GLOBAL REGULARITY FOR THE 2D MICROPOLAR EQUATIONS WITH FRACTIONAL DISSIPATION

BO-QING DONG
College of Mathematics and Statistics, Shenzhen University,
Shenzhen 518060, China

JIAHONG WU
Department of Mathematics, Oklahoma State University,
401 Mathematical Sciences, Stillwater,
OK 74078, USA

XIAOJING XU
School of Mathematical Sciences, Beijing Normal University,
Laboratory of Mathematics and Complex Systems,
Ministry of Education, Beijing 100875, China

ZHUAN YE
Department of Mathematics and Statistics, Jiangsu Normal University,
101 Shanghai Road, Xuzhou 221116,
Jiangsu, PR China

(Communicated by the associate editor name)

ABSTRACT. Micropolar equations, modeling micropolar fluid flows, consist of coupled equations obeyed by the evolution of the velocity u and that of the microrotation w. This paper focuses on the two-dimensional micropolar equations with the fractional dissipation $(-\Delta)\alpha u$ and $(-\Delta)\beta w$, where $0 < \alpha, \beta < 1$. The goal here is the global regularity of the fractional micropolar equations with minimal fractional dissipation. Recent efforts have resolved the two borderline cases $\alpha = 1$, $\beta = 0$ and $\alpha = 0$, $\beta = 1$. However, the situation for the general critical case $\alpha + \beta = 1$ with $0 < \alpha < 1$ is far more complex and the global regularity appears to be out of reach. When the dissipation is split among the equations, the dissipation is no longer as efficient as in the borderline cases and different ranges of α and β require different estimates and tools. We aim at the subcritical case $\alpha + \beta > 1$ and divide $\alpha \in (0, 1)$ into five sub-intervals to seek the best estimates so that we can impose the minimal requirements on α and β. The proof of the global regularity relies on the introduction of combined quantities, sharp lower bounds for the fractional dissipation and delicate upper bounds for the nonlinearity and associated commutators.

2010 Mathematics Subject Classification. Primary: 35Q35, 35B65, 76A10; Secondary:76B03.

Key words and phrases. Micropolar equation, fractional dissipation, global regularity.

Dong was partially supported by the NSFC (No.11271019) and the CSC Award (No. 201506505001). Wu was partially supported by NSF grants DMS 1209153 and DMS 1624146, by the AT&T Foundation at Oklahoma State University (OSU) and by NSFC (No.11471103, a grant awarded to Professor Baoquan Yuan). Xu was partially supported by the National Natural Science Foundation of China (No. 11371059; No. 11471220; No. 11771045). Ye was supported by the Natural Science Foundation of Jiangsu Province (No. BK20170224) and the National Natural Science Foundation of China (No. 11701232).

* Corresponding author: Zhuan Ye.
1. Introduction. Micropolar equations, derived in 1960’s by Eringen [14, 15], govern the motion of micropolar fluids. Micropolar fluids are a class of fluids with microstructures such as fluids consisting of bar-like elements and liquid crystals made up of dumbbell molecules (see, e.g., [9, 13, 25, 27]). They are non-Newtonian fluids with non-symmetric stress tensor. The micropolar equations take into account of the kinematic viscous effect, microrotational effects as well as microrotational inertia. The 3D micropolar equations are given by
\[
\begin{align*}
\partial_t u + u \cdot \nabla u - 2\kappa \nabla \times w + \nabla \pi &= (\nu + \kappa) \Delta u, \\
\nabla \cdot u &= 0, \\
\partial_t w + u \cdot \nabla w + 4\kappa w - 2\kappa \nabla \times u &= \gamma \Delta w + \mu \nabla \nabla \cdot w,
\end{align*}
\]
(1.1)
where \(u = u(x,t)\) denotes the fluid velocity, \(w(x,t)\) the field of microrotation representing the angular velocity of the rotation of the fluid particles, \(\pi(x,t)\) the scalar pressure, and the parameter \(\nu\) denotes the kinematic viscosity, \(\kappa\) the microrotation viscosity, and \(\gamma\) and \(\mu\) the angular viscosities. The 3D micropolar equations reduce to the 2D micropolar equation when
\[
\begin{align*}
\partial_t u + u \cdot \nabla u - 2\kappa \nabla \times w + \nabla \pi &= (\nu + \kappa) \Delta u, \\
\nabla \cdot u &= 0, \\
\partial_t w + u \cdot \nabla w + 4\kappa w - 2\kappa \nabla \times u &= \gamma \Delta w,
\end{align*}
\]
(1.2)
where we have written \(u = (u_1, u_2)\) and \(w\) for \(w_3\) for notational brevity. Here and in what follows,
\[
\Omega = \nabla \times u = \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2}, \quad \nabla \times w = \left(\frac{\partial w}{\partial x_2}, -\frac{\partial w}{\partial x_1} \right).
\]

In addition to their applications in engineering and physics, the micropolar equations are also mathematically significant due to their special structures. The well-posedness problem on the micropolar equations and closely related equations such as the magneto-micropolar equations have attracted considerable attention recently and very interesting results have been established ([7, 10, 12, 11, 16, 23, 30, 31, 33]). Generally speaking, the global regularity problem for the micropolar equations is easier than that for the corresponding incompressible magnetohydrodynamic equations and harder than that for the corresponding incompressible Boussinesq equations.

Recent efforts are focused on the 2D micropolar equations with partial dissipation. When there is full dissipation, the global well-posedness problem on (1.2) is easy and can be solved similarly as that for the 2D Navier-Stokes equations (see, e.g., [3, 4, 6, 28]). When there is only partial dissipation, the global existence and regularity problem can be difficult. Due to recent efforts, the global regularity for several partial dissipation cases have been resolved. In [12] Dong and Zhang obtained the global regularity of (1.2) without the micro-rotation viscosity, namely \(\gamma = 0\). For (1.2) with \(\nu = 0, \gamma > 0, \kappa > 0\) and \(\kappa \neq \gamma\), Xue obtained the global well-posedness in the framework of Besov spaces [30]. Very recently, Dong, Li and Wu [11] proved the global well-posedness of (1.2) with only angular viscosity
dissipation. \[11\] makes use of the maximal regularity of the heat operator and introduces a combined quantity to obtain the desired global bounds. In addition, \[11\] also obtains explicit decay rates of the solutions to this partially dissipated system.

This paper aims at the global existence and regularity of classical solutions to the 2D micropolar equations with fractional dissipation

\[
\begin{aligned}
\partial_t u + u \cdot \nabla u + (\nu + \kappa)\Lambda^{2\alpha} u - 2\kappa \nabla \times w + \nabla \pi &= 0, \\
\nabla \cdot u &= 0, \\
\partial_t w + u \cdot \nabla w + \gamma \Lambda^{2\beta} w + 4\kappa w - 2\kappa \nabla \times u &= 0,
\end{aligned}
\]

where \(0 < \alpha, \beta < 1\) and \(\Lambda = (-\Delta)^{1/2}\) denotes the Zygmund operator, defined via the Fourier transform

\[\widehat{\Lambda f}(\xi) = |\xi|^{\alpha} \widehat{f}(\xi).\]

Clearly, (1.3) generalizes (1.2) and reduces to (1.2) when \(\alpha = \beta = 1\). Mathematically (1.3) has an advantage over (1.2) in the sense that (1.3) allows the study of a family of equations simultaneously. Our attempt is to establish the global regularity of (1.3) with the minimal amount of dissipation, namely for smallest \(\alpha, \beta \in (0, 1)\).

As aforementioned, the two endpoint cases, \(\alpha = 1\) and \(\beta = 0\), and \(\alpha = 0\) and \(\beta = 1\) have previously been resolved in \[12\] and \[11\], respectively. The global regularity for the general critical case when \(0 < \alpha, \beta < 1\) and \(\alpha + \beta = 1\) appears to be extremely challenging.

When \(\alpha + \beta = 1\), the dissipation is not sufficient in controlling the nonlinearity and standard energy estimates do not yield the desired global \(a \text{ priori}\) bounds on the solutions. Due to the presence of the linear derivative terms \(\nabla \times w\) and \(\nabla \times u\) in (1.3), we need \(\alpha + \beta > 1\) even in the proof of the global \(L^2\)-bound for the solution. It does not appear to be possible to bound the nonlinear terms when we estimate the Sobolev norms of the solutions in the critical or supercritical case \(\alpha + \beta \leq 1\). This paper focuses on the subcritical case \(\alpha + \beta > 1\), but we intend to get as close as possible to the critical case \(\alpha + \beta = 1\). We are able to prove the following global existence and regularity result for (1.3).

Theorem 1.1. Assume \((u_0, w_0) \in H^s(\mathbb{R}^2)\) with \(s > 2\) and \(\nabla \cdot u_0 = 0\). If \(\alpha, \beta \in (0, 1)\) satisfy

\[
\beta \begin{cases}
> 1 - 2\alpha^2, & 0 < \alpha \leq \frac{1}{6}; \\
\geq 1 - \frac{\alpha}{3}, & \frac{1}{6} \leq \alpha \leq \frac{3}{4}; \\
\geq \frac{3}{2} - \alpha, & \frac{3}{4} \leq \alpha \leq \frac{7}{8}; \\
\geq 5(1 - \alpha), & \frac{7}{8} \leq \alpha \leq \frac{39}{40}; \\
> 1 - \alpha + \sqrt{\alpha^2 - 4\alpha + 3}\frac{2}{2}, & \frac{39}{40} \leq \alpha < 1,
\end{cases}
\]

then the fractional 2D micropolar equation (1.3) has a unique global regular solution \((u, w)\) satisfying

\[
\begin{aligned}
u &\in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\alpha}(\mathbb{R}^2)); \\
w &\in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\beta}(\mathbb{R}^2)).
\end{aligned}
\]
Even though Theorem 1.1 requires $\alpha + \beta > 1$, we have made serious efforts towards the critical case $\alpha + \beta = 1$. We divide $\alpha \in (0, 1)$ into five different subranges to seek the best estimates so that we can impose the minimal requirements on α and β. As we can tell from (1.4), $\alpha + \beta$ is close to the critical case when either α is close to 0 or close to 1. Figure 1 below depicts the regions of α and β for which the global regularity is established in Theorem 1.1.

Figure 1. Regularity region

We briefly summarize the main challenge for each subrange and explain what we have done to achieve the global regularity. Here and in what follows, we set the viscosity coefficients $\nu = \kappa = \gamma = 1$ for simplicity. In order to prove Theorem 1.1, we need global a priori bounds on the solutions in sufficiently functional settings. More precisely, if we can show, for any $T > 0$,

$$
\int_0^T \| (\nabla u(t), \nabla w(t)) \|_{L^\infty} \, dt < \infty,
$$

then Theorem 1.1 would follow from a more or less standard procedure. For any $\alpha \in (0, 1)$ and $\alpha + \beta > 1$, the L^2-norm of (u, w) is globally bounded (see Proposition 2.2). The next natural step is to obtain a global H^1-bound for (u, w). We invoke the equation of the vorticity $\Omega \equiv \nabla \times u$,

$$
\partial_t \Omega + (u \cdot \nabla) \Omega + 2\Lambda^{2\alpha} \Omega + 2\Delta w = 0.
$$
For $0 < \alpha < \frac{3}{4}$, we need to estimate $\|\Omega\|_{L^2}$ and $\|\Lambda^{2\beta-1}w\|_{L^2}$ simultaneously in order to bound the coupled terms. The index $2\beta-1$ is chosen to minimize the requirement on β, which turns out to be
\[\beta \geq 1 - \frac{\alpha}{3}. \] (1.7)

More regular global bound can be obtained for w,
\[\|\Lambda^{\alpha+\beta}w(t)\|_{L^2}^2 + \int_0^t \|\Lambda^{\alpha+2\beta}w(s)\|_{L^2}^2 ds \leq C(t, \|(u_0, w_0)\|_{H^r}), \]
which, due to $\alpha + 2\beta > 2$, implies $\nabla w \in L_1^3 L_\infty^3$ for all $t > 0$. However, it appears impossible to derive (1.5) from the vorticity equation (1.6) due to the presence of the term Δw. We overcome this difficulty by considering the combined quantity
\[\Gamma = \Omega + 2\Lambda^{2-2\beta}w, \]
which satisfies
\[\partial_t \Gamma + u \cdot \nabla \Gamma + 2\Lambda^{2\alpha} \Gamma = 4\Lambda^{2+2\alpha-2\beta}w - 8\Lambda^{2-2\beta}w + 4\Lambda^{2-2\beta}w, \Omega - 2[\Lambda^{2-2\beta}, u \cdot \nabla]w. \]
The equation of Γ eliminates the term Δw from the vorticity equation and makes it possible to estimate the L^q-norm of Γ. In fact, by making use of sharp lower bounds for the dissipative term and suitable commutator estimates, we are able to obtain the global bound for $\|\Gamma\|_{L^q}$ for q satisfying
\[2 \leq q < \frac{2\alpha}{1-\beta}. \]
Due to the regularity of w, we obtain a global bound for $\|\Omega\|_{L^q}$ as a consequence. By further assuming
\[\beta > 1 - 2\alpha^2, \] (1.8)
we are able to show that
\[\|\Lambda^2 u(t)\|_{L^2}^2 + \|\Lambda^2 w(t)\|_{L^2}^2 + \int_0^t (\|\Lambda^{2+\alpha}u\|_{L^2}^2 + \|\Lambda^{2+\beta}w\|_{L^2}^2) ds \leq C(t, \|(u_0, w_0)\|_{H^r}), \]
which, especially, implies (1.5), (1.7) and (1.8) together yield the restriction on β in (1.4) for $0 < \alpha \leq \frac{3}{4}$.

