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Abstract. In this paper we give new upper bounds on the regularity of edge
ideals whose resolutions are k-steps linear; surprisingly, the bounds are logarith-
mic in the number of variables. We also give various bounds for the projective
dimension of such ideals, generalizing other recent results. By Alexander duality,
our results also apply to unmixed square-free monomial ideals of codimension two.
We also discuss and connect these results to more classical topics in commutative
algebra.

1. Introduction

In this work we give new upper bounds on the projective dimension and regularity

of a certain class of square-free monomial ideals associated to graphs which improve

on existing literature. Our original motivation was purely algebraic:

Question 1.1. Let I be an ideal in a polynomial or regular local ring S of dimension

n, such that the quotient S/I satisfies Serre’s condition Sk for some integer k ≥ 2.

Can one find an upper bound on cd(I, S), the cohomological dimension of I (i.e. the

least integer q such that H i
I(S) = 0 for i > q)?

Estimates on cohomological dimension have been studied in depth by a number

of researchers (see [8], [13], [19], [27], [28]). For example, when I is an ideal in a

regular local ring S of dimension n, Faltings [8] showed that cd(I, S) ≤ n−
⌊
n−1
b

⌋
,

where b is the bigheight of I. When S/I is normal (equivalently R1 and S2), it is

shown in [14, Theorem 5.1(iii)] that the cohomological dimension satisfies a stronger

bound:

cd(I, S) ≤ n− 2n− 1

b+ 1
.

At the time, the two authors of [14] speculated whether stronger bounds on the

cohomological dimension could be found if it is required that the quotient ring S/I

satisfies Serre’s property Sk for some k ≥ 2. However, even now very little is known
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about Question 1.1. In this paper we give upper bounds for the first non-trivial

special case, when I is a square-free monomial ideal of height 2 in a polynomial

ring over a field. When I is squarefree monomial, its cohomological dimension and

projective dimension are equal. Surprisingly, the bound we obtain is logarithmic.

To be precise, we prove (see Theorem 4.8 and Corollary 4.10) that in this situation,

if S/I satisfies Serre’s condition Sk for some k ≥ 2, then

cd(S, I) = pd(S/I) ≤ log k+3
2

(
(n− 1) ln

(
k+3
2

)
k

+
2

k + 3

)
+ 3.

This suggests that the bounds in [14] may be improved, at least asymptotically

and with suitable assumptions (see the discussions in Section 6). We hope to come

back to this theme in future works.

There are also several reasons why the bounds we achieve, and the methods we use,

may be of interest from a combinatorial or computational point of view. For instance,

the squarefree monomial ideals whose quotients satisfy Sk have recently been studied

by Murai and Terai [23], who showed that the h-vectors of their corresponding

Stanley-Reisner complexes display nice non-negativity behavior.

Considering the Alexander dual of a monomial ideal brings up other interesting

connections. Through this duality, the problem of bounding the projective dimen-

sion of monomial ideals is the same as the problem of bounding the regularity of

their Alexander duals, which are also monomial ideals. Indeed, the condition that

S/I satisfies Sk is equivalent to the condition that the Alexander dual of I has a

minimal free resolution that is (k−1)-steps linear. For example, S/I is S2 if and only

if the Alexander dual of I has a linear presentation. The famous example of Mayr

and Meyer ([20]) shows that, in general, regularity can be doubly exponential in the

degrees of generators of the ideal as well as the number of variables and equations

defining I. However, a question the second author has raised for several years is

whether this type of phenomenon is possible if one accounts for the degrees of the

first syzygy of the ideal (that is, if one is also given the degrees in the presentation

matrix of I). 1

Thus, our main result on regularity, Theorem 4.8, at least in the case of edge

ideals of graphs, supports the general philosophy that the first syzygies have “most”

of the regularity in them.

It should be noted that the projective dimension and regularity of Stanley-Reisner

ideals, or more specifically edge ideals, have attracted a lot of attention; see [3, 10, 11,

12, 16, 21, 23] and references given therein. However, to the best of our knowledge,

1In a conversation of the second author with Jason McCullough, we realized that we know of
no example of a homogeneous ideal I in a polynomial ring in n variables in which the regularity
is larger than n

2 ·N , where N is the largest regularity coming from the generators and syzygies of

the ideal: N = max{j − i : Tori(S/I,K)j 6= 0, i ≤ 2}.
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Question 1.1 has not been investigated in this context. Thus, the methods we

develop here can be used to sharpen known results in this area.

Yet another reason to understand monomial ideals whose quotients satisfy S2 is

provided by an interesting result of Kalkbrenner and Sturmfels [15] on initial ideals

of homogenous prime ideals. See the discussion around Question 6.6.

Our paper is organized as follows (for any unexplained terminology, see [5] or

[21]). In Section 2 we present basic material we will use throughout the paper. Of

particular interest is Lemma 2.10, which gives a recursive formula for regularity of

square-free monomial ideals in general.

Section 3 concerns regularity and proves some results on what we call gap-free

graphs. We end the section by showing the efficacy of our approach and giving a

simple proof of a theorem of Nevo ([24]) that if G is both claw-free and gap-free

then the regularity of the associated edge ideal I(G) is at most three.

Section 4 contains the proofs of Theorems 4.1 and 4.8, our main results bounding

the regularity of edge ideals whose resolutions are k-steps linear. One of the novel

features of this section is Lemma 4.3. Given a function of a graph’s maximal degree

that bounds the regularity of the associated ideal, Lemma 4.3 gives a new bound

for the regularity which is a function of the number of vertices of the graph. Thus,

this lemma is of independent interest and should be useful in bounding regularity

for edge ideals of other classes of graphs.

