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Abstract. We introduce the notion of Q-Borel ideals: ideals which are closed
under the Borel moves arising from a poset Q. We study decompositions and
homological properties of these ideals, and offer evidence that they interpolate
between Borel ideals and arbitrary monomial ideals.

1. Introduction

Borel-fixed ideals are a natural class of ideals to study in commutative algebra:
Not only do they arise in a host of contexts, but they are typically easier to un-
derstand than arbitrary monomial ideals. When k is a field of characteristic zero,
an ideal B ⊆ k[x1, x2, . . . , xn] is Borel-fixed if and only if it satisfies the following
property: If m is a monomial in B and xj divides m, then m · xixj ∈ B for all i < j.

That is, B is closed under “Borel moves.” Over an arbitrary field, we call the ideals
for which this combinatorial condition holds Borel ideals, and our previous paper
[FMS] was devoted to studying Borel ideals via their Borel generators.

In this paper, we investigate how loosening the restrictive Borel condition affects
the properties of a monomial ideal. That is, what happens if we require only that
m · xixj remain in the ideal for some pairs xi, xj rather than all pairs with i < j?

We formalize this framework by introducing the notion of a monomial ideal being
Borel with respect to Q, where Q is a poset on {x1, . . . , xn}. A monomial ideal I is
Q-Borel if for any monomial m ∈ I with xj dividing m and any xi <Q xj , we have
m · xixj ∈ I (here <Q denotes the relation in the poset Q).

Two extremal cases are notable: When Q is the chain C : x1 <Q x2 <Q · · · <Q xn,
the C-Borel ideals are precisely the usual Borel ideals. When Q is the antichain,
every monomial ideal is Q-Borel because there are no conditions to satisfy. This
perspective is helpful because it allows us to use the Borel approach to study more
general ideals satisfying a subset of the Borel conditions.

If a monomial ideal I is Q-Borel, and Q is similar to the chain C, then I should
behave similarly to a Borel ideal.

In particular, if Q is “close” to the chain and I is Q-Borel, then I should have
minimal free resolution that resembles the Eliahou-Kervaire resolution, and the as-
sociated primes of I should be similar to the associated primes of a Borel ideal. We
are especially interested in understanding the principal Q-Borel ideals, namely the
ideals which have a single Q-Borel generator and whose ordinary monomial gener-
ating set arises from performing all possible sequences of Q-Borel moves on that
generator.
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Our work also has connections to matrix groups. Let Un(k) be the Borel subgroup
of GLn(k), consisting of the set of invertible n × n upper-triangular matrices with
entries in the field k. That is, Un(k) = {A ∈ GLn(k) : ai,j = 0 for i > j}. Let
Dn(k) denote the set of invertible diagonal n × n matrices with entries in k. Note
that Dn(k) ⊆ Un(k).

If A is any n × n matrix with entries in k, recall that A acts on polynomials in
k[x1, x2, . . . , xn] by replacing each occurrence of xi with

∑n
j=1 aijxj . The classical

Borel ideals are exactly those that are fixed under the action of Un(k), whereas
monomial ideals are exactly those fixed by Dn(k) (see, for instance, [MS]). Now let
Q be a naturally labeled poset on {x1, x2, . . . , xn}, and define MQ(k) as follows:

MQ(k) = {A ∈ GLn(k) : ai,j = 0 whenever xi �Q xj}.
Because Q is naturally labeled, we have Dn(k) ⊆ MQ(k) ⊆ Un(k). Moreover, we
have the following:

Proposition 1.1. The Q-Borel ideals in k[x1, . . . , xn] are exactly those which are
fixed under the action of MQ(k).

A common theme throughout the paper will be that, when Q is the chain or the
antichain, the theory of Q-Borel ideals specializes to known results. This heuristic
applies here as well: If Q is the antichain, then MQ(k) = Dn(k), whereas MQ(k) =
Un(k) when Q is the chain.