For $\frac{3}{4} \leq \alpha \leq \frac{7}{8}$ and $\beta \geq \frac{3}{2} - \alpha$, we estimate the L^2-norm of Ω and of $\Lambda^{\frac{1}{2}}w$ simultaneously to establish a global bound for both of them. With this global bound at our disposal, we further establish global bounds for $\|\Lambda^2 w\|_{L^2}$ and $\|\Lambda \Omega\|_{L^2}$ and the corresponding bounds for $w \in L_1^2 H^{\frac{1}{2}+\beta}$ and $\Omega \in L_2^2 H^{1+\alpha}$, which yield the desired bound in (1.5). We remark that the estimates here actually hold for any $\alpha \in (0, 1)$ and $\beta \geq \frac{3}{2} - \alpha$. We restrict α to the range $\frac{3}{4} \leq \alpha \leq \frac{7}{8}$ in order to minimize the assumption on β.

For $\frac{7}{8} \leq \alpha < 1$, it appears very difficult to obtain any global bounds beyond the L^2-norm for (u, w). The strategy here is to work with another combined quantity
\[\Gamma = \Omega - \Lambda^{2-2\alpha}w, \]
which satisfies
\[\partial_t G + u \cdot \nabla G + 2\Lambda^{2\alpha}G + 2\Lambda^{2-2\alpha}G \]
\[= \Lambda^{2+2\alpha-2\beta}w + 4\Lambda^{2-2\alpha}w - 2\Lambda^{4-4\alpha}w + [\Lambda^{2-2\alpha}, u \cdot \nabla]w. \]
The advantage of the G-equation is that it removes Δw from the vorticity equation. For α and β satisfying
\begin{equation}
\beta \geq 5(1 - \alpha),
\end{equation}
we are able to establish the global L^2 bound for G, for any $t > 0$,
\begin{equation}
\|G(t)\|_{L^2}^2 + \int_0^t \|\Lambda^\alpha G(s)\|_{L^2}^2 \, ds \leq C(t, \|(u_0, w_0)\|_{H^s}).
\end{equation}
This global bound serves as an adequate preparation for the following global L^q-bound for w, for any $2 \leq q < \frac{2\beta}{1 - \alpha}$,
\begin{equation}
\|w(t)\|_{L^q}^q + \int_0^t \|w(s)\|_{L^{\frac{2q}{q-2}}}^q \, ds + \int_0^t \|w(s)\|_{\dot{B}^{\frac{2q}{q}}_{q; q}}^q \, ds \leq C(t, \|(u_0, w_0)\|_{H^s}).
\end{equation}
where $\dot{B}^{\frac{2q}{q}}_{q; q}$ denotes a homogeneous Besov space. More information on Besov spaces are provided in the appendix. Making use of this L^q bound and further assuming that α and β satisfy
\begin{equation}
2\beta^2 - 2(1 - \alpha)\beta - (1 - \alpha) > 0 \quad \text{or} \quad \beta > \frac{1 - \alpha + \sqrt{\alpha^2 - 4\alpha + 3}}{2},
\end{equation}
we obtain a global bound for $\|\Omega\|_{L^2}$ and $\|\nabla w\|_{L^2}$. To achieve (1.5), we further bound $\|\nabla \Omega\|_{L^2}$ and $\|\Delta w\|_{L^2}$. (1.4) for $\frac{7}{8} \leq \alpha < 1$ is a combination of (1.9) and (1.10).

As aforementioned, once the global bound in (1.5) is established, Theorem 1.1 can then be established following standard approaches. The rest of this paper is divided into four sections and one appendix. Each one of the sections is devoted to establishing the global a priori bounds for one of the three cases described above. Section 5 outlines the proof of Theorem 1.1. The appendix provides the definitions and related facts concerning the Besov spaces. In addition, we also supply the details on several notations and simple facts used the regular sections.

2. The case for $0 < \alpha \leq \frac{3}{4}$. For the sake of clarity, the proof of Theorem 1.1 is split into three major cases. This section is devoted to the case when $0 < \alpha \leq \frac{3}{4}$. The aim here is to prove the global existence and regularity of solutions to (1.3) when $0 < \alpha \leq \frac{3}{4}$ and β satisfies (1.4). More precisely, we prove the following theorem.

Theorem 2.1. Consider (1.3) with
\begin{equation}
\beta \begin{cases}
> 1 - 2\alpha^2, & 0 < \alpha \leq \frac{1}{6}; \\
\geq 1 - \frac{\alpha}{3}, & \frac{1}{6} \leq \alpha \leq \frac{3}{4}.
\end{cases}
\end{equation}
Assume (u_0, w_0) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a unique global solution satisfying, for any $T > 0$,
\begin{align*}
u &\in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\alpha}(\mathbb{R}^2)); \\
w &\in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\beta}(\mathbb{R}^2)).
\end{align*}
As aforementioned, the proof of Theorem 2.1 relies on suitable global a priori bounds for the solutions. This section focuses on the necessary global a priori bounds. These bounds are proved in Proposition 2.2, Proposition 2.6 and Proposition 2.7.

Proposition 2.2. Consider (1.3) with α and β satisfying $\beta \geq 1 - \frac{m}{q_1}$. Assume (u_0, w_0) satisfies the conditions of Theorem 1.1 and let (u, w) be the corresponding solution. Then (u, w) obeys the following global bounds, for any $0 < t < \infty$,

\begin{align}
\|u(t)\|_{L^2}^2 + \|w(t)\|_{L^2}^2 + \int_0^t (\|\Lambda^\alpha u(s)\|_{L^2}^2 + \|\Lambda^\beta w(s)\|_{L^2}^2) \, ds & \leq C, \\
\|\Omega(t)\|_{L^2}^2 + \|\Lambda^{2\beta-1} w(t)\|_{L^2}^2 + \int_0^t (\|\Lambda^\alpha \Omega(s)\|_{L^2}^2 + \|\Lambda^{3\beta-1} w(s)\|_{L^2}^2) \, ds & \leq C, \\
\|\Lambda^{\alpha+\beta} w(t)\|_{L^2}^2 + \int_0^t \|\Lambda^{\alpha+2\beta} w(s)\|_{L^2}^2 \, ds & \leq C,
\end{align}

where C’s depend on t and $\|(u_0, w_0)\|_{H^r}$ only (the explicit dependence can be found in the proof). Especially, due to $\alpha + 2\beta > 2$ according to (2.1), (2.4) implies, for any $T > 0$,

$$\int_0^T \|\nabla w(t)\|_{L^\infty} \, dt \leq C(T, \|(u_0, w_0)\|_{H^r}).$$

To prove Proposition 2.2, we recall the following classical commutator estimate (see, e.g., [19, 20, p.334]).

Lemma 2.3. Let $s > 0$. Let $1 < r < \infty$ and $\frac{1}{r} = \frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{p_2} + \frac{1}{q_2}$ with $q_1, p_2 \in (1, \infty)$ and $p_1, q_2 \in [1, \infty]$. Then,

$$\|\Lambda^s f g\|_{L^r} \leq C \left(\|\nabla f\|_{L^{p_1}} \|\Lambda^{s-1} g\|_{L^{q_1}} + \|\Lambda^s f\|_{L^{p_2}} \|g\|_{L^{q_2}} \right),$$

where C is a constant depending on the indices s, r, p_1, q_1, p_2 and q_2.

The following lemma can be found in [21, p.614].

Lemma 2.4. Let $0 < s < 1$ and $1 < p < \infty$. Then

$$\|\Lambda^s (f g) - f \Lambda^s g - g \Lambda^s f\|_{L^p} \leq C \|g\|_{L^\infty} \|\Lambda^s f\|_{L^p}.$$

The following lemma generalizes the Kato-Ponce inequality, which requires m to be an integer (see, e.g., [21]). This lemma extends it to any real number $m \geq 2$. For the convenience of the readers, we provide a proof for this lemma.

Lemma 2.5. Let $0 < s < \sigma < 1$, $2 \leq m < \infty$, and $p, q, r \in (1, \infty)^3$ satisfying $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Then, there exists $C = C(s, \sigma, m, p, q, r)$ such that

$$\|f^{m-2} \|_{L^p} + \|\Lambda^s (f^{m-2})\|_{L^p} \leq C \|f\|_{B^s_{p, q}} \|f^{m-2}\|_{L^{m-r(m-2)}}. \quad (2.6)$$

Proof of Lemma 2.5. It is easy to see that, for $0 < s < \sigma$ and $p, \tilde{p} \in [1, \infty]^2$, the Besov space $B^\sigma_{p, \tilde{p}}$ is embedded in the Bessel potential space $\mathcal{L}_p^{\tilde{p}}$ (see, e.g., [17, Chapter 1.3.1]), namely

$$\|g\|_{\mathcal{L}_p^{\tilde{p}}} \leq \|g\|_{L^p} + \|\Lambda^s g\|_{L^p} \leq C \|g\|_{B^\sigma_{p, \tilde{p}}} = C \left(\|g\|_{L^p} + \|g\|_{B^\sigma_{p, \tilde{p}}} \right), \quad (2.7)$$

where $B^\sigma_{p, \tilde{p}}$ and $\tilde{B}^\sigma_{p, \tilde{p}}$ denote the standard inhomogeneous and homogeneous Besov spaces, respectively. Besov spaces and their properties are provided in the appendix.
A short proof for (2.7) is also given in the appendix. Setting \(\tilde{p} = p \) and invoking the equivalence definition of \(B_{p,p}^\sigma \) in (A.3), we have
\[
\| \Lambda^s(|f|^{m-2} f) \|_{L_p}^p \leq C \left\| |f|^{m-2} f \right\|_{L_p}^p + C \int_{\mathbb{R}^2} \frac{\| f^{m-2} f(x + \cdot) - f^{m-2} f(\cdot) \|_{L_p}^p}{|x|^{2+\sigma p}} \, dx.
\]
By the Hölder inequality,
\[
\| f^{m-2} f \|_{L_p}^p \leq \| f \|_{L^p}^p \| f^{m-2} \|_{L^p}^p = \| f \|_{L^p}^p \| f \|_{L^p(m-2)}^{p(m-2)}.
\]
Due to the simple inequality
\[
|a|^{m-2}a - |b|^{m-2}b \leq C(m)|a - b||a|^{m-2} + |b|^{m-2}
\]
and Hölder’s inequality,
\[
\| f^{m-2} f(x + \cdot) - f^{m-2} f(\cdot) \|_{L_p} \leq C \| f(x + \cdot) - f(\cdot) \|_{L^p} \| f \|_{L^p(m-2)}^m \leq C \| f \|_{L^p(m-2)} \| f \|_{L^p(m-2)}^{m-2}.
\]
Thus,
\[
\| \Lambda^s(|f|^{m-2} f) \|_{L_p}^p \leq C \| f \|_{L^p}^p \| f \|_{L^p(m-2)}^{p(m-2)} + C \| f \|_{L^p(m-2)} \| f \|_{L^p(m-2)} \| f \|_{L^p(m-2)}^{p(m-2)} + C \| f \|_{L^p(m-2)} \| f \|_{L^p(m-2)}^{p(m-2)} + C \| f \|_{L^p(m-2)} \| f \|_{L^p(m-2)}^{p(m-2)}
\]
This completes the proof of (2.6).
\[\Box\]

We remark that, if we replace the Bessel potential space norm by the norm of the Sobolev-Slobodeckij space \(\tilde{W}^{s,p} \), the proof of Lemma 2.5 then implies
\[
\| |f|^{m-2} \|_{\tilde{W}^{s,p}} \leq C \| f \|_{B_{\tilde{p},\tilde{p}}^{\sigma \tilde{s}}} \| f \|_{L^p(m-2)}^{m-2}.
\]
In fact, (2.8) follows
\[
\| g \|_{\tilde{W}^{s,p}}^p \approx \| g \|_{L^p}^p + \left(\int_{\mathbb{R}^2} \frac{\| g(x + \cdot) - g(\cdot) \|_{L_p}^p}{|x|^{2+sp}} \, dx \right)^p
\]
and combined with the rest of the proof for Lemma 2.5. The definition of \(\tilde{W}^{s,p} \) and some embedding properties are given in the appendix. Here we also want to remark that unfortunately, it is not clear whether the term \(\| f \|_{B_{\tilde{q},\tilde{p}}^{\sigma \tilde{s}}} \) of (2.8) can be replaced by \(\| f \|_{\tilde{W}^{s,q}} \).