In Section 5 we turn to the problem of bounding the projective dimension of I(G)

for general graphs, generalizing some recent work of Dochtermann and Engström.

Our first result gives a bound in terms of what we call the maximal edge degree of

a graph (Theorem 5.3), while Theorem 5.5 refines this result in the case when G is

claw-free. Our proof relies on an observation, Lemma 5.1, which gives a recursive

formula for the projective dimension and should be of independent interest.

We hope that this paper will further inspire more collaborations between re-

searchers who work in the intertwined fields of commutative algebra, combinatorial

algebra and combinatorial topology. With this purpose in mind, we conclude this

paper with Section 6; a discussion of open problems and further research directions.

We thank David Eisenbud, Chris Francisco, Tai Huy Ha, Manoj Kummini, Gen-

nady Lyubeznik, Jeff Mermin, Alex Engström, Sergey Norin, Gwyn Whieldon for

valuable conversations. We also benefitted from questions and answers on the web-

site Mathoverflow.net.

2. Preliminaries

Throughout this paper, we let G be a finite, simple graph with vertex set V (G).

For v, w ∈ V (G), we write d(v, w) for the distance between v and w, the fewest
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number of edges that must be traversed to travel from v to w. For example, d(v, w) =

1 if and only if (v, w) is an edge of G.

A subgraph G′ ⊆ G is called induced if (v, w) is an edge of G′ whenever v and w

are vertices of G′ and (v, w) is an edge of G. If G′ is a subgraph of G (induced or

otherwise), we write G−G′ to denote G with the edges and vertices of G′ removed.

If G′ consists of a single vertex v, we may also write G− v to mean G−G′.
The complement of a graph G, for which we write Gc, is the graph on the same

vertex set in which (x, y) is an edge of Gc if and only if it is not an edge of G.

Finally, we let Ck denote the cycle on k vertices, and we let Km,n denote the

complete bipartite graph with m vertices on one side, and n on the other.

Definition 2.1. Let G be a graph. We say two edges (w, x) and (y, z) form a gap

in G if G does not have an edge with one endpoint in {w, x} and the other in {y, z}.
A graph without gaps is called gap-free. Equivalently, G is gap-free if and only if

C4 is not an induced subgraph of Gc.

Thus, G is gap-free if and only if it does not contain two vertex-disjoint edges as

an induced subgraph.

Definition 2.2. Any graph isomorphic to K1,3 is called a claw. A graph without an

induced claw is called claw-free.

If G is a graph without isolated vertices, let S denote the polynomial ring on the

vertices of G over some fixed field k. Recall that the edge ideal of G is

I(G) = (xy : (x, y) is an edge of G).

Alexander duality for monomial ideals can be defined in a number of ways (see

[21, Chapter 5]). We define it here only for squarefree monomial ideals: If I is a

square-free monomial ideal, and

I =
⋂

prime P⊃I

P,

then the Alexander dual of I, denoted I∨, is the square-free monomial ideal generated

by all elements xP , where xP is the product of all the variables in P .

Definition 2.3. Let S be a standard graded polynomial ring over a field K. Recall

that the (Castelnuovo-Mumford) regularity, written reg(M), of a graded S-module

M (see, for example, [5]) is given by

reg(M) = max
m
{TorSm(M,K)−m}.

Definition 2.4. A commutative Noetherian ring R is said to satisfy condition Sk
for some integer k ≥ 0 if for all P ∈ Spec R:

depthRP ≥ min{k, dimRP}.



Bounds on regularity and projective dimension 5

Definition 2.5. We say that I(G) is k-steps linear whenever the minimal free reso-

lution of I(G) over the polynomial ring is linear for k steps, i.e., TorSi (I(G), K)j = 0

for all 1 ≤ i ≤ k and all j 6= i+ 2.

Theorem 2.6. (Terai, [29]) Let I ⊂ S be a square-free monomial ideal in a poly-

nomial ring over a field. Then

reg I∨ = pd(S/I).

As I∨∨ = I, we also have reg I = pd(S/I∨).

The following Theorem combines several well-known results:

Theorem 2.7. Let k ≥ 2. Then the following are equivalent:

(1) S/I(G)∨ satisfies Serre’s condition Sk.

(2) I(G) is (k − 1)-step linear.

(3) Ci is not an induced subgraph of Gc for any i with 4 ≤ i ≤ k + 2.

Furthermore, reg(I(G)) = 2 if and only if Gc contains no induced Ci for any i ≥ 4.

Proof. From [33] it follows that S/I(G)∨ is Sk if and only if I(G) has a linear

resolution for at least the first (k−1)-steps. By [6, Theorem 2.1], this latter condition

is equivalent to saying that Ci is not an induced subgraph of Gc for any i with

4 ≤ i ≤ k + 2. The last statement follows at once from Terai’s Theorem 2.6

(although it was first proven by Fröberg in [9]). �

One particularly nice feature about k-step linearity is that it behaves well with

respect to deletion of induced subgraphs, as shown by the following.

Corollary 2.8. Let G be a graph with I(G) k-steps linear, and let G′ be an induced

subgraph of G. Then I(G−G′) is k-steps linear.

Proof. Because G′ is an induced subgraph, any induced cycle in (G − G′)c would

also be an induced cycle in Gc, and the result now follows from Theorem 2.7. �

Corollary 2.9. The ideal I(G) is 1-step linear if and only if G is gap-free.

