Proof? (simplified)

Work along “leaves”, extend \(f(\cdot, s) \) using Hartogs–Bochner (really Martinelli), or Severi and then Hartogs.
Proof? (simplified)

Work along “leaves”, extend $f(\cdot, s)$ using Hartogs–Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity in the interior of Ω.
Proof? (simplified)

Work along “leaves”, extend $f(\cdot, s)$ using Hartogs–Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity in the interior of Ω.

Prove regularity at CR points and at the CR singularities of M.
Work along “leaves”, extend $f(\cdot, s)$ using Hartogs–Bochner (really Martinelli), or Severi and then Hartogs.

Prove regularity in the interior of Ω.

Prove regularity at CR points and at the CR singularities of M.

The Jacobian of F vanishes on too large of a set contradicting f being a diffeomorphism.
A better result via Fang–Huang

We get a better result if $f(\partial \Omega)$ also has only nondegenerate singularities by applying Fang–Huang.

Corollary

Let $\Omega \subset \mathbb{C}^n \times \mathbb{R}$, $n \geq 2$, be a bounded domain with connected real-analytic boundary such that $\partial \Omega$ has only A-nondegenerate CR singularities, and let $f : \partial \Omega \to \mathbb{C}^{n+1}$ be a real-analytic embedding that is CR at CR points of $\partial \Omega$. Assume that $f(\partial \Omega)$ has only A-nondegenerate CR singularities. Further assume that either $n \geq 3$ or no CR singularity of $f(\partial \Omega)$ is the exceptional case (every CR singularity has an elliptic direction).

Then, there exists a real-analytic CR map $F : \overline{\Omega} \to \mathbb{C}^{n+1}$ such that $F|_{\partial \Omega} = f$ and F is an immersion on $\overline{\Omega}$.

(exceptional case:

$w = |z_1|^2 - |z_2|^2 + \lambda(z_1^2 + \bar{z}_1^2) + \lambda(z_2^2 + \bar{z}_2^2) + O(\|z\|^3), \lambda \geq \frac{1}{2}$)
Examples... \((n = 1)\)

Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R}\).
Examples... \((n = 1)\)

Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R} \).

\(N \subset \mathbb{C} \times \mathbb{R}: \quad s = |z|^2\)

\(F(z, s) = (z, zs + s^2)\)
Examples... \((n = 1)\)

Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R}\).

\[N \subset \mathbb{C} \times \mathbb{R}: \quad s = |z|^2 \]

\[F(z, s) = (z, zs + s^2) \]

Elliptic singularity,
Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R}\).

\[N \subset \mathbb{C} \times \mathbb{R}: \quad s = |z|^2 \]

\[F(z, s) = (z, zs + s^2) \]

Elliptic singularity, \(F|_N\) a diffeomorphism,
Examples... \((n = 1) \)

Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R} \).

\[N \subset \mathbb{C} \times \mathbb{R} : \quad s = |z|^2 \]

\[F(z, s) = (z, zs + s^2) \]

Elliptic singularity, \(F|_N \) a diffeomorphism, but \(F \) is a finite map, not an immersion (on either side of \(N \))
Examples... \((n = 1)\)

Coordinates will be \((z, s) \in \mathbb{C}^n \times \mathbb{R}\).

\[N \subset \mathbb{C} \times \mathbb{R}: \quad s = |z|^2\]

\[F(z, s) = (z, zs + s^2)\]

Elliptic singularity, \(F|_N\) a diffeomorphism, but \(F\) is a finite map, not an immersion (on either side of \(N\))

\[F(z, s) = (z, zs)\] is even worse

\((F(N)\) is degenerate in both cases)
Examples... \((n = 1)\)

\[N \subset \mathbb{C} \times \mathbb{R}: \quad \text{Im } z = 0 \]

\[F(z, s) = (z + is, s^2 + z^2) \]
Examples... \((n = 1)\)

\[
N \subset \mathbb{C} \times \mathbb{R}: \quad \text{Im } z = 0
\]

\[
F(z, s) = (z + is, s^2 + z^2)
\]