Proof of Proposition 2.2. Taking the \(L^2 \) inner product of (1.3) with \((u, w) \), we find
\[
\frac{1}{2} \frac{d}{dt} \left(\| u(t) \|_{L_2}^2 + \| w(t) \|_{L_2}^2 \right) + 2 \| \Lambda^s u(t) \|_{L_2}^2 + 2 \| \Lambda^s w(t) \|_{L_2}^2 + 4 \| w(t) \|_{L_2}^2
\]
\[
= 2 \int_{\mathbb{R}^2} \left\{ (\nabla \times u) \cdot u + (\nabla \times w) w \right\} \, dx
\]
\[
\leq 4 \| \Lambda^s u \|_{L_2} \| \Lambda^{1-\sigma} w \|_{L_2}
\]
\[
\leq \| \Lambda^s u(t) \|_{L_2}^2 + \frac{1}{2} \| \Lambda^s w(t) \|_{L_2}^2 + C \| w(t) \|_{L_2}^2,
\]

where we have used the condition \(\alpha + \beta > 1 \) in the last inequality as well as the following facts, due to \(\nabla \cdot u = 0 \),
\[
\int_{\mathbb{R}^2} (u \cdot \nabla u) \cdot u \, dx = 0 \quad \text{and} \quad \int_{\mathbb{R}^2} (u \cdot \nabla w) \, w \, dx = 0.
\]
Applying Gronwall inequality gives, for \(0 < t < \infty \),
\[
\|u(t)\|_{L^2}^2 + \|w(t)\|_{L^2}^2 + \int_0^t (\|\Lambda^\alpha u(s)\|_{L^2}^2 + \|\Lambda^\beta w(s)\|_{L^2}^2) \, ds \\
\leq e^{Ct} \left(\|u_0\|_{L^2}^2 + \|w_0\|_{L^2}^2 \right),
\]
(2.9) which is (2.2). To prove (2.3) and (2.4), we apply \(\nabla \times \) to the first equation of (1.3) to obtain the vorticity equation
\[
\partial_t \Omega + (u \cdot \nabla) \Omega + 2\Lambda^{2\alpha} \Omega + 2\Delta w = 0,
\]
(2.10) where we have used \(- \nabla \times \nabla \times w = \Delta w\). Taking the inner product of (2.10) with \(\Omega \) and the inner product of third equation of (1.3) with \(\Lambda^{2(2\beta-1)} w \) leads to
\[
\frac{1}{2} \frac{d}{dt} \left(\|\Omega\|_{L^2}^2 + \|\Lambda^{2\beta-1} w\|_{L^2}^2 \right) + 2\|\Lambda^\alpha \Omega\|_{L^2}^2 + \|\Lambda^{3\beta-1} w\|_{L^2}^2 + 4\|\Lambda^{2\beta-1} w\|_{L^2}^2 \\
= 2 \int_{\mathbb{R}^2} \left(\Lambda^2 \omega \Omega + \Omega \Lambda^{2(2\beta-1)} w \right) \, dx \\
= - \int_{\mathbb{R}^2} [\Lambda^{2\beta-1}, u \cdot \nabla] w \Lambda^{2\beta-1} w \, dx \\
=: I_1 + I_2,
\]
(2.11) where we have used the facts
\[
\int_{\mathbb{R}^2} (u \cdot \nabla \Omega) \Omega \, dx = 0 \quad \text{and} \quad \int_{\mathbb{R}^2} (u \cdot \nabla \Lambda^{2\beta-1} w) \Lambda^{2\beta-1} w \, dx = 0.
\]
To estimate \(I_1 \), we integrate by parts and apply Hölder’s inequality, the Gagliardo-Nirenberg inequality and Young’s inequality to obtain
\[
\int_{\mathbb{R}^2} \left(\Lambda^2 \omega \Omega + \Omega \Lambda^{2(2\beta-1)} w \right) \, dx \\
\leq \|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^{2-\alpha} w\|_{L^2} + \|\Omega\|_{L^2} \|\Lambda^{2(2\beta-1)} w\|_{L^2} \\
\leq \|\Lambda^\alpha \Omega\|_{L^2} \left(\|w\|_{L^{\frac{2\alpha-2}{\alpha-1}}}^{\frac{2\alpha-2}{\alpha-1}} \|\Lambda^{3\beta-1} w\|_{L^2}^{\frac{2}{\alpha-1}} \right) + \|\Omega\|_{L^2} \left(\|\Lambda^\beta w\|_{L^2}^{\frac{1}{1-\beta}} \|\Lambda^{3\beta-1} w\|_{L^2}^{\frac{3\beta-2}{1-\beta}} \right) \\
\leq \frac{1}{2} \|\Lambda^\alpha \Omega\|_{L^2}^2 + \frac{2}{3} \|\Lambda^{3\beta-1} w\|_{L^2}^2 + C \|\Omega\|_{L^2}^2 + C \|w\|_{L^2}^2 + C \|\Lambda^\beta w\|_{L^2}^2
\]
where we have used (2.1),
\[
\alpha + 3\beta \geq 3 \quad \text{and} \quad \beta < 2(2\beta-1) < 3\beta - 1.
\]
To estimate \(I_2 \), we employ Hölder’s inequality and Sobolev’s inequality and invoke Lemma 2.3 to obtain
\[
\int_{\mathbb{R}^2} [\Lambda^{2\beta-1}, u \cdot \nabla] w \Lambda^{2\beta-1} w \, dx \\
\leq \left(\|\nabla u\|_{L^2} \|\Lambda^{2\beta-1} w\|_{L^r} + \|\Lambda^{2\beta-1} u\|_{L^p} \|\nabla w\|_{L^1} \right) \|\Lambda^{2\beta-1} w\|_{L^r} \\
\leq \|\Omega\|_{L^2} \|\Lambda^{3\beta-1} w\|_{L^2} \|\Lambda^\beta w\|_{L^2} \\
\leq C \|\Omega\|_{L^2}^2 \|\Lambda^\beta w\|_{L^2}^2 + \frac{1}{16} \|\Lambda^{3\beta-1} w\|_{L^2}^2,
\]
where the indices are given by
\[
q = \frac{2}{1-\beta}, \quad r = \frac{2}{\beta}, \quad p_1 = \frac{2}{2\beta-1}, \quad q_1 = \frac{2}{3(1-\beta)}.
\]
and they are so chosen to fulfill the requirements of the Sobolev inequalities,
\[\frac{1}{q} + \frac{1}{r} = \frac{1}{2}, \quad \frac{1}{q} - \frac{2\beta - 1}{2} = \frac{1}{2} - \frac{3\beta - 1}{2}, \quad \frac{1}{r} - \frac{2\beta - 1}{2} = \frac{1}{2} - \frac{3\beta - 1}{2}. \]

Inserting the bounds for \(I_1 \) and \(I_2 \) in (2.11) yields
\[
\frac{d}{dt} \left(||\Omega||_{L^2}^2 + ||\Lambda^{2\beta-1}w||_{L^2}^2 \right) + ||\Lambda^\alpha \Omega||_{L^2}^2 + ||\Lambda^{3\beta-1}w||_{L^2}^2 \\
\leq C ||\Omega||_{L^2}^2 (||\Lambda^\beta w||_{L^2}^2 + 1) + C ||\Lambda^\beta w||_{L^2}^2.
\]

Gronwall inequality together with (2.9) implies
\[
||\Omega(t)||_{L^2}^2 + ||\Lambda^{2\beta-1}w(t)||_{L^2}^2 + \int_0^t \left(||\Lambda^\alpha \Omega(s)||_{L^2}^2 + ||\Lambda^{3\beta-1}w(s)||_{L^2}^2 \right) ds \\
\leq e^{Ct+Ce^C(\|u_0\|_{L^2}^2+\|w_0\|_{L^2}^2)} \left(\|\nabla u_0\|_{L^2}^2 + \|\nabla w_0\|_{L^2}^2 + e^{Ct} (\|u_0\|_{L^2}^2 + \|w_0\|_{L^2}^2) \right),
\]
which is (2.3). We now prove (2.4). Taking the inner product of third equation of (1.3) with \(\Lambda^{2\alpha+\beta}w \) yields
\[
\frac{1}{2} \frac{d}{dt} ||\Lambda^{\alpha+\beta}w||_{L^2}^2 + ||\Lambda^{\alpha+2\beta}w||_{L^2}^2 + 4||\Lambda^{\alpha+\beta}w||_{L^2}^2 \\
= 2 \int_{\mathbb{R}^2} \Omega \Lambda^{2(\alpha+\beta)}wdx - \int_{\mathbb{R}^2} [\Lambda^{\alpha+\beta}, u \cdot \nabla] w \Lambda^{\alpha+\beta}wdx \\
:= J_1 + J_2,
\]

(2.12)

\(J_1 \) is bounded by
\[
J_1 \leq 2||\Lambda^\alpha \Omega||_{L^2}^2 ||\Lambda^{\alpha+2\beta}w||_{L^2} \leq 4||\Lambda^\alpha \Omega||_{L^2}^2 + \frac{1}{4} ||\Lambda^{\alpha+2\beta}w||_{L^2}^2.
\]

Similar to the estimates for \(I_2 \), we have, after applying Hölder’s inequality, Sobolev’s imbedding inequality and Lemma 2.3,
\[
\int_{\mathbb{R}^2} [\Lambda^{\alpha+\beta}, u \cdot \nabla] w \Lambda^{\alpha+\beta}wdx \\
\leq \left(\|\nabla u\|_{L^\frac{4}{\alpha}} ||\Lambda^{\alpha+\beta}w||_{L^\frac{2}{\alpha+\beta}} + ||\Lambda^{\alpha+\beta}w||_{L^2} \|\nabla w\|_{L^\infty} \right) ||\Lambda^{\alpha+\beta}w||_{L^2} \\
\leq C \left(\|\Lambda^{1-\beta} \Omega\|_{L^2} + ||\Lambda^{\alpha+\beta-1} \Omega||_{L^2} \right) \|w\|_{H^{\alpha+2\beta}} ||\Lambda^{\alpha+\beta}w||_{L^2} \\
\leq C \left(\|\Lambda^{\alpha} \Omega\|_{L^2}^2 + \Omega||_{L^2}^2 \right) ||\Lambda^{\alpha+\beta}w||_{L^2}^2 + C ||w||_{L^2}^2 + \frac{1}{4} ||\Lambda^{\alpha+2\beta}w||_{L^2}^2,
\]

where we have used that \(\alpha \) and \(\beta \) satisfy
\[0 < \alpha, \beta < 1, \quad \alpha + 2\beta > 2. \]

Inserting the bounds for \(J_1 \) and \(J_2 \) in (2.12) and applying Gronwall’s inequality, we have
\[
||\Lambda^{\alpha+\beta}w(t)||_{L^2}^2 + \int_0^t \left(||\Lambda^{\alpha+2\beta}w(s)||_{L^2}^2 \right) ds \leq C(t, u_0, w_0)
\]
which is (2.4). (2.5) follows from (2.4) via Sobolev’s inequality. This completes the proof of Proposition 2.2. \(\square \)
The global bounds in Proposition 2.2 are not sufficient to prove Theorem 2.1. More regular global bounds are needed. In particular, if we have, for any \(T > 0 \),
\[
\int_0^T \| \Omega(t) \|_{L^\infty} \, dt < \infty,
\]
the global existence and regularity then follows. It does not appear plausible to prove (2.13) directly via (2.10) when \(0 < \alpha < \frac{1}{2} \). Due to the term \(\Delta w \) in (2.10), we need \(\Lambda^2 w \in L_t^1 L^\infty \), which is unavailable at this moment. To overcome this difficulty, we work with the combined quantity
\[
\Gamma = \Omega + 2\Lambda^{2-2\beta} w.
\]
Applying \(\Lambda^{2-2\beta} \) to the second equation in (1.3) leads to
\[
\partial_t (\Lambda^{2-2\beta} w) + u \cdot \nabla \Lambda^{2-2\beta} w + \Lambda^2 w + 4\Lambda^{2-2\beta} w - 2\Lambda^{2-2\beta} \Omega = -[\Lambda^{2-2\beta}, u \cdot \nabla] w,
\]
which, together with (2.10), yields the equation for \(\Gamma \),
\[
\partial_t \Gamma + u \cdot \nabla \Gamma + 2\Lambda^2 \Gamma = 4\Lambda^2 + 2\Lambda^{2-2\beta} w - 8\Lambda^{2-2\beta} w - 2\Lambda^{2-2\beta} \Omega - 2[\Lambda^{2-2\beta}, u \cdot \nabla] w.
\]
Although (2.14) appears to be more complex than (2.10), it eliminates the most regularity demanding term \(\Delta w \) and allows us to derive the \(L^q \) bounds of \(\Gamma \), which is crucial to derive the \(\Omega \in L_t^1 L^\infty \). More precisely, we prove the following proposition.

Proposition 2.6. Consider (1.3) with \(\alpha \) and \(\beta \) satisfying (2.1). Assume \((u_0, w_0)\) satisfies the conditions of Theorem 1.1 and let \((u, w)\) be the corresponding solution. Then, for \(q \) satisfying
\[
2 \leq q < \frac{2\alpha}{1-\beta},
\]
\((u, w)\) obeys the following global bounds,
\[
\| \Gamma(t) \|_{L^q}^q + \int_0^t \| \Gamma(s) \|_{L^{q \frac{1}{1-\alpha}}}^{q \frac{1}{1-\alpha}} \, ds \leq C,
\]
where \(C > 0 \) depends only on \(t \) and \(\|(u_0, w_0)\|_{H^s} \).