The paper is organized as follows. We present some preliminary results about
Q-Borel ideals in Section 2. In Section 3, we use Möbius inversion and Hall’s Mar-
riage Theorem to study the relationship between products of monomial primes and
monomial ideals which decompose as intersections of prime powers. Our main re-
sults are Theorems 3.1 and 3.8. Theorem 3.1 explicitly decomposes a product of
monomial primes into an intersection of prime powers. Theorem 3.8 describes, in
terms of colon ideals, all the ideals which can be decomposed as an intersection of
powers of monomial primes. Section 4 applies Theorem 3.1 to produce irredundant
primary decompositions of principal Q-Borel ideals. The results of this section were
recently proved in a broader context by Herzog, Rauf, and Vladoiu [HRV] in inde-
pendent work. In Section 5, we compute the projective dimension and codimension
of any principal Q-Borel ideal. As a corollary, we determine when principal Q-Borel
ideals are Cohen-Macaulay, recovering part of a result of Herzog and Hibi [HH].
In Section 6, we describe algorithms for computing free resolutions and irreducible
decompositions of Q-Borel ideals. These algorithms interpolate between familiar
constructions for Borel ideals and for arbitrary monomial ideals. In Section 7, we
explicitly construct the minimal free resolutions of Y -Borel ideals, where Y is a spe-
cific poset close to the chain. This resolution is very similar to the Eliahou-Kervaire
resolution, and provides evidence for the idea that, if Q is a poset close to the chain,
then Q-Borel ideals should behave similarly to Borel ideals.

2. Preliminary results

Let Q be a poset on {x1, x2, . . . , xn} with partial order <Q. Recall that Q is nat-
urally labeled if xi <Q xj implies i < j. All posets considered here will be naturally
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labeled. Our use of poset terminology is standard; see [S].

Throughout, let S = k[x1, x2, . . . , xn] where k is a field. The central objects
considered in this paper are Q-Borel ideals, defined as follows.

Definition 2.1. Let I ⊆ S be a monomial ideal, and letQ be a poset on {x1, x2, . . . , xn}.
We say that I is Q-Borel if whenever xi <Q xj and m ∈ I is a monomial divisible
by xj , then m · xixj ∈ I. In this case, we may also say that Q stabilizes I, or that I

is Borel with respect to Q.

If Q and Q′ are two posets, we say that Q refines Q′ if xi <Q′ xj implies xi <Q xj
for any i and j.

Proposition 2.2. Let I ⊆ S be a monomial ideal. Then there exists a poset Q with
the following properties.

(1): I is Q-Borel, and
(2): If Q′ is a poset for which I is Q′-Borel, then Q refines Q′.

We call the poset Q the maximal stabilizing poset of I.

Proof. Suppose Q1 and Q2 both stabilize I. Let Q3 be the poset that is the transitive
closure of the union of the relations in Q1 and Q2. Then Q3 stabilizes I as well.
Continuing in this way, we eventually obtain a poset Q with the desired properties.

�

Recall that an order ideal of a poset Q is a subset A of its elements such that
y ∈ A and x <Q y implies x ∈ A. By abuse, if A is an order ideal, we also let A
denote the prime ideal generated by the elements of A.

Theorem 2.3. For any poset Q, there exists a monomial ideal I such that Q is its
maximal stabilizing poset.

Proof. Let I =
∏
AA be the product of all the order ideals of Q. Then Q stabilizes

I. If xj 6≤Q xi, let X be the set of order ideals containing xj , Y the set of order
ideals containing xi but not xj , and Z the set of order ideals containing neither. Put
m =

∏
A∈X xj

∏
A∈Y xi

∏
A∈Z xA, where xA is any element of A. Observe that xi

divides m, since Y contains the principal order ideal generated by xi. Furthermore,
m · xjxi /∈ I. �

Definition 2.4. Let X ⊆ S be a set of monomials, and let Q be a poset. If I is
the smallest Q-Borel ideal containing X, we say that I is generated as a Q-Borel
ideal by X and write I = Q(X). In this case, we call X a Q-Borel generating set
for I. Every Q-Borel ideal I has a unique minimal Q-Borel generating set; we call
the monomials in this set the Q-generators of I. Of particular interest is the case
when X consists of a single monomial m. We say in this case that I is a principal
Q-Borel ideal, and write I = Q(m).