\(N\) is CR (totally-real),
Examples... \((n = 1)\)

\[N \subset \mathbb{C} \times \mathbb{R}: \quad \text{Im} \, z = 0 \]

\[F(z, s) = (z + is, s^2 + z^2) \]

\(N\) is CR (totally-real),
\(F(N)\) is, in \((\xi, \eta) \in \mathbb{C}^2,\)

\[\eta = |\xi|^2 \]
Examples... \((n = 1)\)

\[N \subset \mathbb{C} \times \mathbb{R}: \quad \text{Im} \, z = 0 \]

\[F(z, s) = (z + is, s^2 + z^2) \]

\(N\) is CR (totally-real),
\(F(N)\) is, in \((\xi, \eta) \in \mathbb{C}^2\),
\[\eta = |\xi|^2 \]

\(F(N)\) is elliptic, CR singular Bishop surface, \(A\)-nondegenerate (elliptic) ... \((F\) is not an immersion on either side of \(N!\))
Examples... \((n = 1)\)

\[N \subset \mathbb{C} \times \mathbb{R} : \quad \text{Im} \ z = 0 \]

\[F(z, s) = (z + is, s^2 + z^2) \]

\(N\) is CR (totally-real),
\(F(N)\) is, in \((\xi, \eta) \in \mathbb{C}^2, \eta = |\xi|^2\)

\(F(N)\) is elliptic, CR singular Bishop surface, \(A\)-nondegenerate (elliptic) ... \((F\) is not an immersion on either side of \(N)!\)

Any codimension-two submanifold of \(\mathbb{C}^2\) is locally an image of a totally-real submanifold via a CR embedding.
Examples... \((n = 1)\)

\[N \subset \mathbb{C} \times \mathbb{R}: \quad \text{Im} \, z = 0 \]

\[F(z, s) = (z + is, s^2 + z^2) \]

\(N\) is CR (totally-real),
\(F(N)\) is, in \((\xi, \eta) \in \mathbb{C}^2,\)

\[\eta = |\xi|^2 \]

\(F(N)\) is elliptic, CR singular Bishop surface, \(A\)-nondegenerate (elliptic) ... \((F\) is not an immersion on either side of \(N!)\)

Any codimension-two submanifold of \(\mathbb{C}^2\) is locally an image of a totally-real submanifold via a CR embedding.

This is impossible when \(n \geq 2,\) and \(F(N)\) is \(A\)-nondegenerate.
Examples...

\[N \subset \mathbb{C}^2 \times \mathbb{R}: \quad s = z_1 + \bar{z}_1 + |z_2|^2 \]

\(N \) is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.
$N \subset \mathbb{C}^2 \times \mathbb{R}: \quad s = z_1 + \bar{z}_1 + |z_2|^2$

N is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

$F(z, s) = (z, s^2 + is^3)$

In $(\xi, \sigma + i\tau) \in \mathbb{C}^2 \times \mathbb{C}$

$F(N)$ is

$\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2$ \quad and \quad $\tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3$,
Examples...

\[N \subset \mathbb{C}^2 \times \mathbb{R}: \quad s = z_1 + \bar{z}_1 + |z_2|^2 \]

\(N \) is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

\[F(z, s) = (z, s^2 + is^3) \]

In \((\xi, \sigma + i\tau) \in \mathbb{C}^2 \times \mathbb{C}\)
\(F(N) \) is
\[\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2 \quad \text{and} \quad \tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3, \]

\(F(N) \) is CR singular, \(F|_N \) is a diffeomorphism, \(F|_N \) is a CR diffeomorphism outside the CR singularity,
Examples...

\[N \subset \mathbb{C}^2 \times \mathbb{R}: \quad s = z_1 + \bar{z}_1 + |z_2|^2 \]