Proof. To start, by the above estimates (2.2)-(2.4) and \(\Gamma = \Omega + 2\Lambda^{2-2\beta} w \), one gets
\[
\| \Gamma \|_{L^2} \leq \| \Omega \|_{L^2} + C \| \Lambda^{2-2\beta} w \|_{L^2} \leq \| \Omega \|_{L^2} + C \| w \|_{L^2}^{\frac{\alpha+\beta-2}{2}} \| \Lambda^{\alpha+\beta} w \|_{L^2}^{\frac{2-2\beta}{2}} \leq C(t, u_0, w_0)
\]
and \(\Lambda^\alpha \Gamma = \Lambda^\alpha \Omega + 2\Lambda^{\alpha+2-2\beta} w \) as well as
\[
\int_0^t \| \Lambda^\alpha \Gamma \|_{L^2}^2 \, ds \leq \int_0^t \| \Lambda^\alpha \Omega \|_{L^2}^2 \, ds + C \int_0^t \| \Lambda^{2+\alpha-2\beta} w \|_{L^2}^2 \, ds \leq \int_0^t \| \Lambda^\alpha \Omega \|_{L^2}^2 \, ds + C \int_0^t \left(\| \Lambda^{\alpha+2\beta} w \|_{L^2}^{2(\frac{\alpha+\beta-2}{2})} \| w \|_{L^2}^{\frac{2(\alpha+\beta-2)}{2}} \right) \, ds \leq C(t, u_0, w_0),
\]
which imply
\[
\| \Gamma(t) \|_{L^2}^2 + \int_0^t \| \Gamma(\tau) \|_{L^{q \frac{1}{1-\alpha}}}^{q \frac{1}{1-\alpha}} \, d\tau \leq C(t, u_0, w_0).
\]
Multiplying (2.14) by \(|\Gamma|^q 2\Gamma|\) and integrating over \(\mathbb{R}^2\), we have
\[
\frac{d}{dt}||\Gamma||_{L^q}^q + C_0||\Gamma||_{B^{q-2}_q}^q + C_1||\Gamma||_{L^{q-2}}^q + C_2||\Lambda^\alpha\left(\Gamma^{\frac{q}{2}}\right)||_{L^2}^2 \\
\leq \frac{q}{2} \int_{\mathbb{R}^2} \left(4\Lambda^{2+2\alpha-2\beta}|w| - 8\Lambda^{2-2\beta}|w|\right) \left|\Gamma|^q 2\Gamma\right| dx \\
+ \frac{q}{2} \int_{\mathbb{R}^2} 4\Lambda^{2-2\beta} \Omega \left|\Gamma|^q 2\Gamma\right| dx - \frac{q}{2} \int_{\mathbb{R}^2} 2[\Lambda^{2-2\beta}, u \cdot \nabla w] \left|\Gamma|^q 2\Gamma\right| dx \\
:= K_1 + K_2 + K_3, \tag{2.17}
\]
where we have invoked the following lower bounds associated with the fractional dissipation term, for any \(q \in [2, \infty)\) and \(s \in (0, 1)\),
\[
\int_{\mathbb{R}^2} |f|^{q-2} f \Lambda^s f \, dx \geq C(s, q)\|\Lambda^s \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\|_{L^2}^2, \tag{2.18}
\]
\[
\int_{\mathbb{R}^2} |f|^{q-2} f \Lambda^s f \, dx \geq C(s, q)\|f\|_{L^{q-2}}^q, \tag{2.19}
\]
\[
\int_{\mathbb{R}^2} |f|^{q-2} f \Lambda^s f \, dx \geq C(s, q)\|f\|_{B^{s-2}_q}^q, \tag{2.20}
\]
where \(\dot{B}^s_{p,q}\) denotes the standard homogeneous Besov space (see the appendix for more details). (2.18) can be found in (8), (2.19) follows from (2.18) via the Sobolev inequality and (2.20) is due to [5, Theorem 2]. By the Hölder inequality and the Hardy-Littlewood-Sobolev inequality,
\[
K_1 \leq C \left\|\Lambda^\alpha \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\right\||_{L^2} \left\|\Lambda^{-\alpha} \left\{4\Lambda^{2+2\alpha-2\beta}|w| - 8\Lambda^{2-2\beta}|w|\right\} \left|\Gamma|^q 2\Gamma\right||_{L^2} \\
\leq C \left\|\Lambda^\alpha \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\right||_{L^2} \left\|\left(4\Lambda^{2+2\alpha-2\beta}|w| - 8\Lambda^{2-2\beta}|w|\right) \left|\Gamma|^q 2\Gamma\right||_{L^{q-2}} \\
\leq C \left\|\Lambda^\alpha \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\right||_{L^2} \left\|\Lambda^{2+2\alpha-2\beta} |w\left||_{L^{\frac{2}{1-\alpha}}} + \left\|\Lambda^{2-2\beta} |w\left||_{L^{\frac{2}{1+\beta}}} \right\|_{L^2} \left|\Gamma|^q 2\Gamma\right||_{L^2} \\
\leq C \left\|\Lambda^\alpha \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\right||_{L^2} \left\|\left\|w\right||_{L^2} + \left\|\Lambda^{0+2\beta} |w\left||_{L^2} \right\|_{L^{\frac{2}{1-\alpha}}} + \left\|\Lambda^{0+2\beta} |w\left||_{L^{\frac{2}{1+\beta}}} \right\|_{L^2} \left|\Gamma|^q 2\Gamma\right||_{L^2} \\
\leq \frac{C}{8} \left\|\Lambda^\alpha \left(\left|\Gamma\right|^{\frac{q}{2}}\right)\right||_{L^2}^2 + C \left\|\left\|w\right||_{L^2} + \left\|\Lambda^{0+2\beta} |w\left||_{L^2} \right\|_{L^{\frac{2}{1-\alpha}}} + \left\|\Lambda^{0+2\beta} |w\left||_{L^{\frac{2}{1+\beta}}} \right\|_{L^2} \left|\Gamma|^q 2\Gamma\right||_{L^2} \right),
\]
where we have used the following inequality
\[
\left\|\Lambda^{2+2\alpha-2\beta} |w\left||_{L^{\frac{2}{1-\alpha}}} + \left\|\Lambda^{2-2\beta} |w\left||_{L^{\frac{2}{1+\beta}}} \right\|_{L^2} \leq C \left\|\left\|w\right||_{L^2} + \left\|\Lambda^{0+2\beta} |w\left||_{L^2} \right\|_{L^2} \right),
\]
following from the Gagliardo-Nirenberg inequality, for any \(\alpha - \beta \leq s \leq 2\alpha + \beta\),
\[
\left\|\Lambda^s |w\right||_{L^{\frac{2}{1-s}}} \leq C \left\|\left\|w\right||_{L^2}^{1-s} \left\|\Lambda^{0+2\beta} |w\left||_{L^2} \right\|_{L^2} \right., \quad \theta = \frac{s + \beta - \alpha}{\alpha + 2\beta}, \quad \beta \geq \alpha.
\]
Noting that \(\Gamma = \Omega + 2\Lambda^{2-2\beta} |w|\), we split \(K_2\) as
\[
K_2 = C \int_{\mathbb{R}^2} \Lambda^{2-2\beta} \Omega \left|\Gamma|^q 2\Gamma\right| dx \\
= -C \int_{\mathbb{R}^2} \Lambda^{4-4\beta} |w| \left|\Gamma|^q 2\Gamma\right| dx + C \int_{\mathbb{R}^2} \Lambda^{2-2\beta} \Gamma \left|\Gamma|^q 2\Gamma\right| dx \\
:= K_{21} + K_{22}.
Clearly, due to $4 - 4\beta \leq 2 + 2\alpha - 2\beta$, K_{21} can be estimated similarly as K_1 and

$$K_{21} \leq \frac{C_2}{16} \left\| \Lambda^{\alpha} (|\Gamma|^2) \right\|^2_{L^2} + C(\|w\|_{L^2} + \|\Lambda^{\alpha+2\beta}w\|_{L^2})^2 (\|\Gamma\|^2_{L^2} + \|\Gamma\|^2_{2q}).$$

To estimate K_{22}, we assume that q satisfies (2.15), namely

$$2 \leq q < \frac{2\alpha}{1 - \beta},$$

which implies $2 - 2\beta - \frac{2\alpha}{q} < \frac{2\alpha}{q}$. We then choose $0 < s < \sigma < 1$ satisfying

$$2 - 2\beta - \frac{2\alpha}{q} < s < \sigma < \frac{2\alpha}{q}. \quad (2.21)$$

By Lemma 2.5,

$$K_{22} \leq C \left\| \Lambda^{2-2\beta-1}\Gamma \right\|_{L^q} \left\| \Lambda^{\sigma}(|\Gamma|^{q-2}\Gamma) \right\|_{L^{\frac{1}{1-\sigma}}}$$

$$\leq C \left(\left\| \Gamma \right\|_{B_{q,p}^{\alpha}} + \|\Gamma\|_{L^q} \right) \left\| \Lambda^{\sigma} \right\|_{L^{\frac{1}{1-\sigma}}} \left\| \Gamma \right\|_{L^{\frac{q}{2}}}$$

$$\leq C \left(\left\| \Gamma \right\|_{B_{q,p}^{\alpha}} + \|\Gamma\|_{L^q} \right) \left\| \Lambda^{\sigma} \right\|_{L^{\frac{1}{1-\sigma}}} \left\| \Gamma \right\|_{L^{\frac{q}{2}}}$$

$$\leq C \left(\left\| \Gamma \right\|_{B_{q,p}^{\alpha}} + \|\Gamma\|_{L^q} \right) \left\| \Lambda^{\sigma} \right\|_{L^{\frac{1}{1-\sigma}}} \left\| \Gamma \right\|_{L^{\frac{q}{2}}}$$

$$\leq \frac{C_0}{q} \left\| \Gamma \right\|_{L^q} \left\| \Lambda^{\alpha} \right\|_{L^2} + C \|\Gamma\|_{L^q} \left\| \Lambda^{\alpha} \right\|_{L^2}$$

where we have used the embeddings, due to (2.21),

$$B_{q,p}^{\alpha} \hookrightarrow \tilde{W}^{2-2\beta-s,q}, \quad B_{q,p}^{\alpha} \hookrightarrow \tilde{B}^{q,\frac{1}{1-\sigma}}_q.$$
This completes the proof of Proposition 2.6.

With the global a priori bounds in the two previous propositions at our disposal, we are ready to show that \(\nabla u \) is in \(L^1_t L^\infty_x \), which especially implies (2.13).

Proposition 2.7. Consider (1.3) with \(\alpha \) and \(\beta \) satisfying (2.1). Assume \((u_0, w_0)\) satisfies the conditions of Theorem 1.1 and let \((u, w)\) be the corresponding solution. Then \((u, w)\) satisfies, for any \(0 < t < \infty \),

\[
\|\Lambda^2 u(t)\|_{L^2}^2 + \|\Lambda^2 w(t)\|_{L^2}^2 + \int_0^t \left(\|\Lambda^{2+\alpha} u\|_{L^2}^2 + \|\Lambda^{2+\beta} w\|_{L^2}^2 \right) ds \leq C(t, u_0, w_0). \tag{2.22}
\]

As a special consequence, for any \(t > 0 \),

\[
\int_0^t \|\nabla u(s)\|_{L^\infty} ds \leq C(t, \| (u_0, w_0) \|_{H^\gamma}) < \infty. \tag{2.23}
\]

Proof. Taking the \(L^2 \) inner product of (1.3) with \((\Lambda^4 u, \Lambda^4 w)\), we find

\[
\frac{1}{2} \frac{d}{dt} \left(\|\Lambda^2 u\|_{L^2}^2 + \|\Lambda^2 w\|_{L^2}^2 \right) + 2\|\Lambda^{2+\alpha} u\|_{L^2}^2 + \|\Lambda^{2+\beta} w\|_{L^2}^2 + 4\|\Lambda^2 w\|_{L^2}^2 = 2\int_{\mathbb{R}^2} \left((\nabla \times u)\Lambda^4 w + (\nabla \times w) \cdot \Lambda^4 u \right) dx
\]

\[
- \int_{\mathbb{R}^2} [\Lambda^2, u \cdot \nabla] u \Lambda^2 u dx - \int_{\mathbb{R}^2} [\Lambda^2, u \cdot \nabla] w \Lambda^2 w dx
\]

\[
:= L_1 + L_2 + L_3. \tag{2.24}
\]

Noting that \(2 < 3 - \alpha < 2 + \beta \), we obtain by applying Hölder’s inequality

\[
L_1 \leq C\|\Lambda^{2+\alpha} u\|_{L^2}\|\Lambda^{3-\alpha} w\|_{L^2}
\]

\[
\leq \frac{1}{2} \|\Lambda^{2+\alpha} u\|_{L^2}^2 + C\|\Lambda^{3-\alpha} w\|_{L^2}^2
\]

\[
\leq \frac{1}{2} \|\Lambda^{2+\alpha} u\|_{L^2}^2 + \frac{1}{4} \|\Lambda^{2+\beta} w\|_{L^2}^2 + C\|\Lambda^2 w\|_{L^2}^2.
\]

By Hölder’s inequality and Sobolev’s inequality,

\[
L_2 \leq C\int_{\mathbb{R}^2} \nabla u \nabla^2 u \nabla^2 u dx
\]

\[
\leq C\|\nabla u\|_{L^{\frac{2}{3}}_{q}} \|\Lambda^2 u\|_{L^\frac{2}{3}}^2
\]

\[
\leq C\|\Omega\|_{L^{\frac{2}{3}}_{q}} \|\Lambda^2 u\|_{L^2}^{2(1-\frac{1-\alpha}{3\alpha})} \|\Lambda^\alpha \Lambda^2 u\|_{L^2}^{2(1-\alpha)}
\]

\[
\leq \frac{1}{8} \|\Lambda^{2+\alpha} u\|_{L^2}^2 + C\|\Omega\|_{L^{\frac{1}{2}}_{q}} \|\Lambda^2 u\|_{L^2}^2.
\]

where \(\nabla^2 u \) denotes all second-order partial derivatives of \(u \). We will need the global bound, for any \(T > 0 \),

\[
\int_0^T \|\Omega(s)\|_{L^{\frac{\alpha}{1-\alpha}}_{q}}^q ds < \infty. \tag{2.25}
\]

By Propositions 2.2 and 2.6, we have, for \(q \) satisfying (2.15),

\[
\int_0^t \|\Omega(s)\|_{L^{\frac{\alpha}{1-\alpha}}_{q}}^q ds \leq \int_0^t \|\Gamma(s)\|_{L^{\frac{\alpha}{1-\alpha}}_{q}}^q ds + C \int_0^t \|\Lambda^{2-3\beta} w(s)\|_{L^{\frac{\alpha}{1-\alpha}}_{q}}^q ds
\]

\[
\int_0^t \|\Lambda^{2+\alpha} u\|_{L^2} ds + \int_0^t \|\Lambda^{2+\beta} w\|_{L^2} ds
\]

\[
\int_0^t \|\nabla (\nabla u)\|_{L^2} ds \leq C(t, u_0, w_0).
\]
Consider \((2.1) \) this section proves that the 2D micropolar equation

\[\leq \int_0^t \| \Gamma(s) \|_{L^\frac{q}{q-\alpha}}^q \, ds + C \int_0^t (\| w \|_{L^2} + \| \Lambda^{\alpha+\beta} w \|_{L^2})^q \, ds \]

\[\leq C, \]