Definition 2.5. If Q is a poset with xi ≤Q xj and m is a monomial with xj |m, we
call the replacement of m with m · xixj a Q-Borel move.
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Thus, we may alternately define a Q-Borel ideal as a monomial ideal closed under
Q-Borel moves.

Note that if I = Q(m), then the (ordinary) monomial generators of I are all of
the same degree. This is a special case of the following.

Proposition 2.6. Let X be a set of monomials, all of the same degree. Then the
ordinary monomial generators of I = Q(X) are all of the same degree.

Proof. The ordinary generators of I are the monomials that can be obtained, via a
sequence of Q-Borel moves, from monomials in X. Because performing a Q-Borel
move on a monomial cannot change its degree, the result follows. �

Proposition 2.7. Let I = Q(m) be a principal Q-Borel ideal. Then I can be
factored as a product of monomial prime ideals. Moreover, the primes in this fac-
torization are all Q-Borel ideals, and can be determined from the exponent vector of
m.

Proof. Write m =
∏
xeii . For a variable xi, let pi = (xj : xj ≤Q xi) be the order

ideal of Q generated by xi. We claim that

I =
∏
xi|m

peii .

Indeed, suppose µ ∈ I. We may assume deg(µ) = deg(m). Then µ can be obtained
from m by a sequence of Q-Borel moves, i.e., µ = m·

∏ wi
xi

=
∏
wi for some collection

{wi} of variables with wi ≤Q xi for all i, so that wi ∈ pi for all i, i.e., µ ∈
∏

pi.
Conversely, suppose that µ ∈

∏
pi. Again we may assume deg(µ) = deg(m).

Write µ =
∏
wi for some collection {wi} of variables with wi ∈ pi for all i. Then

µ =
∏
xi
wi
xi

= m
∏ wi

xi
is obtained from m by Q-Borel moves, meaning µ ∈ I. �

Definition 2.8. Let I be a monomial ideal with minimal generating set G(I), where
the monomials in G(I) are all of the same degree. Then I is called polymatroidal if
the following exchange condition is satisfied: For two monomials m,m′ ∈ G(I) and
any variable xi appearing to a greater power in m than in m′, there exists a variable
xj , appearing to a greater power in m′ than in m, such that m · xjxi ∈ G(I).

Proposition 2.9. If I is a principal Q-Borel ideal, then I is polymatroidal.

Proof. Each of the ideals pi in Proposition 2.7 is prime, hence polymatroidal. The-
orem 5.3 of [CH], which states that the product of polymatroidal ideals is polyma-
troidal, completes the proof. �

Definition 2.10. Suppose I = (m1, . . . ,mr) ⊂ S, and the mi are monomials such
that degm1 ≤ · · · ≤ degmr. We say that I has linear quotients if, for each 1 < i ≤ r,
the ideal quotient (m1, . . . ,mi−1) : mi is generated by a subset of x1, . . . , xn. If an
ideal generated in a single degree has linear quotients, it has a linear resolution (see,
for instance, [CH, Lemma 4.1]).

Corollary 2.11. Every principal Q-Borel ideal has linear quotients and hence a
linear resolution.
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Proof. In [HT, Lemma 1.3], Herzog and Takayama prove that polymatroidal ideals
have linear quotients. Thus polymatroidal ideals generated in a single degree have
a linear resolution. �

3. Prime power decompositions

We begin by proving a useful theorem for ideals that are products of monomial
primes. Note that Theorem 3.1 immediately produces a primary decomposition of
such an ideal.

Theorem 3.1. Let I ⊆ S be a product of monomial primes. Write

I =
∏
p

pep ,

where p ranges over the set of all monomial primes, and we allow any of the above
exponents to be zero. Then

I =
⋂
p

pap ,

where each ap =
∑
q⊆p

eq. Furthermore, we have

ep =
∑
q⊆p

(−1)|p|−|q|aq.

Before proving Theorem 3.1, we need a lemma which will use Hall’s Marriage
Theorem, a standard result in enumerative combinatorics (see, for instance, [S]).