Our proofs in the next two Sections make heavy use of the following lemma, whose

last statement appears to be new and of independent interest (although in special

cases such as edge ideals of chordal graphs, more information can be obtained: see,

for example, [11, 3.6, 3.7]).

Lemma 2.10. Let I ⊆ S be a monomial ideal, and let x be a variable appearing in

some generator of I. Then

reg(I) ≤ max{reg(I : x) + 1, reg(I, x)}.

Moreover, reg(I) is equal to one of these terms.
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Proof. The bound follows immediately from the well-known exact sequence

0 −→ S

(I : x)
(−1) −→ S

I
−→ S

(I, x)
−→ 0,

where the first non-zero quotient is twisted by −1, since the associated map is

multiplication by x.

To prove that equality occurs, we first show that in general reg(I, x) ≤ reg(I).

To see this, set reg(I, x) = m. Then there is a square-free monomial τ so that

βj,τ (I, x) 6= 0, and |τ | − j = m. Here we use the multigraded Betti numbers, where

βj,τ resides in homological degree j and multidegree τ (we write |τ | to mean the

number of variables in the support of τ). Observe that (I, x) = (L, x), where L are

those monomials in I which do not have x in their support.

If x is in the support of τ , we have TorRj ((I, x), K)τ = TorRj−1(L,K)τ/x (see [17,

Lemma 1.3.8]). Otherwise, we have TorRj ((I, x), K)τ = TorRj (L,K)τ . In the first

case, βj−1,τ/x(I) 6= 0, and in the second case, βj,τ (I) 6= 0. (See [17, Lemma 1.3.8], in

particular (a).) In either case, the regularity of I is at least m, proving our claim.

Now suppose by way of contradiction that reg(I) is not equal to either term in

the inequality. From the above paragraph it follows that reg(I : x) + 1 > reg(I) >

reg(I, x). Set m = reg(I : x), and suppose this occurs in homological degree j

and mutidegree σ, i.e., βj,σ(I : x) 6= 0, and |σ| − j = m. Note that σ does not

involve x since I : x has no minimal generator divisible by x, and also observe that

βj,σ(I : x) = βj+1,σ(S/(I : x)).

Set τ = xσ. From the long exact sequence on Tor coming from the above short

exact sequence, we have that either βj+1,τ (S/I) 6= 0 or βj+2,τ (S/(I, x)) 6= 0. In

the first case, the regularity of I is then at least |τ | − j = m + 1, contradicting

the assumption that m + 1 > reg(I). In the second case, the regularity of (I, x) is

at least |τ | − (j + 1) = m. This gives a contradiction as well since then m + 1 =

reg(I : x) + 1 > reg(I) > reg(I, x) = m. �

3. Gap-free graphs

In this section we observe some basic results concerning gap-free graphs and their

regularity. In particular, we give a simple proof of a result of Nevo that a claw-free

and gap-free graph has regularity at most 3.

Recall that the star of a vertex x of G, for which we write stx, is given by

stx = {y ∈ V (G) : (x, y) is an edge of G} ∪ {x}.

The following lemma, whose straightforward verification is left to the reader, inter-

prets Lemma 2.10 in terms of edge ideals (here and throughout, we write reg(G) as

shorthand for reg(I(G))).
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Lemma 3.1. Let x be a vertex of G with neighbors y1, y2, . . . , ym. Then

(I(G) : x) = (I(G− stx), y1, y2, . . . , ym) and (I(G), x) = (I(G− x), x).

Thus, reg(G) ≤ max{reg(G − stx) + 1, reg(G − x)}. Moreover, reg(G) is equal to

one of these terms.

Here and throughout we let the variables do double-duty, as they also represent

vertices in the graph G.

The following observation was pointed out to us by Sergey Norin on the website

mathoverflow.net ([25]).

Proposition 3.2. Let G be gap-free, and let x be a vertex of G of highest degree.

Then d(x, y) ≤ 2 for all vertices y of G.

Proof. Suppose otherwise. Then there must be a vertex y with d(x, y) = 3. Let x

have degree k, and list the neighbors of x : w1, w2, . . . , wk. Without loss of generality,

assume that (w1, z) and (z, y) are edges of G (for some vertex z). For any i with

2 ≤ i ≤ k, (x,wi) and (z, y) do not form a gap in G. Thus, there must be an edge

with one endpoint in {x,wi} and one in {z, y}. Because d(x, z) and d(x, y) both

exceed 1, this edge cannot have x as an endpoint. Similarly, (wi, y) cannot be an

edge, since then we would have d(x, y) ≤ 2. Thus, (wi, z) is an edge for each i with

1 ≤ i ≤ k (note that we already established that (w1, z) was an edge). Since (z, y)

is an edge of G as well, the degree of z exceeds k, which is a contradiction. �

The above proposition together with Lemma 3.1 allow us to recover a result

of Nevo with a simpler proof, see [24, Theorem 1.2]. This theorem presumably

also follows from the classification of claw-free graphs announced in [1], but this

classification is highly non-transparent.

Theorem 3.3. Suppose G is both claw-free and gap-free. Then reg(G) ≤ 3.

Proof. Let x be a vertex of G of highest possible degree. By Lemma 3.1, we know

reg(G) ≤ max{reg(G − stx) + 1, reg(G − x)}. Note that both G − stx and G − x
are claw-free and gap-free. That reg(G−x) ≤ 3 is easily shown by induction on the

number of vertices of G (the base case being trivial, since a simple graph with one

vertex has no edges). It remains to be shown that reg(G − stx) ≤ 2. By Theorem

2.7, it is enough to show that (G − stx)c contains no induced cycle of length ≥ 4.