Therefore, if

\[\frac{\alpha q}{\alpha q + \alpha - 1} \leq q \quad \text{or} \quad q \geq \frac{1}{\alpha}, \]

then (2.25) holds. This is where we need \(\beta > 1 - 2\alpha^2 \) in (2.1) on \(\alpha \) and \(\beta \). When \(\alpha \) and \(\beta \) satisfy (2.1), we can then choose \(q \) satisfying (2.15) such that

\[\frac{2\alpha}{1 - \beta} > q > \frac{1}{\alpha}. \]

Noting that \(2 < \frac{5-\alpha}{\alpha} < 2 + \beta \), we have

\[L_3 \leq C \left| \int_{\Omega} \nabla u \cdot \nabla^2 w \, dx \right| + C \left| \int_{\Omega} \nabla^2 u \cdot \nabla^2 w \, dx \right| \]

\[\leq C \| \nabla u \|_{L^\frac{q}{q-\alpha}} \| \Lambda^2 w \|_{L^\frac{q}{q-\alpha}}^2 + C \| \nabla w \|_{L^{\infty}} \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) \]

\[\leq C \| \Lambda^{1+\alpha} u \|_{L^2} \| \Lambda^2 w \|_{L^2} + C \| \nabla w \|_{L^{\infty}} \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) \]

\[\leq C \| \Lambda^{1+\alpha} u \|_{L^2} \| \Lambda^2 w \|_{L^2} + C \| \nabla w \|_{L^{\infty}} \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) \]

\[\leq \frac{1}{4} \| \nabla^2 \beta \|_{L^2}^2 + C \| \Lambda^{1+\alpha} u \|_{L^2}^2 \| \Lambda^2 w \|_{L^2}^2 \]

\[+ C \| \nabla w \|_{L^{\infty}} \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right), \]

where, due to \(\alpha + \beta > 1 \),

\[\sigma = \frac{\alpha + 2\beta - 1}{2\beta} > \frac{1}{2}. \]

Inserting the estimates of \(L_1, L_2 \) and \(L_3 \) in (2.24), it follows that

\[\frac{d}{dt} \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) + \| \Lambda^{2+\alpha} u \|_{L^2}^2 + \| \Lambda^{2+\beta} w \|_{L^2}^2 \]

\[\leq C \left(1 + \| \Lambda^{1+\alpha} u \|_{L^2}^2 + \| \nabla w \|_{L^{\infty}} + \| \Omega \|_{L^\frac{q}{q-\alpha}} \right) \left(\| \Lambda^2 u \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right). \]

As explained previously, when \(\alpha \) and \(\beta \) satisfy (2.1), (2.25) holds and Gronwall’s inequality then implies (2.22). Sobolev’s inequality with (2.22) then implies (2.23). This completes the proof of Proposition 2.7.

3. The case for \(\frac{3}{2} \leq \alpha \leq \frac{7}{5} \). This section proves that the 2D micropolar equation (1.3) with any \(0 < \alpha < 1 \) and \(\beta = \frac{3}{2} - \alpha \) always possesses a unique global solution when the initial data is sufficiently smooth. More precisely, the following global regularity result holds.

Theorem 3.1. Consider (1.3) with \(\alpha \) and \(\beta \) satisfying

\[0 < \alpha < 1, \quad \beta \geq \frac{3}{2} - \alpha. \]

(3.1)

Assume \((u_0, w_0)\) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a unique global solution satisfying, for any \(T > 0 \),

\[u \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\alpha}(\mathbb{R}^2)); \]

\[w \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\beta}(\mathbb{R}^2)). \]
When $\alpha < \frac{3}{4}$, the requirement on β in (3.1) is more than those in (2.1) and thus Theorem 2.1 is sharper for $\alpha < \frac{3}{4}$. Similarly, as we shall see in the coming section, for $\alpha > \frac{7}{8}$, Theorem 4.1 in the subsequent section is stronger, Theorem 3.1 is significant only for α in the range between $\frac{3}{4}$ and $\frac{7}{8}$.

As explained in the previous section, it suffices to provide the necessary global \textit{a priori} bounds. The following proposition establishes the global bound for $\| (\nabla u, \nabla w) \|_{L^1_t L^\infty_x}$, which is sufficient for the proof of Theorem 3.1.

Proposition 3.2. Consider (1.3) with α and β satisfying (3.1). Assume (u_0, w_0) satisfies the conditions of Theorem 1.1. Then the corresponding solution (u, w) of (1.3) obeys, for any $0 < t < \infty$,

$$
\| \Omega(t) \|_{L^2_x}^2 + \| \Lambda^{\frac{1}{2}} w(t) \|_{L^2_x}^2 + \int_0^t \left(\| \Lambda^\alpha \Omega(s) \|_{L^2_x}^2 + \| \Lambda^{\frac{1}{2}+\beta} w(s) \|_{L^2_x}^2 \right) ds \leq C(3.2)
$$

$$
\| \Lambda^{\frac{1}{2}} w(t) \|_{L^2_x}^2 + \int_0^t \| \Lambda^{\frac{1}{2}+\beta} w(s) \|_{L^2_x}^2 ds \leq C, \tag{3.3}
$$

$$
\| \Lambda \Omega(t) \|_{L^2_x}^2 + \int_0^t \| \Lambda^{1+\alpha} \Omega(s) \|_{L^2_x}^2 ds \leq C, \tag{3.4}
$$

where C’s depend on t, u_0, w_0 only. Especially, (3.3) and (3.4) imply that

$$
\int_0^t \| (\nabla u(s), \nabla w(s)) \|_{L^\infty_x} ds < \infty. \tag{3.5}
$$

Proof. We first remark that the global L^2-bound in (2.2) remains valid since it only requires $\alpha + \beta > 1$. To show the global bound in (3.2), we take the L^2 inner product of (2.10) with Ω and L^2 inner product of third equation of (1.3) with Λw to obtain

$$
\frac{1}{2} \frac{d}{dt} \left(\| \Omega \|_{L^2_x}^2 + \| \Lambda^{\frac{1}{2}} w \|_{L^2_x}^2 \right) + 2 \| \Lambda^\alpha \Omega \|_{L^2_x}^2 + \| \Lambda^{\frac{1}{2}+\beta} w \|_{L^2_x}^2 + 2 \| \Lambda^{\frac{1}{2}} w \|_{L^2_x}^2 = 2 \int_{\mathbb{R}^2} (\Lambda^2 \omega \Omega + \Omega \Lambda w) dx - \int_{\mathbb{R}^2} [\Lambda^{\frac{1}{2}}, u \cdot \nabla] \Lambda^{\frac{1}{2}} w dx := M_1 + M_2. \tag{3.6}
$$

For the conciseness of our presentation, attention is focused on the case $\beta = \frac{3}{2} - \alpha$. The case $\beta > \frac{3}{2} - \alpha$ is even simpler. Noting that $\alpha + \beta = \frac{3}{2}$ and $0 < 1 - \alpha < \beta$, we have, by the interpolation inequality,

$$
M_1 \leq 2 \| \Lambda^\alpha \Omega \|_{L^2_x} \| \Lambda^{\frac{1}{2}+\beta} w \|_{L^2_x} + 2 \| \Lambda^\alpha \Omega \|_{L^2_x} \| \Lambda^{1-\alpha} w \|_{L^2_x} \leq \frac{3}{2} \| \Lambda^\alpha \Omega \|_{L^2_x}^2 + \frac{3}{4} \| \Lambda^{\frac{1}{2}+\beta} w \|_{L^2_x}^2 + C \| \Lambda^\beta w \|_{L^2_x}^2 + C \| w \|_{L^2_x}^2,
$$

where we have used the following facts

$$
\| \Lambda^\alpha \Omega \|_{L^2_x} \| \Lambda^{\frac{1}{2}+\beta} w \|_{L^2_x} \leq \frac{2}{3} \| \Lambda^\alpha \Omega \|_{L^2_x}^2 + \frac{3}{8} \| \Lambda^{\frac{1}{2}+\beta} w \|_{L^2_x}^2,
$$

$$
\| \Lambda^\alpha \Omega \|_{L^2_x} \| \Lambda^{1-\alpha} w \|_{L^2_x} \leq \frac{1}{12} \| \Lambda^\alpha \Omega \|_{L^2_x}^2 + 3 \| \Lambda^{1-\alpha} w \|_{L^2_x}^2.
$$

By the divergence-free condition of u, we will show

$$
[\Lambda^{\frac{1}{2}}, u \cdot \nabla] \Lambda^{\frac{1}{2}} w = [\Lambda^{\frac{1}{2}} \partial_{x_1}, u_1] w + [\Lambda^{\frac{1}{2}} \partial_{x_2}, u_2] w.
$$

Thanks to the following variant version of Lemma 2.3 (its proof is the same one as for Lemma 2.3)

$$
\| [\Lambda^{s-1} \partial_{x_i}, f] g \|_{L^\infty_x} \leq C \left(\| \nabla f \|_{L^p} \| \Lambda^{s-1} g \|_{L^{p_1}} + \| \Lambda^s f \|_{L^{p_2}} \| g \|_{L^{p_2}} \right), \quad i = 1, 2
$$

a
and Sobolev’s inequality, it ensures that
\[
\begin{align*}
M_2 & \leq \left(\|\nabla u\|_{L^\frac{2}{1-\alpha}} \|\Lambda^\frac{1}{2} w\|_{L^2} + \|\Lambda^\frac{3}{2} u\|_{L^\frac{2}{1-\alpha}} \|\nabla w\|_{L^\frac{2}{1-\alpha}} \right) \|\Lambda^\frac{1}{2} w\|_{L^2} \\
& \leq C \left(\|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^{\frac{2}{3}-\alpha} w\|_{L^2} + \|\Lambda^{\frac{2}{3}-\beta} \Omega\|_{L^2} \|\Lambda^\beta w\|_{L^2} \right) \|\Lambda^\frac{1}{2} w\|_{L^2} \\
& \leq C \left(\|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^{\frac{3}{2}} w\|^2_{L^2} + \|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^\beta w\|_{L^2} \right) \|\Lambda^\frac{1}{2} w\|_{L^2} \\
& \leq \frac{1}{4} \|\Lambda^\alpha \Omega\|_{L^2}^2 + C \|\Lambda^\beta w\|_{L^2}^2 \|\Lambda^\frac{1}{2} w\|_{L^2}^2.
\end{align*}
\]
Inserting the estimates for \(M_1\) and \(M_2\) in (3.6) and applying Gronwall’s inequality, we obtain (3.2). To prove (3.3), we take the \(L^2\) inner product of third equation of (1.3) with \(\Lambda^\beta w\) to obtain
\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^\frac{1}{2} w\|^2_{L^2} + \|\Lambda^{\frac{3}{2}+\beta} w\|^2_{L^2} + 4 \|\Lambda^\frac{1}{2} w\|^2_{L^2}
= 2 \int_{\mathbb{R}^2} \Omega \Lambda^\beta w \, dx - \int_{\mathbb{R}^2} [\Lambda^{\frac{3}{2}}, u \cdot \nabla] w \Lambda^\frac{1}{2} w \, dx
\]
\[
:= N_1 + N_2.
\]
Again, due to \(\alpha + \beta = \frac{3}{2}\),
\[
N_1 \leq 2 \|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2} \leq 4 \|\Lambda^\alpha \Omega\|_{L^2}^2 + \frac{1}{4} \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2}^2.
\]
By Lemma 2.3 and Sobolev’s inequality,
\[
N_2 \leq \left(\|\nabla u\|_{L^\frac{2}{1-\alpha}} \|\Lambda^\frac{3}{2} w\|_{L^2} + \|\Lambda^\frac{3}{2} u\|_{L^\frac{2}{1-\alpha}} \|\nabla w\|_{L^\frac{2}{1-\alpha}} \right) \|\Lambda^\frac{1}{2} w\|_{L^2} \\
\begin{align*}
& \leq C \|\Lambda^\alpha \Omega\|_{L^2} \|\Lambda^{\frac{3}{2}-\alpha} w\|_{L^2} \|\Lambda^\beta w\|_{L^2} \\
& \leq C \|\Lambda^\alpha \Omega\|^2_{L^2} \|\Lambda^\frac{3}{2} w\|^2_{L^2} + \frac{1}{4} \|\Lambda^{\frac{3}{2}+\beta} w\|^2_{L^2}.
\end{align*}
\]
Inserting the estimates of \(N_1, N_2\) in (3.7) and applying Gronwall’s inequality yield
\[
\|\Lambda^\frac{1}{2} w(t)\|^2_{L^2} + \int_0^t \left(\|\Lambda^{\frac{3}{2}+\beta} w(s)\|^2_{L^2} \right) ds \leq C(t, u_0, w_0),
\]
which is (3.3). We now prove (3.4). Taking the \(L^2\) inner product of (2.10) with \(\Delta \Omega\), we have, noting that \(1 > \alpha > \frac{1}{2}\),
\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \|\Lambda^\alpha \Omega\|^2_{L^2} + 2 \|\Lambda^{1+\alpha} \Omega\|^2_{L^2}
& \leq 2 \left| \int_{\mathbb{R}^2} \Lambda^2 w \Lambda^\alpha \Omega \, dx \right| + \left| \int_{\mathbb{R}^2} (\nabla u \cdot \nabla \Omega) \nabla \Omega \, dx \right| \\
& \leq 2 \|\Lambda^{1+\alpha} \Omega\|_{L^2} \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2} + \|\Omega\|_{L^2} \|\nabla \Omega\|^2_{L^2} \\
& \leq 2 \|\Lambda^{1+\alpha} \Omega\|_{L^2} + C \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2} + \|\Omega\|_{L^2} \|\Lambda^\beta \Omega\|^2_{L^2} \\
& \leq 2 \|\Lambda^{1+\alpha} \Omega\|^2_{L^2} + C \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2} + \|\Omega\|_{L^2} \left(\|\Omega\|^2_{L^2} \right) \\
& \leq \frac{3}{2} \|\Lambda^{1+\alpha} \Omega\|^2_{L^2} + C \|\Lambda^{\frac{3}{2}+\beta} w\|_{L^2} + C \|\Omega\|^\frac{6n}{2n-1}_{L^2}.
\end{align*}
\]
Integrating in time and using (3.2), we obtain (3.4). Finally, (3.5) follows from (3.3) and 3.4 via Sobolev’s inequality. This completes the proof of Proposition 3.2. \(\square\)
4. The Case when $\frac{7}{8} \leq \alpha < 1$. This section focuses on the case when $\frac{7}{8} \leq \alpha < 1$. We prove theorem 1.1 for this range of α. More precisely, the following theorem holds.