Let G be a bipartite graph on vertex set X t Y , so that each edge of G contains
one vertex in X and one in Y . For A ⊆ X, let N(A) denote the set of neighbors of
vertices in A. That is,

N(A) = {y ∈ Y : (x, y) is an edge of G for some x ∈ A}.
Recall that a perfect matching of G is a set of |X| vertex-disjoint edges of G.

Theorem 3.2 (Hall’s Marriage Theorem). Let G be as above. Then G has a perfect
matching if and only if |A| ≤ |N(A)| for all A ⊆ X.

Lemma 3.3. Let I =
∏

p p
ep, where each ep ≥ 0. Let E =

∑
ep, and let m be

a monomial of degree E. Then m ∈ I if and only if, for each p, the number of
variables of m in p is at least

∑
q⊆p eq.

Proof. The “only if” direction is clear. For the “if” direction let m =
∏
xfii , and

define a bipartite graph G as follows. Let X be a set of E vertices, f1 of which are
labeled x1, f2 of which are labeled x2, and so on. Similarly, let Y be a set of E
vertices, ep of which are labeled p for each p. Now connect each vertex labeled xi to
each vertex labeled p whenever xi ∈ p.

We wish to apply Theorem 3.2 to the graph G. Indeed, if we can show that
|A| ≤ |N(A)| for all A ⊆ X, the perfect matching guaranteed by the Marriage
Theorem will give m ∈ I.
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Let A ⊆ X. Then we can expand A to include all vertices in X that share labels
with vertices in A (this does not change the size of N(A)). Thus A = {xi : xi /∈ p}
for some p, and

|A| = E −
∑
xi∈p

fi ≤ E −
∑
q⊆p

eq.

Similarly, we have N(A) = {q : xk ∈ q for some xk /∈ p} = {q : q * p}, and so

|N(A)| =
∑
q*p

eq = E −
∑
q⊆p

eq,

so |A| ≤ |N(A)|, completing the proof. �

Proof of Theorem 3.1. Let m ∈
∏

pep , and assume m is of degree E. Then we can
write m =

∏
mp, where deg(mp) = ep for all p and each mp has support in p. Now

fix p, and let M =
∏

q⊆pmq. We have m = M
∏

q*pmq and deg(M) =
∑

q⊆p eq = ap,

so M ∈ pap , so m ∈ pap . Since the choice of p was arbitrary, we have I ⊆
⋂
pap .

Now assume that m /∈ I, and note we can assume that deg(m) = E. Then by
Lemma 3.3 there must be some p such that m contains strictly fewer than

∑
q⊆p eq

variables from p. But then m /∈ pap , and so m /∈
⋂
pap .

For the final claim, apply the Principle of Inclusion-Exclusion. �

Corollary 3.4. Let I =
∏

pep be a product of monomial primes. Then q ∈ Ass(S/I)
whenever eq ≥ 1.

Proof. It suffices to show that the primary ideal qaq is not redundant in the decom-
position I =

⋂
pap . Localizing, we may assume that p is the homogeneous maximal

ideal (x1, . . . , xn). Now let I ′ = qeq−1
∏
p6=q

pep and apply Theorem 3.1 to I ′. This

yields I ′ = qaq−1 ∩
⋂
p6=q

pep . Since I = qaq ∩
⋂
p6=q

pep and I 6= I ′, it follows that qaq is

not redundant. �

For the following two corollaries we use Möbius inversion (see [S]).

Corollary 3.5. Let I =
∏

pep be a product of monomial primes, and let Λ be any
collection of monomial primes containing Ass(S/I), ordered by inclusion. Let µ be

the Möbius function on Λ. Then I =
⋂
p∈Λ

pap, where ap =
∑
q⊆p

eq. Furthermore,

we can recover the factorization of I from this decomposition, via the formula ep =∑
q≤

Λ
p

µ(q, p)aq.

Proof. We have I =
⋂
p∈Λ

pap ∩
⋂
p6∈Λ

pap . Since Λ ⊇ Ass(S/I), the second factor is

redundant and may be omitted, leaving the first formula. Möbius inversion yields
the second formula.

�
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Proposition 3.6. Let I =
∏

pep and q ∈ Ass(S/I). Then q =
∑

p∈T p, where T is

some set satisfying p ∈ T implies ep 	 0.