Suppose on the contrary that y1, y2, . . . , yn are the vertices of an induced cycle in

(G− stx)c, where n ≥ 4. By Proposition 3.2, each yi is distance 2 from x (in G), so

(x,w) and (w, y1) are edges of G for some vertex w. Further note that (y2, yn) is an

edge of G, since y2 and yn are non-neighbors in the induced cycle in (G− stx)c. In

order for the pair of edges (x,w) and (y2, yn) not to form a gap of G, either (w, y2)

or (w, yn) must be an edge of G. Without loss, suppose (w, y2) is an edge. Then the

induced subgraph on {x,w, y1, y2} is a claw, which is a contradiction. �
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4. Bounding the regularity

Our main result in this section is the following, which bounds the regularity of

edge ideals which are k-steps linear and have a given maximal degree. A general

bootstrapping process then gives upper bounds depending just on the number of

variables (see Theorem 4.8). There are very few examples known of edge ideals of

even gap-free graphs with large regularity. The paper of Nevo and Peeva [26] gives

an example of a gap-free graph in 12 variables whose edge ideal has regularity 4.

Later [24] gave an example of a gap-free graph in 120 variables whose edge ideal has

regularity 5. It is entirely possible that there is an absolute bound to the regularity

of such edge ideals, but we have been unable to prove it. Nonetheless, our next

theorem shows that the regularity is, in the worst case, logarithmic in the maximal

degree.

Theorem 4.1. Let G be a graph such that I(G) is k-steps linear for some k ≥ 1,

and let d be the maximum degree of a vertex in G. Then

reg(I(G)) ≤ log k+4
2

(
d

k + 1

)
+ 3.

Before proving Theorem 4.1, we introduce a process which allows us to derive

bounds on graph statistics through induction on the number of vertices. Although

Corollary 2.8 shows removal of any induced subgraph from a graph G with I(G)

k-steps linear yields a graph whose edge ideal is still k-steps linear, our approach

works in the much more general context of stable graph properties, which we define

as follows.

Definition 4.2. Let P be a graph property. We say that P is stable if for any graph

G satisfying P and any maximal degree vertex x of G, both G−stx and G−x satisfy

P .

For example, “claw-free” and “gap-free” are both stable graph properties. Such

properties allow us to bound the regularity of the associated edge ideals in terms

of the number of vertices and/or maximal vertex degree of G, via the following

lemma. In some sense this lemma provides a refined and more powerful version of

[22, Theorem 3.14].

Lemma 4.3. Let P be a stable graph property, and let g, f : R≥0 → R≥0 be non-

decreasing functions satisfying the following.

1) If G is a P -graph with no vertices of degree > d, reg(G) ≤ g(d).

2) The function f is twice-differentiable, concave-down, and f(1) ≥ 2.

3) For all x ∈ R≥0, we have g(1/f ′(x)− 1) ≤ f(x).

Then for any P -graph G on n vertices, we have reg(I(G)) ≤ f(n).
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Proof. Let G be a P -graph on n vertices, and let d be the maximal degree of a vertex

in G. If d ≤ 1/f ′(n)− 1, the result follows immediately since

reg(I(G)) ≤ g(d) ≤ g

(
1

f ′(n)
− 1

)
≤ f(n),

where the middle inequality follows from the fact that g is non-decreasing. Thus,

we assume d > 1/f ′(n) − 1 and induct on n. For the base case n = 1, G has no

edges, so d = 0 and reg(I(G)) = 2 ≤ f(1).

Now let x be a vertex of G of maximal degree. Because P is stable, G − stx is

again a P -graph. Because G−stx has n−d−1 vertices and G−x has n−1 vertices,

induction gives

reg(I(G− stx)) ≤ f(n− d− 1) and reg(I(G− x)) ≤ f(n− 1).

By Lemma 2.10, we know that reg(I(G)) ≤ max{reg(I(G−stx))+1, reg(I(G−x))},
and so

reg(I(G)) ≤ max{f(n− d− 1) + 1, f(n− 1)}.
If reg(I(G)) ≤ f(n− 1) then reg(I(G)) ≤ f(n), as f is non-decreasing. So, assume

reg(I(G)) ≤ f(n − d − 1) + 1. By the ordinary Mean Value Theorem, there exists

c < n with f(n) − f(n − d − 1) = (d + 1)f ′(c). Because d > 1/f ′(n) − 1 by

assumption and f is concave-down, (d+1)f ′(c) ≥ (d+1)f ′(n) > 1, meaning f(n) >

f(n− d− 1) + 1 > reg(I(G)). �

Algorithm 4.4. We now give a process to construct the function f(x) in Lemma

4.3 in the case when the associated function g(x) is strictly increasing. Let h(x) =

g(x − 1), so that h(1/f ′(x)) = f(x), so that f ′(x)h−1(f(x)) = 1. If we set H(x)

to be an antiderivative of h−1(x), then f ′(x)h−1(f(x)) is the derivative of H(f(x)),

meaning f(x) = H−1. The additive constant of H(x) can then be determined by

the second condition of Lemma 4.3.

The following lemmas will prove helpful. The first is a special case of Corollary

2.8, since a vertex and its star are both induced subgraphs.

Lemma 4.5. Let G be a graph such that I(G) is k-steps linear. Then I(G−x) and

I(G− stx) are both k-steps linear for any vertex x.