Theorem 4.1. Consider (1.3) with α and β satisfying

$$
\begin{align*}
\beta & \geq 5(1 - \alpha), & 7/8 \leq \alpha \leq 39/40; \\
\beta & > 1 - \alpha + \sqrt{\alpha^2 - 4\alpha + 3}, & 39/40 \leq \alpha < 1.
\end{align*}
$$

(4.1)

Assume (u_0, w_0) satisfies the conditions of Theorem 1.1. Then (1.3) possesses a unique global solution satisfying, for any $T > 0$,

$$
\begin{align*}
&u \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\alpha}(\mathbb{R}^2)); \\
&w \in C([0, \infty); H^s(\mathbb{R}^2)) \cap L^2(0, T; H^{s+\beta}(\mathbb{R}^2)).
\end{align*}
$$

One of the main difficulties to prove Theorem 4.1 is that direct energy estimates on (1.3) do not yield the desired global bounds on the derivatives of u and w. To overcome this difficulty, we consider the combined quantity

$$
G = \Omega - \Lambda^{2-2\alpha} w,
$$

which satisfies

$$
\begin{align*}
\partial_t G + u \cdot \nabla G + 2\Lambda^{2\alpha} G + 2\Lambda^{2-2\alpha} G & = \Lambda^{2+2\beta-2\alpha} w + 4\Lambda^{2-2\alpha} w - 2\Lambda^{4-4\alpha} w + [\Lambda^{2-2\alpha}, u \cdot \nabla] w.
\end{align*}
$$

(4.2)

The following proposition establishes that $\|G\|_{L^2}$ admits a global bound.

Proposition 4.2. Consider (1.3) with α and β satisfying (4.1). Assume (u_0, w_0) satisfies the conditions of Theorem 1.1. Let (u, w) denote the corresponding solution of (1.3). Then, for any $0 < t < \infty$,

$$
\|G(t)\|_{L^2}^2 + \int_0^t \|\Lambda^\alpha G(s)\|_{L^2}^2 ds \leq C,
$$

(4.3)

where $C > 0$ depends on t, u_0, w_0.

In order to prove this proposition, we need the following commutator type estimates involving the fractional Laplacian operator. The following lemma is taken from [32]. Similar commutator estimates have been used previously (see, e.g., [18]).

Lemma 4.3. Assume $p \in [2, \infty)$, $r \in [1, \infty)$, $\delta \in (0, 1)$ and $s \in (0, 1)$ such that $s + \delta < 1$. Then

$$
\|\Lambda^\delta f g\|_{B^r_{p, r}} \leq C(p, r, \delta, s) \left(\|\nabla f\|_{L^p} \|g\|_{B^{s+\delta}_{\infty, r}} + \|f\|_{L^2} \|g\|_{L^2}\right).
$$

(4.4)

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Taking the inner product of (4.2) with G, we obtain

$$
\begin{align*}
\frac{1}{2} \frac{d}{dt} & \|G\|_{L^2}^2 + 2\|\Lambda^\alpha G\|_{L^2}^2 + 2\|\Lambda^{1-\alpha} G\|_{L^2}^2 \\
& = \int_{\mathbb{R}^2} (\Lambda^{2+2\beta-2\alpha} w + 4\Lambda^{2-2\alpha} w - 2\Lambda^{4-4\alpha} w) G dx + \int_{\mathbb{R}^2} [\Lambda^{2-2\alpha}, u \cdot \nabla] w G dx \\
& := H_1 + H_2.
\end{align*}
$$

(4.5)
For the sake of conciseness, we focus on the case $\beta = 5(1 - \alpha)$ when $\alpha \in \left[\frac{7}{8}, \frac{39}{32}\right]$ since the case $\beta > 5(1 - \alpha)$ is even easier. Noting that $0 < 2 + 2\beta - 3\alpha < 2 - 2\alpha$, we obtain, by applying Hölder’s inequality and Young’s inequality,

$$H_1 \leq \|\Lambda^{2+2\beta-3\alpha} w\|_{L^2} \|\Lambda^\alpha G\|_{L^2} + 4\|\Lambda^{2-2\alpha} w\|_{L^2} \|G\|_{L^2} + 2\|\Lambda^{4-4\alpha} w\|_{L^2} \|G\|_{L^2}$$

$$\leq C (\|\Lambda^\alpha G\|_{L^2}^2 + \|\Lambda^\beta w\|_{L^2}^2) + \frac{1}{4} \|\Lambda^\alpha G\|_{L^2}^2 + \|G\|_{L^2}^2.$$

Identifying H^\ast with the Besov space $B^\alpha_{4,2}$ and applying Lemma 4.3, Sobolev’s inequality and Young’s inequality, we obtain

$$H_2 \leq \|\Lambda^{2-2\alpha} w\|_{L^2}^2 \|w\|_{H^{3-\alpha}}^2 = \|\Lambda^{2-2\alpha} w\|_{L^2}^2 \|w\|_{H^\alpha}^2 \leq C \|w\|_{L^2}^2 \|w\|_{H^\alpha}^2.$$

Therefore, H_2 is bounded by

$$H_2 \leq \frac{1}{4} \|\Lambda^\alpha G\|_{L^2}^2 + C \|G\|_{L^2}^2 \|w\|_{H^\alpha}^2 + C \|w\|_{L^2}^2 \|w\|_{H^\alpha}^2 + C \|u\|_{L^2}^2 \|w\|_{L^2}^2.$$

Inserting the estimates of H_1, H_2 in (4.5) yields

$$\frac{d}{dt} \|G\|_{L^2}^2 + \|\Lambda^\alpha G\|_{L^2}^2$$

$$\leq C (1 + \|w\|_{H^\alpha}^2) \|G\|_{L^2}^2 + C(1 + \|w\|_{L^2}^2) \|w\|_{H^\alpha}^2 + C \|u\|_{L^2}^2 \|w\|_{L^2}^2.$$

Gronwall’s inequality then implies

$$\|G(t)\|_{L^2}^2 + \int_0^t \|\Lambda^\alpha G(s)\|_{L^2}^2 \, ds \leq C.$$

This completes the proof of Proposition 4.2.

The global bound for G in the previous proposition serves as a bridge to the global bounds on w and Ω. The following lemma controls the L^q-norm of w.

Proposition 4.4. Under the same condition as in Proposition 4.2 and for any q satisfying

$$2 \leq q < \frac{2\beta}{1 - \alpha},$$

we have, for any $0 < t < \infty$,

$$\|w(t)\|_{L^q}^q + \int_0^t \|w(s)\|_{L^q}^q \, ds + \int_0^t \|w(s)\|_{B^\alpha_q}^q \, ds \leq C(t, u_0, w_0).$$
Proof. Multiplying the third equation of (1.3) by $|w|^{q-2}w$, integrating over \mathbb{R}^2 and using the divergence-free condition, we obtain

$$
\frac{1}{q} \frac{d}{dt} \|w(t)\|_{L^q}^q + 4\|w\|_{L^q}^q + \int_{\mathbb{R}^2} (\Lambda^{2\beta} w) \, |w|^{q-2} \, dx
$$

$$
= \int_{\mathbb{R}^2} \Omega \, |w|^{q-2} \, dx
$$

$$
= \int_{\mathbb{R}^2} G \, |w|^{q-2} \, dx + \int_{\mathbb{R}^2} \Lambda^{2-2\alpha} w \, |w|^{q-2} \, dx,
$$

(4.8)

where, in the last line above, we have used $\Omega = G + \Lambda^{2-2\alpha} w$. As in (2.17), the following lower bound holds

$$
\int_{\mathbb{R}^2} (\Lambda^{2\beta} w) |w|^{q-2} \, dx \geq C \int_{\mathbb{R}^2} (\Lambda^\beta |w|^2)^{\frac{q}{2}} \, dx
$$

$$
\geq C_0 \|w\|_{L_q^{\frac{q}{2}}}^{\frac{q}{2}} + C_0 \left\|\Lambda^\beta (|w|^2)^{\frac{q}{2}}\right\|_{L^2}^{\frac{q}{2}} + C_0 \|\Gamma\|_{B_{q,q}^{\frac{2\beta}{n}}}^{\frac{2\beta}{n}},
$$

(4.9)

where $C_0 = C_0(\beta, q) > 0$. On one hand, for $q \leq \frac{2}{1-\alpha}$, we obtain by the Hölder inequality

$$
\int_{\mathbb{R}^2} G \, |w|^{q-2} \, dx \leq \|G\|_{L^1} \|w\|_{L_q}^{q-1}
$$

$$
\leq C \|G\|_{L^1} \|w\|_{L_q}^{q-1}
$$

$$
\leq C \|G\|_{L^1} (1 + \|w\|_{L_q}^q).
$$

On the other hand, for $q > \frac{2}{1-\alpha}$, we have

$$
\int_{\mathbb{R}^2} G \, |w|^{q-2} \, dx \leq \|G\|_{L_q^{\frac{2\beta}{n}}} \|w\|_{L_q}^{q-1} \left(\frac{2\beta}{(1-\alpha)(q-1)}\right)
$$

$$
\leq C_0 \|w\|_{L_q^{\frac{2\beta}{n}}} + C \|G\|_{L_q^{\frac{2\beta}{n}}} \|w\|_{L_q}^{q-1} \left(\frac{2\beta}{(1-\alpha)(q-1)}\right)
$$

$$
\leq C_0 \|w\|_{L_q^{\frac{2\beta}{n}}} + C (1 + \|G\|_{L^1}^2) (1 + \|w\|_{L_q}^q),
$$

where we have used the simple fact that $\frac{2\beta}{(1+2\beta-1)q+2} < 2$. Therefore, for any $q \geq 2$, the first term in (4.8) can be bounded by

$$
\int_{\mathbb{R}^2} G \, |w|^{q-2} \, dx \leq C_0 \|w\|_{L_q^{\frac{2\beta}{n}}} + C (1 + \|G\|_{L^1}^2) (1 + \|w\|_{L_q}^q).
$$

(4.10)

To bound the second term in (4.8), we use Lemma 2.5. For q satisfying (4.6), we choose $0 < \tilde{s} < \tilde{\sigma} < 1$ satisfying

$$
2 - 2\alpha - \frac{2\beta}{q} < \tilde{s} < \tilde{\sigma} < \frac{2\beta}{q}.
$$

(4.11)

By Hölder’s inequality and Lemma 2.5,

$$
\int_{\mathbb{R}^2} \Lambda^{2-2\alpha} w \, |w|^{q-2} \, dx \leq C \|\Lambda^{2-2\alpha-\tilde{s}} w\|_{L^p} \|\tilde{\Lambda}(|w|^{q-2} w)\|_{L^{\frac{q}{q-2}}}
$$

$$
\leq C \|w\|_{B_{q,q}^{\tilde{s}}} \|w\|_{B_{q,q}^{\tilde{\sigma}}} \|w\|_{L^q}^{q-2}
$$
Assume \(q \) satisfies (4.6). Combining (4.10) and (4.12), we obtain

\[
\frac{d}{dt} \|w\|^q_{L^q} + \|w\|^q_{L^q} L^\frac{q}{q-1} ds + \int_0^t \|w(s)\|^q_{L^q} \frac{B_{q,q}^\beta}{B_{q,q}^{\beta+\beta}} ds \leq C(t, u_0, w_0),
\]

which is (4.7).

We now show that, for any \(0 < t < \infty \), \(\nabla u, \nabla w \in L^1_t L^\infty \), which allows us to establish the desired global regularity.

Proposition 4.5. Assume \((u_0, w_0)\) satisfies the conditions of Theorem 1.1 and let \((u, w)\) be the corresponding solution of (1.3) with \(\alpha \) and \(\beta \) satisfying (4.1). Then, for any \(0 < t < \infty \),

\[
\|\Omega(t)\|_{L^2}^2 + \|\Lambda w(t)\|_{L^2}^2 + \int_0^t \left(\|\Lambda^\alpha \Omega(s)\|_{L^2}^2 + \|\Lambda^{1+\beta} w(s)\|_{L^2}^2 \right) ds \leq C,
\]

(4.13)

\[
\|\Lambda \Omega(t)\|_{L^2}^2 + \|\Lambda^2 w(t)\|_{L^2}^2 + \int_0^t \left(\|\Lambda^{1+\alpha} \Omega(s)\|_{L^2}^2 + \|\Lambda^{2+\beta} w(s)\|_{L^2}^2 \right) ds \leq C.
\]

(4.14)

In particular, (4.14) implies \(\nabla u, \nabla w \in L^1_t L^\infty \).