Proof. Let q′ =
∑
p⊆q

ep	0

p. Observe q′ ⊆ q and aq′ = aq. Since q ∈ Ass(S/I), we must

have q = q′. �

Proposition 3.7. Suppose Λ is closed under the taking of sums and that I =⋂
p∈Λ pap. Set ep =

∑
q<Λp

µ(q, p)aq. Suppose all ep ≥ 0. Then I =
∏

p∈Λ pep.

Proof. By the previous proposition, Λ contains Ass(S/I). Apply Corollary 3.5 to
the ideal

∏
p∈Λ pep . �

Theorem 3.8. Let Λ be a set of monomial primes which is closed under the taking
of sums, and let I have primary decomposition

I =
⋂
p∈Λ

pap .

Let µ be the Möbius function on Λ, and set ep =
∑
q⊆p

µ(q, p)aq for all p ∈ Λ. Then

I =
∏

pep =

∏
ep>0

pep :
∏
ep<0

p−ep

 .

Proof. Let J =
∏
ep>0 p

ep and K =
∏
ep<0 p

−ep . By Proposition 3.6 and Corollary

3.5, we may write J =
⋂

p∈Λ pbp and K =
⋂

p∈Λ pcp . Observe that bp = ap + cp for

all p. Suppose m ∈ (J : K). Fix p. Define µ =
∏

q:eq�0 x
−eq
q , where xq ∈ q is chosen

so that xq /∈ p whenever q 6⊆ p. Observe that µ ∈ K and µ ∈ pcp r pcp+1. Because
mµ ∈ J , we have mµ ∈ pbp , so m ∈ pbp−cp = pap . Therefore (J : K) ⊆ pap for each
p, so (J : K) ⊆ I.

Now suppose m ∈ I. For all p, we have m ∈ pap = pbp−cp . Let µ ∈ K. Then
mµ ∈ pbp−cp+cp = pbp for all p. Consequently, mµ ∈ J . �

Corollary 3.9. Let Λ be a set of monomial primes ordered by inclusion, and let I
have primary decomposition

I =
⋂
p∈Λ

pap .

Let µ be the Möbius function on Λ, and set ep =
∑
q<Λp

µ(q, p)aq for all p ∈ Λ.

Suppose Λ′ ⊃ Λ is another set of monomial primes (again ordered by inclusion),

and let ep = 0 for all p ∈ Λ′ r Λ. Then, if bp =
∑
q≤

Λ′ p

ep, we have

I =
⋂
p∈Λ′

pbp .
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Proof. Apply Möbius inversion twice. �

Question 3.10. Let Λ be a set of monomial primes which is closed under the taking
of sums, and let I have primary decomposition

I =
⋂
p∈Λ

pap .

Let µ be the Möbius function on Λ, and set ep =
∑
q⊆p

µ(q, p)aq for all p ∈ Λ.

Is there is an easily-checked condition on Λ and the exponents ep and ap that
determines which primes are associated?

4. Primary decompositions of principal Q-Borel ideals

In this section, we apply Theorem 3.1 and Proposition 2.7 to describe an irre-
dundant primary decomposition of a principal Q-Borel ideal. Let Q be a naturally
labeled poset. We say an order ideal of Q is connected if it cannot be written as the
disjoint union of two order ideals.

Proposition 4.1. Let I be a Q-Borel ideal. If p is an associated prime of S/I, then

p = (xi : xi ∈ A)

for some order ideal A of Q.

Proof. Let xj ∈ p. Then there exists a monomial m such that m /∈ I, but xjm ∈ I.
If xi ≤Q xj , then by a Q-Borel move, xjm · xixj = xim ∈ I, so xi ∈ p as well. �

Corollary 4.2. [BS, Corollary 2] If p is an associated prime of a Borel ideal S/I,
then p = (x1, x2, . . . , xi) for some i.

The associated primes of products of monomial primes are known; see [E, Ex-
ercise 3.9], but our approach offers an additional benefit: When I is a principal
Q-Borel ideal, we can easily read the associated primes and an irredundant primary
decomposition from the poset Q and the unique Q-generator of I. This irredundant
primary decomposition is also described in a different framework in the recent paper
of Herzog, Rauf, and Vladoiu [HRV] for powers of I.