\(N \) is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

\[F(z, s) = (z, s^2 + is^3) \]

In \((\xi, \sigma + i\tau) \in \mathbb{C}^2 \times \mathbb{C}\)

\(F(N) \) is

\[\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2 \quad \text{and} \quad \tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3, \]

\(F(N) \) is CR singular, \(F|_N \) is a diffeomorphism, \(F|_N \) is a CR diffeomorphism outside the CR singularity,

The singular(!) Levi-flat hypersurface \(\{\sigma^3 = \tau^2\} \) is the unique Levi-flat hypersurface that contains \(F(N) \).
Examples...

\[N \subseteq \mathbb{C}^2 \times \mathbb{R}: \quad s = z_1 + \bar{z}_1 + |z_2|^2 \]

\(N \) is CR, nowhere minimal but not Levi-flat, CR orbits are of codimension 1 and give a foliation.

\[F(z, s) = (z, s^2 + is^3) \]

In \((\xi, \sigma + i\tau) \in \mathbb{C}^2 \times \mathbb{C}\)

\(F(N) \) is

\[\sigma = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^2 \quad \text{and} \quad \tau = (\xi_1 + \bar{\xi}_1 + |\xi_2|^2)^3, \]

\(F(N) \) is CR singular, \(F|_N \) is a diffeomorphism, \(F|_N \) is a CR diffeomorphism outside the CR singularity,

The singular(!) Levi-flat hypersurface \(\{\sigma^3 = \tau^2\} \) is the unique Levi-flat hypersurface that contains \(F(N) \).

The singularity of \(F(N) \) is degenerate!
Examples...

\[N \subset \mathbb{C}^n \times \mathbb{R}: \quad s = ||z||^2 \]

\[F(z, s) = (z, s^2) \]

In \((\xi, \sigma) \in \mathbb{C}^n \times \mathbb{C}, \)

\[F(N): \quad \sigma = ||\xi||^4 \]

\(F(N)\) is CR singular and degenerate in every sense.
$F(z, s) = (z, s^2 + is^2)$

$F(N): \sigma = ||\xi||^4$ and $\tau = ||\xi||^6$

$N \subset \mathbb{C}^n \times \mathbb{R}: s = ||z||^2$

$F(N)$ is degenerate, and the singular F is the unique Levi-flat that contains $F(N)$. $F(N)$ is an example of the necessity of nondegeneracy in Fang–Huang.
$N \subset \mathbb{C}^n \times \mathbb{R}: \quad s = \|z\|^2$

$F(z, s) = (z, s^2 + is^2)$

$F(N): \sigma = \|\xi\|^4 \quad \text{and} \quad \tau = \|\xi\|^6$

$F(N)$ is degenerate, and the singular $\{\sigma^3 = \tau^2\}$ is the unique Levi-flat that contains $F(N)$.

$F(N)$ is an example of the necessity of nondegeneracy in Fang–Huang.
Examples... (now think globally)

\[\Omega \subset \mathbb{C}^n \times \mathbb{R} : \quad ||z||^2 + (s + \epsilon)^2 < 1 \]

\[F(z, s) = (z, s^2) \]

In \((\xi, \sigma) \in \mathbb{C}^n \times \mathbb{R},\)

\[F(\partial \Omega) \text{ is } 4\epsilon^2 \sigma = (1 - \epsilon^2 - ||\xi||^2 - \sigma)^2 \]

\[F|_{\partial \Omega} \text{ is a diffeomorphism,} \]

\[F(\partial \Omega) \text{ has CR singularities at} \]

\[\xi = 0, \quad 4\epsilon^2 \sigma = (1 - \epsilon^2 - \sigma)^2 \text{ (isolated)} \]

\[\sigma = 0 \text{ and } ||\xi||^2 = 1 - \epsilon^2 \text{ (not isolated)} \]

but ...
Examples... (now think globally)

\[\Omega \subset \mathbb{C}^n \times \mathbb{R}: \quad \|z\|^2 + (s + \epsilon)^2 < 1 \]

\[F(z, s) = (z, s^2) \]