Lemma 4.6. Let G be a graph. Then there exists a (possibly empty) sequence of

vertices w1, w2, . . . , wm such that the graph G′ = G − w1 − w2 − . . . − wm satisfies

the following conditions.

1) reg(G) ≤ reg(G′).

2) For any vertex x of G′, reg(G′) ≤ reg(G′ − stx) + 1.

Proof. This is a direct consequence of Lemma 3.1. If reg(G) ≤ reg(G− stx) + 1 for

every vertex x of G, we may set G′ = G. Otherwise, there is some vertex w1 with

reg(G) > reg(G− stw1) + 1 and reg(G) ≤ reg(G− w1). Now we perform the same
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process with G − w1, and so on. Continuing in this fashion, we must eventually

reach a suitable G′. �

Definition 4.7. We call any graph G′ obtained from G in the above fashion a

trimming of G.

We are now in a position to give a proof of Theorem 4.1.

Proof of Theorem 4.1. We define sets of graphs Gi and vertices xi. First, let G0 be

a trimming of G, and let x0 be a vertex of G0 of maximal degree. Now for i > 0, let

Gi be a trimming of Gi−1 − stxi−1 and xi be a vertex of maximal degree in Gi. Let

Ni be the set of neighbors of xi in Gi, and let di = |Ni|. By Lemma 4.6 we have, for

any t ≥ 0,

reg(G) ≤ reg(G0) ≤ reg(G1) + 1 ≤ reg(G2) + 2 ≤ · · · ≤ reg(Gt) + t.(1)

Since I(G) is k-steps linear, Theorem 2.7 gives us that Gc contains no induced

cycles of length m for 4 ≤ m ≤ k+ 3. By Lemma 4.5, no (Gi)
c can contain induced

cycles of these lengths. Note also that this implies that G is gap-free.

Now let ` be the greatest integer such that (G`+1)
c contains an induced cycle of

length ≥ k+ 4. Then (G`+2)
c contains no induced cycles of length > 3, so Theorem

2.7 gives that reg(G`+2) = 2. Let C = {w1, w2, . . . , wr} be the vertices of some

induced cycle in (G`+1)
c, where r ≥ k+ 4 and each (wi, wi+1(mod r)) is an edge of Gc.

For i ≤ `, it must be the case that no wj is a neighbor of xi (otherwise wj would

not be a vertex in G`). Let x ∈ Ni. We claim that at least r− 2 of the vertices in C

are neighbors of x. To see this, suppose otherwise. Then there must be two vertices

wj and wj′ of C that are not adjacent in C (and so adjacent in G) but not adjacent

to x. But then (xi, x) and (wj, wj′) would form a gap in G.

Thus, for each i ≤ `, there are at least di(r− 2) edges from Ni to C. Because the

sets Ni are pairwise disjoint (by definition), there are at least (d0+d1+· · ·+d`)(r−2)

edges incident to vertices in C. The average degree (in G) of a vertex in C is then

at least

(d0 + d1 + . . .+ d`)(r − 2)

r
+ (r − 3) ≥ (d0 + d1 + · · ·+ d`)(k + 2)

k + 4
+ (k + 1),

where the additional additive term counts adjacencies in C. Because x0 is a vertex

of G0 of maximal degree, we have

d0 ≥
(d0 + d1 + · · ·+ d`)(k + 2)

k + 4
+(k+1)⇒ d0 ≥

k + 2

2
(d1+· · ·+d`)+

(k + 1)(k + 4)

2

Now we can apply the above argument to each of the graphs Gi, obtaining

di ≥
k + 2

2
(di+1 + di+2 + · · ·+ d`) +

(k + 1)(k + 4)

2
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for all i ≤ `. This includes the case i = l, where we obtain dl ≥ (k+1)(k+4)
2

. Letting

α = k+4
2

, the above inequality can then be written as

di ≥ (α− 1)(di+1 + di+2 + · · ·+ d`) + (k + 1)α.

A straightforward induction argument (given that d` ≥ (k + 1)α) yields di ≥ (k +

1)α`−i+1, and so

d0 ≥ (k + 1)α`+1.

Because d ≥ d0 (by definition),

d ≥ (k + 1)

(
k + 4

2

)`+1

⇒ log k+4
2

(
d

k + 1

)
− 1 ≥ `.

Since reg(G`+2) = 2 and each Gi is a trimming, (1) gives us

reg(G) ≤ reg(G`+2) + (`+ 2) ≤ log k+4
2

(
d

k + 1

)
+ 3.

�

We can now apply2 Algorithm 4.4 with g(x) = log k+4
2

(
x+1
k+1

)
+ 3, obtaining

f(x) = log k+4
2

(
x ln

(
k+4
2

)
k + 1

+ C

)
+ 3.

where C is a yet-to-be-determined constant, due to the antiderivative taken in Al-

gorithm 4.4. Solving the inequality f(1) ≥ 2 required by Lemma 4.3, we can set

C = 2
k+4
− ln((k+4)/2)

k+1
, giving us the following corollary.

Theorem 4.8. Let G be a graph on n vertices such that I(G) is k-steps linear.

Then

reg(I(G)) ≤ log k+4
2

(
(n− 1) ln

(
k+4
2

)
k + 1

+
2

k + 4

)
+ 3.

Remark 4.9. For a graph G such that Gc has no induced Ci for some i ≥ 4 the

number of vertices of G can not exceed (d+2
2

)2 +1, as demonstrated by Sergey Norin

on Mathoverflow ([25]). It is tempting to substitute that bound into Theorem 4.8

to get a new version of 4.1, from which we would derive a new version of 4.8, then

repeat. However, such a process would not yield better bounds here.