Proof. Taking the \(L^2 \) inner product of (2.10) with \(\Omega \) and the \(L^2 \) inner product of third equation of (1.3) with \(\Lambda^2 w \), we have

\[
\frac{1}{2} \frac{d}{dt} \left(\|\Omega\|_{L^2}^2 + \|\Lambda w\|_{L^2}^2 \right) + 2\|\Lambda^\alpha \Omega\|_{L^2}^2 + \|\Lambda^{1+\beta} w\|_{L^2}^2 + 4\|\Lambda w\|_{L^2}^2 = J_1 + J_2,
\]

where

\[
J_1 = 2 \int_{\mathbb{R}^2} (\Lambda^2 w \Omega + \Omega \Lambda^2 w) dx, \quad J_2 = - \int_{\mathbb{R}^2} [\Lambda, u \cdot \nabla] w \Lambda w dx.
\]

Due to \(\beta \leq 1 \), by Sobolev’s inequality and Young’s inequality,

\[
J_1 \leq C \|\Lambda^{-\beta} \Omega\|_{L^2} \|\Lambda^{1+\beta} w\|_{L^2} \leq C \|\Omega\|_{L^2}^\frac{1}{1-\beta} \|\Lambda^{1+\alpha} \Omega\|_{L^2}^{\frac{1}{1+\beta}} \|\Lambda^{1+\beta} w\|_{L^2} \leq \frac{1}{4} \left(\|\Lambda^\alpha \Omega\|_{L^2}^2 + \|\Lambda^{1+\beta} w\|_{L^2}^2 \right) + C\|\Omega\|_{L^2}^2.
\]

Due to \(G = \Omega - \Lambda^{2-\alpha} w \) and the Biot-Savart law \(\nabla u = \nabla \nabla^\perp \Delta^{-1} \Omega \), we write

\[
\nabla u = \nabla \nabla^\perp \Delta^{-1} G + \nabla \nabla^\perp \Delta^{-1} \Lambda^{2-\alpha} w.
\]
Correspondingly, J_2 can be written into two parts,

$$J_2 = \int_{\mathbb{R}^2} u \cdot \nabla w \Delta w \, dx$$

$$\leq - \int_{\mathbb{R}^2} \nabla u \nabla w \nabla w \, dx$$

$$= J_{21} + J_{22},$$

where

$$J_{21} = - \int_{\mathbb{R}^2} \nabla \nabla^\perp \Delta^{-1} G \nabla w \nabla w \, dx, \quad J_{22} = - \int_{\mathbb{R}^2} \nabla \nabla^\perp \Delta^{-1} \Lambda^{2-2\alpha} w \nabla w \nabla w \, dx.$$
\[\leq C \left(\| G \|_{H^2}^\alpha + \| w \|_{\beta q_0}^{\alpha + \beta - 1} \| \nabla w \|_{L^2}^2 \right) \| \nabla w \|_{L^2}^2 + C \| \Omega \|_{L^2}^2. \]

We explain that, when \(\alpha \) and \(\beta \) satisfy (4.1), we have

\[\int_0^T \| w \|_{\beta q_0}^{\alpha + \beta - 1} \| \nabla w \|_{L^2}^2 \, dt < \infty. \]

(4.15)

In fact, (4.1) implies

\[2\beta^2 - 2(1 - \alpha)\beta - (1 - \alpha) > 0 \quad \text{or} \quad \frac{2\beta}{1 - \alpha} > \frac{1}{\alpha + \beta - 1}. \]

Therefore, we can choose \(q_0 < \frac{2\beta}{1 - \alpha} \) such that

\[q_0 \geq \frac{1}{\alpha + \beta - 1} \quad \text{or} \quad (\alpha + \beta - 1)q_0 + \beta - 1 \leq q_0. \]

Then (4.15) follows from Proposition 4.4. Gronwall’s inequality then implies the desired bound (4.13).

In order to prove (4.14), we take the \(L^2 \) inner product of (2.10) with \(\Lambda^2 \Omega \) and the \(L^2 \) inner product of the third equation of (1.3) with \(\Lambda^4 w \) to obtain

\[
\frac{1}{2} \frac{d}{dt} \left(\| \Lambda \Omega \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) + 2 \| \Lambda^{1+\alpha} \Omega \|_{L^2}^2 + \| \Lambda^{2+\beta} w \|_{L^2}^2 + 4 \| \Lambda^2 w \|_{L^2}^2 \\
= 2 \int_{\mathbb{R}^2} (\Lambda^2 w \Lambda^2 \Omega + \Omega \Lambda^4 w) \, dx - \int_{\mathbb{R}^2} ((\Lambda, u \cdot \nabla) \Lambda \Omega + [\Lambda^2, u \cdot \nabla] \Lambda^2 w) \, dx.
\]

Due to \(\alpha + \beta > 1 \) and \(\beta \leq 1 \),

\[
2 \int_{\mathbb{R}^2} (\Lambda^2 w \Lambda^2 \Omega + \Omega \Lambda^4 w) \, dx \leq C \| \Lambda^{2-\beta} \Omega \|_{L^2} \| \Lambda^{2+\beta} w \|_{L^2} \\
\leq C \| \Lambda \Omega \|_{L^2}^{1+\alpha} \| \Lambda^{1+\alpha} \Omega \|_{L^2}^{1-\beta} \| \Lambda^{2+\beta} w \|_{L^2} \\
\leq \frac{1}{4} \left(\| \Lambda^{1+\alpha} \Omega \|_{L^2}^2 + \| \Lambda^{2+\beta} w \|_{L^2}^2 \right) + C \| \Lambda \Omega \|_{L^2}^2.
\]

Noting the following fact due to \(\nabla \cdot u = 0 \)

\[
- \int_{\mathbb{R}^2} [\Lambda^2, u \cdot \nabla] w \Lambda^2 w \, dx \\
= - \int_{\mathbb{R}^2} \Delta (u \cdot \nabla w) \Delta w \, dx + \int_{\mathbb{R}^2} (u \cdot \nabla \Delta w) \Delta w \, dx \\
= - \sum_{k,i=1}^2 \int_{\mathbb{R}^2} \partial_k u_i \partial_i w \Delta w \, dx - 2 \sum_{k,i=1}^2 \int_{\mathbb{R}^2} \partial_k u_i \partial_k \partial_i w \Delta w \, dx \\
- \sum_{k,i=1}^2 \int_{\mathbb{R}^2} u_i \partial_i \partial_k^2 w \Delta w \, dx + \int_{\mathbb{R}^2} (u \cdot \nabla \Delta w) \Delta w \, dx \\
= - \sum_{k,i=1}^2 \int_{\mathbb{R}^2} \partial_k^2 u_i \partial_i w \Delta w \, dx - 2 \sum_{k,i=1}^2 \int_{\mathbb{R}^2} \partial_k u_i \partial_k \partial_i w \Delta w \, dx,
\]
we have by using Lemma 2.3, the Gagliardo-Nirenberg inequality and Young’s inequality
\[- \int_{\mathbb{R}^2} ([A, u \cdot \nabla] \Omega \Lambda \Omega + [\Lambda^2, u \cdot \nabla] w \Lambda^2 w) \, dx \]
\[= - \int_{\mathbb{R}^2} [A, u \cdot \nabla] \Omega \Lambda \Omega \, dx - \int_{\mathbb{R}^2} [\Lambda^2, u \cdot \nabla] w \Lambda^2 w \, dx \]
\[\leq C \| [A, u \cdot \nabla] \Omega \|_{L^{3\alpha / \alpha \beta}} \| \Lambda \Omega \|_{L^{3\alpha / \alpha \beta}} + C \| \Lambda^2 u \|_{L^{3\alpha / \alpha \beta}} \| \nabla w \|_{L^{3\alpha / \alpha \beta}} \| \Lambda^2 w \|_{L^{3\alpha / \alpha \beta}} + C \| \nabla u \|_{L^{3\alpha / \alpha \beta}} \| \Lambda^2 w \|_{L^{3\alpha / \alpha \beta}} \]
\[\leq C \| [\Lambda^2, u \cdot \nabla] \Omega \|_{L^{3\alpha / \alpha \beta}} + C \| \Lambda^2 u \|_{L^{3\alpha / \alpha \beta}} \| \nabla \Omega \|_{L^{3\alpha / \alpha \beta}} \| \Lambda \Omega \|_{L^{3\alpha / \alpha \beta}} + C \| \nabla u \|_{L^{3\alpha / \alpha \beta}} \| \Lambda^2 w \|_{L^{3\alpha / \alpha \beta}} \]
\[\leq C \| [\Lambda^2, u \cdot \nabla] \Omega \|_{L^{3\alpha / \alpha \beta}} + C \| \Lambda^2 u \|_{L^{3\alpha / \alpha \beta}} \| \Omega \|_{L^{3\alpha / \alpha \beta}} \| \Lambda \Omega \|_{L^{3\alpha / \alpha \beta}} + C \| \nabla u \|_{L^{3\alpha / \alpha \beta}} \| \Lambda^2 w \|_{L^{3\alpha / \alpha \beta}} \]
\[\leq \frac{1}{2} \left(\| \Lambda^2 \Omega \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) + C \left(\| \Omega \|_{L^2}^2 + \| \Lambda \Omega \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) \]
\[\times \left(\| \Lambda^2 w \|_{L^2}^2 + \| \Lambda \Omega \|_{L^2}^2 \right) \]
\[\leq \frac{1}{2} \left(\| \Lambda^2 \Omega \|_{L^2}^2 + \| \Lambda^2 w \|_{L^2}^2 \right) + C \left(\| \Omega \|_{L^2}^2 + \| \Lambda \Omega \|_{L^2}^2 + (\| \Lambda^2 w \|_{L^2}^2 + 1) \| \Lambda \Omega \|_{L^2}^2 \right) \]
\[\times \left(\| \Lambda^2 w \|_{L^2}^2 + \| \Lambda \Omega \|_{L^2}^2 \right) , \]

where we have used the fact \(\frac{2(1-\alpha)}{2\beta+\alpha-1} < 2\). These estimates combined with Gronwall’s inequality then allow us to obtain (4.14). This completes the proof of Proposition 4.5. \(\square\)

5. Proof of Theorem 1.1. The global a priori bounds obtained in the previous three sections, especially
\[\int_0^T \| (\nabla u, \nabla w)(t) \|_{L^\infty(\mathbb{R}^2)} \, dt \leq C(T, \| (u_0, w_0) \|_{H^s}) < \infty \]
is sufficient for the proofs of Theorems 2.1, 3.1 and 4.1. Since Theorem 1.1 combines all three of them, it suffices to provide the proof for Theorem 1.1.

Proof of Theorem 1.1. The existence of desired solutions to (1.3) can be obtained by standard approaches such as the Friedrichs method. For \(n \in \mathbb{N}\), define the operator \(J_n\) by
\[J_n \varphi = \mathcal{F}^{-1} (\chi_{B(0,n)}(\xi) \mathcal{F}(\varphi)(\xi)) , \]
where \(\mathcal{F}\) and \(\mathcal{F}^{-1}\) denote the Fourier and inverse Fourier transforms, respectively, and \(\chi_{B(0,n)}\) denotes the characteristic function on the ball \(B(0,n)\). Consider the
approximate equations of (1.3)
\[
\begin{align*}
\partial_t u_n + 2J_n \Lambda^2 u_n &= 2J_n P \nabla \times w_n - J_n P (J_n u_n \cdot \nabla J_n u_n), \\
\nabla \cdot u_n &= 0, \\
\partial_t w_n + J_n \Lambda^2 w_n + 4J_n w_n &= 2J_n \nabla \times u_n - J_n (J_n u_n \cdot \nabla J_n w_n), \\
u_n(x,0) &= J_n u_0, \quad w_n(x,0) = J_n w_0,
\end{align*}
\]
(5.1)
where \(P \) denotes the standard projection onto divergence-free vector fields. The standard Picard type theorem ensures that, for some \(T_n > 0 \), there exists a unique local solution \((u_n, \omega_n)\) on \([0, T_n)\) in the functional setting \(\{ f \in L^2(\mathbb{R}^2) : \text{supp} \mathcal{F}(f) \subset B(0, n) \} \). Due to \(J_n^2 = J_n \), \(P J_n = J_n P \), it is easy to see that \((J_n u_n, J_n w_n)\) is also a solution. The uniqueness of such local solutions implies
\[
u_n = J_n u_n, \quad w_n = J_n w_n.
\]
Therefore, (5.1) becomes
\[
\begin{align*}
\partial_t u_n + 2 \Lambda^2 u_n &= 2P \nabla \times w_n - J_n P (u_n \cdot \nabla u_n), \\
\nabla \cdot u_n &= 0, \\
\partial_t w_n + \Lambda^2 w_n + 4 w_n &= 2 \nabla \times u_n - J_n (u_n \cdot \nabla w_n), \\
u_n(x,0) &= J_n u_0, \quad w_n(x,0) = J_n w_0.
\end{align*}
\]
(5.2)
A basic \(L^2 \) energy estimate implies \((u_n, w_n)\) of (5.2) satisfies
\[
\|u_n(t)\|_{L^2}^2 + \|w_n(t)\|_{L^2}^2 + \int_0^t (\|\Lambda^\alpha u_n(\tau)\|_{L^2}^2 + \|\Lambda^\beta w_n(\tau)\|_{L^2}^2) \, \tau \leq C(t, u_0, w_0),
\]
where \(C \) is independent of \(n \). Therefore, the local solution can be extended into a global one, by the standard Picard Extension Theorem (see, e.g., [6]). Next we show that \((u_n, w_n)\) admits a uniform global bound in \(H^s(\mathbb{R}^2) \) with \(s > 2 \). Following the proofs of Propositions 2.7, 3.2 and 4.5, we obtain, for any \(t > 0 \),
\[
\int_0^t \| (\nabla u_n, \nabla w_n) \|_{L^\infty} \, ds \leq C(t, (u_0, w_0) \|_{H^s} < \infty,
\]
where we have used the fact that \(\| (u_n(x,0), w_n(x,0)) \|_{H^s} \leq \| (u_0, w_0) \|_{H^s} \). By a standard energy estimate involving (5.2), we have
\[
\begin{align*}
\frac{1}{2} \frac{d}{dt} \left(\|u_n\|_{H^s}^2 + \|w_n\|_{H^s}^2 \right) + 2 \|\Lambda^\alpha u_n\|_{H^s}^2 + \|\Lambda^\beta w_n\|_{H^s}^2 + \|\nabla w_n\|_{H^s}^2, \\
&+ \int_{\mathbb{R}^2} \left(\Lambda^\gamma \cdot \Delta \nabla u_n \cdot \Delta x u_n \right) dx + \int_{\mathbb{R}^2} \left(\Lambda^\gamma \cdot \nabla u_n \cdot \Delta x w_n \right) dx \\
&\leq \left(\frac{1}{2} \left(\|\Lambda^\alpha u_n\|_{H^s}^2 + \|\Lambda^\beta w_n\|_{H^s}^2 \right) \right) + C \left(\|\nabla u_n\|_{L^\infty} + \|\nabla w_n\|_{L^\infty} + 1 \right) \\
&\quad \times \left(\|u_n\|_{H^s}^2 + \|w_n\|_{H^s}^2 \right).
\end{align*}
\]
Gronwall’s inequality then allows us to conclude that, for any \(t > 0 \),
\[
\begin{align*}
\|u_n\|_{H^s}^2 + \|w_n\|_{H^s}^2 + \int_0^t \left(\|\Lambda^\alpha u_n\|_{H^s}^2 + \|\Lambda^\beta w\|_{H^s}^2 \right) ds \\
&\leq \left(\|u_0\|_{H^s}^2 + \|w_0\|_{H^s}^2 \right) e^{C \int_0^t \left(\|\nabla u_n\|_{L^\infty} + \|\nabla w_n\|_{L^\infty} + 1 \right) ds} \\
&\leq C(t, (u_0, w_0) \|_{H^s}).
\end{align*}
\]
Once this uniform global bound is at our disposal, a standard compactness argument allows us to obtain the global existence of the desired solution \((u, w)\) to (1.3). The
uniqueness part for solutions at this regularity level is standard and is thus omitted.
This completes the proof of Theorem 1.1. □