In \((\xi, \sigma) \in \mathbb{C}^n \times \mathbb{R},\)

\[F(\partial \Omega) \text{ is } 4\epsilon^2 \sigma = (1 - \epsilon^2 - \|\xi\|^2 - \sigma)^2 \]

\[F|_{\partial \Omega} \text{ is a diffeomorphism,} \]

\[F(\partial \Omega) \text{ has CR singularities at} \]

\[\xi = 0, \quad 4\epsilon^2 \sigma = (1 - \epsilon^2 - \sigma)^2 \text{ (isolated)} \]

\[\sigma = 0 \text{ and } \|\xi\|^2 = 1 - \epsilon^2 \text{ (not isolated)} \]

but ... \(F\) is not 1-1 on \(\Omega\)!
\[\Omega \subset \mathbb{C}^n \times \mathbb{R}: \quad ||z||^2 + (s + \epsilon)^2 < 1\]

\[F(z, s) = (z, 1 - 4s^2 + i(8s^3 - 2s))\]

\[F|_{\partial \Omega}\] is a diffeomorphism,

\[F(\partial \Omega)\] has only (two) elliptic CR singularities,

but ...
\[\Omega \subset \mathbb{C}^n \times \mathbb{R}: \quad \|z\|^2 + (s + \epsilon)^2 < 1 \]

\[F(z, s) = (z, 1 - 4s^2 + i(8s^3 - 2s)) \]

\(F|_{\partial \Omega} \) is a diffeomorphism,
\(F(\partial \Omega) \) has only (two) elliptic CR singularities,
but ... \(F \) is not 1-1 on \(\Omega \)
Let H in $(\xi, \eta) \in \mathbb{C}^2$ be defined by ($\epsilon > 0$ small)
\[
\text{Im}(\xi^2 + \eta^2) = 0, \quad |\xi|^2 + |\eta + \epsilon|^2 \leq 1
\]

H is singular (as a variety) at the origin.
A final example ...

Let H in $(\xi, \eta) \in \mathbb{C}^2$ be defined by ($\epsilon > 0$ small)

$$\text{Im}(\xi^2 + \eta^2) = 0, \quad |\xi|^2 + |\eta + \epsilon|^2 \leq 1$$

H is singular (as a variety) at the origin

Consider $M = \partial H$

$$\text{Im}(\xi^2 + \eta^2) = 0, \quad |\xi|^2 + |\eta + \epsilon|^2 = 1$$

M has isolated CR singularities at

$$\left(0, -\epsilon \pm 1\right), \quad \left(0, \pm i \sqrt{1 - \epsilon^2}\right), \quad \left(\pm i \sqrt{1 - \frac{\epsilon^2}{4}}, \frac{-\epsilon}{2}\right)$$
A final example ...

Let H in $(\xi, \eta) \in \mathbb{C}^2$ be defined by ($\epsilon > 0$ small)

\[\text{Im}(\xi^2 + \eta^2) = 0, \quad |\xi|^2 + |\eta + \epsilon|^2 \leq 1 \]

H is singular (as a variety) at the origin

Consider $M = \partial H$

\[\text{Im}(\xi^2 + \eta^2) = 0, \quad |\xi|^2 + |\eta + \epsilon|^2 = 1 \]

M has isolated CR singularities at

\[(0, -\epsilon \pm 1), \quad (0, \pm i \sqrt{1 - \epsilon^2}), \quad (\pm i \sqrt{1 - \frac{\epsilon^2}{4}}, \frac{-\epsilon}{2}) \]

H is not an image of a domain in $\mathbb{C} \times \mathbb{R}$!

(There is noting special about \mathbb{C}^2 here).
Thank you