Corollary 4.10. Let I ⊂ S be a square-free monomial ideal of height 2 in a poly-

nomial ring over a field. If S/I satisfies condition Sk for some k ≥ 2 then

cd(S, I) = pd(S/I) ≤ log k+3
2

(
(n− 1) ln

(
k+3
2

)
k

+
2

k + 3

)
+ 3.

2We could also apply Algorithm 4.4 with g(x) = log k+4
2

(
x

k+1

)
+ 3 though the bound obtained

is a good deal more complicated.
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5. Bounding the projective dimension

In this Section we give improved bounds on projective dimension of edge ideals.

We utilize the same exact sequence from Lemma 2.10. We begin by observing the

following.

Lemma 5.1. Let I be a square-free monomial ideal, and let Λ be any subset of the

variables. We relabel the variables so that Λ = {x1, ..., xi}. Then either there exists

a j with 1 ≤ j ≤ i such that pd(S/I) = pd(S/((I, x1, ..., xj−1) : xj)) or pd(S/I) =

pd(S/(I, x1, ..., xi)). (Wherever applicable, we set x0 = 0).

Proof. Let x = xi for some i. We claim that either pd(S/I) = pd(S/(I, x)) or

pd(S/I) = pd(S/(I : x)). The lemma then follows easily from this claim. To prove

the claim, we suppose that pd(S/I) 6= pd(S/(I : x)). From [18, Lemma 1.1] (see also

[17, Lemma 1.3.8]), it then follows that pd(S/I) > pd(S/(I : x)). Set m = pd(S/I).

The long exact sequence on Tor induced by the exact sequence from Lemma 2.10,

together with the inequality pd(S/I) > pd(S/(I : x)), gives us TorSm(S/(I, x), K) 6=
0, and TorSl (S/(I, x), K) = 0 for all l > m. Thus, pd(S/(I, x)) = m. �

We apply this to a graph by choosing the set of variables to be the set of neighbors

of a carefully chosen vertex. Our results improve upon [3, Corollary 5.2]. As before,

let G be a graph on {x1, x2, . . . , xn}.

Definition 5.2. Let (x, y) be an edge of G, and let A = {z : (x, z) and (y, z) are

edges of G} be the set of common neighbors of x and y. We define the degree of

this edge to be

deg(x) + deg(y)− |A|.

Put another way, the degree of (x, y) is the number of vertices adjacent to either

x or y.

Theorem 5.3. Let G be a graph with n vertices, and let D be the maximum degree

of an edge of G. Then pd(S/I(G)) ≤ n(1− 1
D

).

Proof. We use induction on the number of vertices of G. If G consists of two vertices

and one edge, the bound holds. Let (x, y) be an edge of maximal degree D, and

let x1 = y, x2, . . . , xd be the neighbors of x. We apply Lemma 5.1 to this set of

vertices. First consider the case in which pd(S/I(G)) = pd(S/(I(G), x1, ..., xd). We

observe that (I(G), x1, . . . , xd) = (I(Gd), x1, . . . , xd), where in general we set Gi

to be the induced subgraph G − x1 − x2 − · · · − xi (minus the isolated vertices,

as they have no bearing on the associated ideal). Note also that each graph Gi

has maximal edge degree at most D. By our choice of vertices, Gd is a graph on

at most n − d − 1 vertices. By induction, pd(S/I(Gd)) ≤ (n − d − 1)(1 − 1
D

),

and therefore pd(S/I(G)) = pd(S/(I(G), x1, ..., xd) = pd(S/(I(Gd), x1, ..., xd) =

d+ pd(S/I(Gd)) ≤ d+ (n− d− 1)(1− 1
D

) ≤ n(1− 1
D

) since d ≤ D − 1.
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We must now show that the bound holds in the second case, namely when

pd(S/I(G)) = pd(S/((I(G), x1, ..., xj−1) : xj)) for some 1 ≤ j ≤ d. In this case,

((I(G), x1, ..., xj−1) : xj) = (I(Gj−1 − st(xj)), x1, ..., xj−1, N(xj)),

where N(xj) is the set of neighbors of xj, and thus we have that

pd(S/I(G)) = degGj−1
(xj) + j − 1 + pd(SGj−1−st(xj)).

Note that Gj−1−st(xj) has at most n−j−degGj−1
(xj) vertices, so that by induction,

pd(S/I(G)) ≤ j− 1 + degGj−1
(xj) + (n− j− degGj−1

(xj))

(
1− 1

D

)
≤ n

(
1− 1

D

)
,

where the last inequality follows since j+degGj−1
(xj) ≤ D by considering the degree

of the edge (x, xj) in G. �

Example 5.4. The bounds in Theorem 5.3 are sharp for the complete bipartite

graph G = Ki,d. In this case, n = i + d,D = i + d, and pd(SG) = i + d − 1, which

follows easily from the short exact sequence

0→ SG → S/P ⊕ S/Q→ k → 0,

where P is the ideal generated by the i variables on one side of the bipartite graph

G, and Q is generated by the d-variables from the other side.

An analysis of the proof of Theorem 5.3 shows that we can often improve the

result under other assumptions. This is due to the fact that if pd(S/I(G)) =

pd(S/(I(G), x1, . . . , xd), then in general one can often get better bounds. On the

other hand, the graphs corresponding to removing several vertices and then remov-

ing the star of another vertex may, under suitable assumptions, have a much smaller

high degree edge or vertex. We illustrate this principle in our next theorem, which

generalizes [3, Corollary 5.3].