For xi ∈ Q, let A(xi) = {xj : xj ≤Q xi}. More generally, if m is any monomial,
let A(m) = {xj : xj ≤Q xi for some xi|m}.

Theorem 4.3. Let I = Q(m) for some monomial m. Then p is an associated
prime of S/I if and only if p = A(m′) for some m′ dividing m such that A(m′) is
connected.

Proof. Write I =
∏

pep =
⋂
pap . By Proposition 2.7, ep > 0 implies that p = A(xi)

for some xi dividing m.
By Proposition 4.1, we need only consider primes which correspond to order

ideals of Q. So suppose A is an order ideal of Q, and let p = A. Let T = {xk :
xk | m,A(xk) ⊆ p}. If p 6= A(m′) for some m′ dividing m, we will show that p is
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redundant. Put q =
∑

xk∈T A(xk), and note that q = A(m′) for some monomial

m′|m. Then q ⊆ p and, by Theorem 3.1, aq = ap, meaning p is redundant.
Now let m′|m and suppose p = A(m′) is not connected. Then there exist mono-

mials m1 and m2 with m1m2 = m′ and A(m1) ∩ A(m2) = ∅. Put p1 = A(m1) and
p2 = A(m2). By Theorem 3.1, ap1 + ap2 = ap because the exponents eq are zero for
nonprincipal primes; in particular, the exponents are zero when a prime has elements
from multiple components. Because p1, p2 ⊆ p, it follows that pap ⊇ p

ap1
1 ∩ p

ap2
2 is

redundant.
Finally, let p = A(m′) for some m′|m such that A(m′) is connected. We will

construct a monomial µ such that AnnS/I(µ) = p. Let G be the graph with vertex
set T = supp(m′) and an edge connecting two variables of T if and only if they
have a common lower bound in Q. G is connected because A(m′) is connected; fix a
minimal spanning tree H of G. For each edge (ti, tj) of H, choose a common lower

bound yi,j of ti and tj . Set Y =
∏
H yi,j and Z =

∏
t∈T t. We claim that µ = mY

Z is
the desired monomial. Indeed, µxi ∈ Q(m) if xi ∈ A(Z) = A(m′), and µxi 6∈ Q(m)
otherwise. �

Remark 4.4. As a consequence of Theorems 3.1 and 4.3, we can read off an irre-
dundant primary decomposition of any principal Q-Borel ideal Q(m) from m and
the order ideals of Q. Using Theorem 4.3, we determine which primes are asso-
ciated. For each of these primes p, we compute the exponent of p in a primary
decomposition by summing the exponents ei on each variable contained in p.

Example 4.5. Let Q be the poset given by the figure below, and let I = Q(def).

fe

b c d

a

Figure 1. The poset Q.

The possible monomial primes associated to I are A(d) = (a, d), A(e) = (b, c, e),
A(f) = A(df) = (a, c, d, f), A(de) = (a, b, c, d, e), andA(ef) = A(def) = (a, b, c, d, e, f).
Except for A(de), all these order ideals are connected.

Thus Ass(S/I) = {(a, d), (b, c, e), (a, c, d, f), (a, b, c, d, e, f)}, and

I = (a, d) ∩ (b, c, e) ∩ (a, c, d, f)2 ∩ (a, b, c, d, e, f)3

is an irredundant primary decomposition of I.

Corollary 4.6. Let I be a Borel ideal with a single Borel generator. That is,
I = Q(m) for some monomial m, where Q = x1 < x2 < . . . < xn is the n-element
chain. Then p is an associated prime of I if and only if p = (x1, x2, . . . , xi) for some
xi|m.
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Proof. Since every order ideal of the chain is connected, Theorem 4.3 gives the
result. �

5. Projective dimension and Cohen-Macaulayness

Throughout this section, let Q be a poset, and let I = Q(m) ⊂ S = k[x1, . . . , xn]
be a principal Q-Borel monomial ideal generated by m. We assume that all maximal
elements of Q divide m; if not, then we may make Q smaller by deleting these max-
imal elements and pass to a smaller ring without changing the minimal generators
of I.