Appendix A. Besov spaces. This appendix provides the definition of the Littlewood-
Paley decomposition and the definition of Besov spaces. Some related facts used
in the previous sections are also included. The material presented in this appendix
can be found in several books and many papers (see, e.g., [1, 2, 22, 24, 26, 29]).

We start with several notations. \(S \) denotes the usual Schwarz class and \(S' \) its
dual, the space of tempered distributions. \(S_0 \) denotes a subspace of \(S \) defined by
\[
S_0 = \left\{ \phi \in S : \int_{\mathbb{R}^d} \phi(x) x^\gamma \, dx = 0, \ |\gamma| = 0, 1, 2, \cdots \right\}
\]
and \(S'_0 \) denotes its dual. \(S'_0 \) can be identified as
\[
S'_0 = S'/S_0 = S'/P,
\]
where \(P \) denotes the space of multinomials. We also recall the standard Fourier
transform and the inverse Fourier transform,
\[
\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot \xi} \, dx, \quad g^\vee(x) = \int_{\mathbb{R}^d} g(\xi) e^{2\pi i x \cdot \xi} \, d\xi.
\]

To introduce the Littlewood-Paley decomposition, we write for each \(j \in \mathbb{Z} \)
\[
A_j = \{ \xi \in \mathbb{R}^d : 2^j-1 \leq |\xi| < 2^{j+1} \}.
\]
The Littlewood-Paley decomposition asserts the existence of a sequence of functions
\(\{ \Phi_j \}_{j \in \mathbb{Z}} \in S \) such that
\[
\text{supp} \hat{\Phi}_j \subset A_j, \quad \hat{\Phi}_j(\xi) = \hat{\Phi}_0(2^{-j} \xi) \quad \text{or} \quad \Phi_j(x) = 2^{jd} \Phi_0(2^j x),
\]
and
\[
\sum_{j=-\infty}^{\infty} \hat{\Phi}_j(\xi) = \begin{cases} 1 & \text{if } \xi \in \mathbb{R}^d \setminus \{0\}, \\ 0 & \text{if } \xi = 0. \end{cases}
\]
Therefore, for a general function \(\psi \in S \), we have
\[
\sum_{j=-\infty}^{\infty} \hat{\Phi}_j(\xi) \hat{\psi}(\xi) = \hat{\psi}(\xi) \quad \text{for } \xi \in \mathbb{R}^d \setminus \{0\}.
\]
In addition, if \(\psi \in S_0 \), then
\[
\sum_{j=-\infty}^{\infty} \hat{\Phi}_j(\xi) \hat{\psi}(\xi) = \hat{\psi}(\xi) \quad \text{for any } \xi \in \mathbb{R}^d.
\]
That is, for \(\psi \in S_0 \),
\[
\sum_{j=-\infty}^{\infty} \Phi_j * \psi = \psi
\]
and hence
\[
\sum_{j=-\infty}^{\infty} \Phi_j * f = f, \quad f \in S'_0
\]
in the sense of weak-∗ topology of S_0'. For notational convenience, we define
\[\Delta_j f = \Phi_j * f, \quad j \in \mathbb{Z}. \tag{A.1} \]
We now choose $\Psi \in S$ such that
\[\Psi(\xi) = 1 - \sum_{j=0}^{\infty} \Phi_j(\xi), \quad \xi \in \mathbb{R}^d. \]
Then, for any $\psi \in S$,
\[\Psi * \psi + \sum_{j=0}^{\infty} \Phi_j * \psi = \psi \]
and hence
\[\Psi * f + \sum_{j=0}^{\infty} \Phi_j * f = f \]
in S' for any $f \in S'$. We set
\[\Delta_j f = \begin{cases} 0, & \text{if } j \leq -2, \\ \Psi * f, & \text{if } j = -1, \\ \Phi_j * f, & \text{if } j = 0, 1, 2, \ldots. \end{cases} \tag{A.2} \]
For notational convenience, we write Δ_j for $\dot{\Delta}_j$ when there is no confusion. They are different for $j \leq -1$. As provided below, the homogeneous Besov spaces are defined in terms of $\dot{\Delta}_j$ while the inhomogeneous Besov spaces are defined in Δ_j. Besides the Fourier localization operators Δ_j, the partial sum S_j is also a useful notation. For an integer j,
\[S_j = \sum_{k=-1}^{j-1} \Delta_k, \]
where Δ_k is given by (A.2). For any $f \in S'$, the Fourier transform of $S_j f$ is supported on the ball of radius 2^j and
\[S_j f \rightharpoonup f \quad \text{in } S'. \]
In addition, for two tempered distributions u and v, we also recall the notion of paraproducts
\[T_{u,v} = \sum_j S_{j-1} u \Delta_j v, \quad R(u,v) = \sum_{|i-j| \leq 2} \Delta_i u \Delta_j v \]
and Bony’s decomposition, see e.g. [1],
\[u \cdot v = T_{u,v} + T_{v,u} + R(u,v). \]
In addition, the notation $\bar{\Delta}_k$, defined by
\[\bar{\Delta}_k = \Delta_{k-1} + \Delta_k + \Delta_{k+1}, \]
is also useful.

Definition A.1. For $s \in \mathbb{R}$ and $1 \leq p, q \leq \infty$, the homogeneous Besov space $\dot{B}^s_{p,q}$ consists of $f \in S_0'$ satisfying
\[\|f\|_{\dot{B}^s_{p,q}} \equiv \|2^j s \| \dot{\Delta}_j f \|_{L^p} \|_{\ell^q} < \infty. \]
An equivalent norm of the homogeneous Besov space $\dot{B}_{p,q}^s$ with $s \in (0,1)$ is given by

$$
\|f\|_{\dot{B}_{p,q}^s} = \left[\int_{\mathbb{R}^d} \frac{\|f(x + \cdot) - f(\cdot)\|_{L^p(\mathbb{R}^d)}^q}{|x|^{d+sq}} \, dx \right]^{\frac{1}{q}}. \tag{A.3}
$$

Definition A.2. The inhomogeneous Besov space $B_{p,q}^s$ with $1 \leq p, q \leq \infty$ and $s \in \mathbb{R}$ consists of functions $f \in S'$ satisfying

$$
\|f\|_{B_{p,q}^s} \equiv \|2^{js} \| \Delta_j f \|_{L^p} \|_{l^q} < \infty.
$$

Many frequently used function spaces are special cases of Besov spaces. The following proposition lists some useful equivalence and embedding relations.

Proposition A.3. For any $s \in \mathbb{R}$,

$$
H^s \sim B_{2,2}^s.
$$

For any $s \in \mathbb{R}$ and $1 < q < \infty$,

$$
B_{q,\min\{q,2\}}^s \hookrightarrow W_q^s \hookrightarrow B_{q,\max\{q,2\}}^s.
$$

For any non-integer $s > 0$, the Hölder space C^s is equivalent to $B_{\infty,\infty}^s$.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions. These inequalities trade integrability for derivatives. The following proposition provides Bernstein type inequalities for fractional derivatives. The upper bounds also hold when the fractional operators are replaced by partial derivatives.

Proposition A.4. Let $\alpha \geq 0$. Let $1 \leq p \leq q \leq \infty$.

1) If f satisfies

$$
\text{supp} \hat{f} \subset \{ \xi \in \mathbb{R}^d : |\xi| \leq K2^j \},
$$

for some integer j and a constant $K > 0$, then

$$
\|(-\Delta)^\alpha f\|_{L^q(\mathbb{R}^d)} \leq C_1 2^{2\alpha j + j(\frac{1}{p} - \frac{1}{q})} \|f\|_{L^p(\mathbb{R}^d)}.
$$

2) If f satisfies

$$
\text{supp} \hat{f} \subset \{ \xi \in \mathbb{R}^d : K_12^j \leq |\xi| \leq K_22^j \}
$$

for some integer j and constants $0 < K_1 \leq K_2$, then

$$
C_1 2^{2\alpha j} \|f\|_{L^q(\mathbb{R}^d)} \leq \|(-\Delta)^\alpha f\|_{L^q(\mathbb{R}^d)} \leq C_2 2^{2\alpha j + j(\frac{1}{p} - \frac{1}{q})} \|f\|_{L^p(\mathbb{R}^d)},
$$

where C_1 and C_2 are constants depending on α, p and q only.

We now provide the proof of (2.7). By Proposition A.4,

$$
\|\Lambda^s g\|_{L^p} \leq \sum_{k \geq -1} \|\Lambda^s \Delta_k g\|_{L^p} = \|\Lambda^s \Delta_{-1} g\|_{L^p} + \sum_{k \geq 0} \|\Lambda^s \Delta_k g\|_{L^p}
$$

$$
\leq C \|g\|_{L^p} + \sum_{k \geq 0} 2^{-(\sigma-s)k} \|\Lambda^\sigma \Delta_k g\|_{L^p}
$$

$$
\leq C \|g\|_{L^p} + C \|g\|_{\dot{B}_{p,\tilde{p}}^\sigma}.
$$
Finally we provide the definition of Sobolev-Slobodeckij space $\widetilde{W}^{s,p}$. Let us assume $s \geq 0$ and $1 \leq p \leq \infty$. When $s \geq 0$ is an integer, the Sobolev norm is standard, namely

$$\|f\|_{W^{s,p}} = \left(\sum_{|\alpha| \leq s} \|\partial^\alpha f\|_{L^p}^p \right)^{\frac{1}{p}}.$$

When $s > 0$ is a fraction, the norm in $\widetilde{W}^{s,p}$ is given by

$$\|f\|_{\widetilde{W}^{s,p}} = \|f\|_{W^{s',p}} + \left(\sum_{|\alpha| = [s]} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|\partial^\alpha f(x) - \partial^\alpha f(y)|^p}{|x - y|^{d+[s]}} \, dx \, dy \right)^{\frac{1}{p}}.$$

We remark that, except for $p = 2$, $\widetilde{W}^{s,p}$ with this norm is different from the most frequently used definition of Sobolev spaces of fractional order, or the Bessel potential space L^p_s (or sometimes denoted by $W^{s,p}$ or H^s_p) (see, e.g., [17, Chapter 1.3.1], [26, p.13]). The norm in L^p_s is given by

$$\|f\|_{L^p_s} = \|f\|_{L^p} + \|\Lambda^s f\|_{L^p}.$$

$\widetilde{W}^{s,p}$ is closely related to Besov spaces (see, e.g., [26, 29]). In fact, $\widetilde{W}^{s,p} \approx B^{s}_{p,p} \subset L^p_s$, $1 < p < 2$; $L^p_s \hookrightarrow B^{s}_{p,p} \approx \widetilde{W}^{s,p}$, $2 \leq p < \infty$.

Acknowledgments. The authors are very grateful to the anonymous referee for his/her insightful comments and many invaluable suggestions, which greatly improved the exposition of the manuscript. This paper was completed during the visit of the first author at OSU. He would like to thank the warm hospitality and support of Department of Mathematics at OSU.

REFERENCES

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: bqdong@szu.edu.cn
E-mail address: jiahong.wu@okstate.edu
E-mail address: xjxu@bnu.edu.cn
E-mail address: yezhuan815@126.com