Theorem 5.5. Let G be a graph on n vertices. Let C be the maximum value of

(d +
⌊
e
2

⌋
+ 1) where d (respectively e) runs through the set of all degrees of all

vertices x (respectively y) such that (x, y) is an edge of G. If G is claw-free, then

pd(SG) ≤ n
(
1− 1

C

)
.

Proof. First observe that this maximum value C can never increase for induced

subgraphs. We induct on n to prove the statement. Fix an edge (x, y) where the

maximum value C is obtained (that is, deg(x) = d, deg(y) = e). Let {x1, . . . , xe}
be the neighbors of y. We reorder these vertices as follows: Let xe be a vertex of

maximal degree in the induced subgraph of G with vertex set {x1, . . . , xe}, and in

general choose xi to be a vertex of maximal degree in the subgraph of G induced

by the vertices {x1, x2, . . . , xi}. We apply Lemma 5.1 to the ideal I = I(G) and the

set of variables {x1, . . . , xe}.
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If pd(S/I(G)) = pd(S/(I(G), x1, . . . , xe)), then by induction on n (and using that

(I(G), x1, . . . , xe)) = (I(H), x1, . . . , xe), where H = G− x1− x2− · · · − xe), we have

that

pd(S/I(G)) ≤ (n− e− 1)

(
1− 1

C

)
+ e ≤ n

(
1− 1

C

)
.

Here, note that H involves only (n− e− 1) variables since we have isolated y after

deleting its neighbors. The last inequality follows since e ≤ e+ bd
2
c+ 1 ≤ C by the

choice of C.

Otherwise, by Lemma 5.1, we have

pd(S/I(G)) = pd(S/((I(G), x1, . . . , xi) : xi+1))

for some 0 ≤ i ≤ e− 1 (recall we set x0 = 0).

Let G′ be the induced subgraph of G with vertex set x1, x2, . . . , xi+1, and let δ be

the degree of xi+1 in G′. Let S be the subset of {x1, x2, . . . , xi} of non-neighbors of

xi+1, and set |S| = m. Since G is claw free, the subgraph induced by S must be

complete (otherwise two non-neighbors of this set, together with xi+1 and y, would

form a claw). Because each xj ∈ S has degree ≥ m−1 in G′ and xi+1 was chosen as

a vertex of maximal degree, we have δ ≥ m−1. Since δ = i−m, this yields δ ≥ i−1
2

.

Let di+1 be the degree of xi+1 in G − {x1, ..., xi}, and observe that di+1 ≤
deg(xi+1)−δ = deg(xi+1)− i−1

2
. Let H be the induced graph determined by deleting

x1, . . . , xi from G, and then deleting xi+1 and all its neighbors from G.

We then have

pd(S/I(G)G) = pd(S/((I(G), x1, ..., xi) : xi+1))

= pd(S/(I(H)) + i+ di+1

≤ (n− i− di+1 − 1)

(
1− 1

C

)
+ i+ di+1

≤ n

(
1− 1

C

)
,

where the last inequality follows because i+ di+1 + 1 ≤ C, which we show below.

i+ di+1 + 1 ≤ i+

(
deg(xi+1)−

i− 1

2

)
+ 1

= deg(xi+1) +
i− 1

2
+ 2.

≤ deg(xi+1) +
e− 2

2
+ 2

= deg(xi+1) +
e

2
+ 1,

where we use the fact that i ≤ e − 1. Because i + di+1 + 1 is an integer, it must

be less than or equal to deg(xi+1) +
⌊
e
2

⌋
+ 1. Since (xi+1, y) is an edge of G, this

quantity is less than or equal to C. �
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An immediate corollary is a result due essentially to Dochtermann and Engström

[3, Corollary 5.2], though they have a (small) extra additive term in their bound.

Corollary 5.6. Let G be a graph on n vertices, and assume that d is the maximal

degree of any vertex. Then pd(S/I(G)) ≤ n
(
1− 1

2d

)
.

Proof. The corollary follows at once from Theorem 5.3 since the degree of any edge

of G is clearly at most 2d. �

Remark 5.7. It is worth comparing the result of Theorem 5.3 to similar bounds on

the cohomological dimension of I(G). It is known that for monomial ideals I, the

cohomological dimension cd(I, S) satisfies cd(I, S) = pd(S/I). This can be proved,

for example, from [7, Theorem 0.2]. Faltings [8] gave the most general bound for

cohomological dimension, namely that

cd(I, S) ≤ n−
⌊
n− 1

b

⌋
for any ideal I in a polynomial ring S of dimension n, where b is the bigheight of

I. If I(G) is the edge ideal of a graph G, then it is easy to see that d ≤ b: If x

has degree d with neighbors x1, . . . , xd, then the fact that xxi ∈ I(G) for all i shows

that there exists a minimal prime of I(G) containing (x1, . . . , xd). The bound on

projective dimension we give is not completely comparable to the bound given by

Faltings. If d is close to b, then the bound of Faltings may be better. However, it

is possible that d is much smaller than b (consider a cycle, for example). In [2] we

further explore bounds for the projective dimension of edge ideals.

We can give fairly strong bounds relating the number of vertices in a graph and

the maximum degree of an edge by combining Theorems 4.1 and 5.3.

Corollary 5.8. Let G be a graph such that I(G) is k-steps linear for some k ≥ 1,

and let the regularity of I(G) be obtained at a multidegree σ, with support H ⊂ G.

We consider H as an induced subgraph of G, and let m be the number of vertices of

H, and let D be the maximal degree of an edge in H, and d the maximal degree of

a vertex in H. Then

D ≥ m

log k+4
2

(
d

k+1

)
+ 3

.

Proof. We have that l = reg(I) = reg(IH), so henceforth we work just in the graph

H. Suppose the regularity occurs at homological degree j and internal degree m

(by our choice of H), so that m− j = l. Then reg(I(H)) + pd(SH) = l+ pd(SH) ≥
l + j = m.

Since the multigraded Betti numbers of H are at most that of G, it follows that

I(H) is also k-steps linear. By Theorem 4.1,

reg(H) ≤ log k+4
2

(
d

k + 1

)
+ 3.
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On the other hand, by Theorem 5.3, pd(SH) ≤ m(1 − 1
D

). By above, pd(SH) +

reg(H) ≥ m, and combining these inequalities yields

m

(
1− 1

D

)
+ log k+4

2

(
d

k + 1

)
+ 3 ≥ m,

or equivalently

D ≥ m

log k+4
2

(
d

k+1

)
+ 3

,

as claimed. �

6. Some open questions

In this Section we propose and discuss some further directions for this research.

For convenience we will always assume that I is a squarefree monomial ideal inside

S = K[x1, · · · , xn], and G is a finite simple graph on n vertices.

The question immediately suggested by Theorem 4.8 is whether its bound is

asymptotically the best possible. Note that we do not even know if the regular-

ity of gap-free graphs is unbounded. The biggest regularity known currently is 5,

see [26] and [32, Question 1.5].

Question 6.1. Is there an infinite family of gap-free graphs such that reg(I(G)) =

O(ln(n)) for every n-vertex G in this family?

Given our results, it seems natural to ask if similar bounds can be obtained for

arbitrary squarefree monomial ideals.

Question 6.2. Let I ⊂ S be a square-free monomial ideal which is k-steps linear

for some k ≥ 1. Is there an upper bound for reg(I) similar to the one in Theorem

4.8?

Discussion 6.3. In Question 6.2, it is likely that one has to increase k to get good

bounds. For example, consider the case in which I is generated by cubics. Let G

be any graph and J = I(G). Construct an ideal I as follows. Let I be generated

by the square-free cubics of mJ , where m = (x1, · · · , xn). Then J is always 1-step

linear, yet the regularity of I and J coincide (We thank David Eisenbud for this

observation). Thus, for at least the cubic case, one may need to assume at least

2-step linearity to get strong (logarithmic) bounds on the regularity.

To be more specific, let n = 2l and let G be the disjoint union of l edges. Then

reg(I(G)) = l + 1. Let J be the square-free cubics of mI(G) and L = J∨, the

Alexander dual of J . Then we know J is 1-step linear, S/L is S2, and reg(J) =

pd(S/L) = l + 1 = n
2

+ 1. Thus any upper bound better than a linear one cannot

be obtained without stronger assumptions.

It is worth stating the dual version of Question 6.2. In view of Discussion 6.3, we

pose the following.
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Question 6.4. Let I ⊂ S be a square-free monomial ideal of fixed height c such

that S/I satisfies Sk for some k ≥ c. Is there a logarithmic (in n) upper bound on

pd(S/I)?

In fact, one may ask a similar question for ideals that are not necessarily mono-

mial (see, for instance, Question 1.1). We shall discuss here a version that is closer

to the monomial case. Suppose S has characteristic p. Recall that a Noetherian

commutative ring R of characteristic p > 0 is called F -pure if the Frobenius mor-

phism R → R is a pure morphism. If I is a monomial ideal in S, it is immediately

seen that S/I is F -pure. What is less well-known is that if S/I is F -pure, then

cd(I, S) = pd(S/I), see [30, Theorem 4.1]. This suggests the following question.

Question 6.5. Let S be a regular local ring or polynomial ring over a field of charac-

teristic p > 0 and let I ⊂ S be an ideal such that S/I is F -pure. Let c be the (fixed)

codimension of I and n = dimS, and assume that S/I satisfies Sk for some k ≥ c.

Is there an upper bound on cd(I, S) = pd(S/I) similar to the one in Corollary 4.10?

A weaker and more geometric version of this Question was posted by the first

author on Mathoverflow.net ([4]).

Finally, we discuss a related question motivated by an interesting result of Kalk-

brenner and Sturmfels. They proved that under any monomial ordering, the reduced

initial ideal of a homogeneous prime always yields a Stanley-Reisner complex which

is both pure and strongly connected (note that the S2 condition is equivalent to the

corresponding Stanley-Reisner complex being locally strongly connected and pure).

So, it is natural to wonder whether one can extend the result by Kalkbrenner and

Sturmfels to give the same conclusion locally.

Question 6.6. Let J ⊂ S be a homogenous prime ideal. Under what conditions can

one find a monomial ordering such that the reduced initial ideal I of J with respect

to such an ordering satisfies the condition that S/I is S2?

Our bounds on regularity show that if the initial ideal of a homogeneous ideal J

in a polynomial ring S is reduced and S2, then the depth of S/J must be extremely

high, on the order of dim(S) − 3 − log(dimS). In some sense, our main result on

regularity proves that initial ideals which are reduced and S2 are nearly Cohen-

Macaulay. See [31] for interesting results concerning the relation of cohomological

dimension and other invariants between an ideal and the associated generic initial

ideal.
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