We begin by determining the projective dimension of the principal Q-Borel ideal
I = Q(m). Recall from Section 2 that I is polymatroidal (Proposition 2.9). In [HT,
Lemma 1.3], Herzog and Takayama prove that polymatroidal ideals have linear
quotients with respect to descending reverse-lex order. For our purposes, it is also
convenient to order the monomials in ascending reverse-lex order. (This is equivalent
to ordering the monomials in descending graded-lex order with the usual order of
the variables reversed, so xn > xn−1 > · · · > x1.)

For example, the descending reverse-lex ordering on monomials of degree two in
k[a, b, c] is

a2, ab, b2, ac, bc, c2,

while the ascending order starts at c2 and proceeds backwards through the same
list.

The next lemma is a result of Francisco and Van Tuyl [FVT, Proposition 2.9]; we
include a proof since the argument was omitted in the published version of [FVT].

Lemma 5.1. Polymatroidal ideals have linear quotients with respect to the ascending
reverse-lex order.

Proof. Let I be a polymatroidal ideal, and let u be a minimal generator of I. Let
J be the ideal generated by all minimal generators v of I less than u in reverse-lex
order. Note that, since J is a monomial ideal, J : (u) = ( v

gcd(u,v) : v ∈ J). We show

that for each v < u, there exists xi ∈ J : (u) such that xi divides v
gcd(u,v) .

Write u = xa1
1 · · ·xann and v = xb11 · · ·xbnn . Since v < u, there exists i such that

ai < bi but ai+1 = bi+1, . . . , an = bn. We now invoke the dual version of the
polymatroidal exchange property ([HH, Lemma 2.1]): since ai < bi, there exists j
with aj > bj so that u′ = u · xixj ∈ I. Note that j < i, so u′ < u, and thus u′ ∈ J .

Because xju
′ = xiu and u′ ∈ J , we have xi ∈ J : (u). The power of xi in the

monomial v
gcd(u,v) is bi −min(ai, bi) = bi − ai > 0, and hence xi divides v

gcd(u,v) . �

Theorem 5.2. Let Q be a poset and I = Q(m) for some monomial m. Suppose
that Q is the maximal poset stabilizing Q and that the maximal elements of Q divide
m. Then

pd(S/I) = n−#(connected components of Q) + 1.

Proof. By Lemma 5.1 and [HT, Lemma 1.3], polymatroidal ideals have linear quo-
tients with respect to either ascending or descending reverse-lex order. Thus we get
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a minimal free resolution of I by constructing an iterated mapping cone resolution
using either order. Let t be the number of connected components of Q.

First, we order the minimal monomial generators of I in descending reverse-lex
order, so xd1 is the first monomial in degree d. Let µ be any minimal generator of I,
and let Iµ be the ideal generated by all minimal generators of I greater than µ in
the reverse-lex order. Let C be any connected component of Q, and write xmax(C)

for the variable of largest index in C (which divides m by hypothesis).
We claim that for each C, xmax(C) /∈ Iµ : µ. For any ν ∈ I with deg ν = degm,

the number of factors of ν in C, counted with multiplicity, is the same as the number
of factors of m in C, again counted with multiplicity. This follows from the fact
that exchanges of variables take place within connected components of Q. Suppose
xmax(C) ∈ Iµ : µ. Then xmax(C)µ ∈ Iµ, and because Iµ is generated in degree one

lower, there exists xi dividing µ such that µ · xmax(C)

xi
∈ Iµ. Because xmax(C) ∈ C, we

have xi ∈ C as well. Therefore i < max(C), and µ > µ · xmax(C)

xi
in the descending

reverse-lex order. But this means that µ · xmax(C)

xi
/∈ Iµ, a contradiction. Hence for

each connected component C of Q and each minimal generator µ of I, xmax(C) /∈
Iµ : µ. Therefore pd(S/I) ≤ n− t+ 1.

For the opposite inequality, we order the minimal monomial generators of I in
ascending reverse-lex order. Equivalently, we use lex order with xn > xn−1 > · · · >
x1, the usual order of the variables reversed. We let µ be the minimal generator of
I that occurs last in that order. In each connected component C, let xmin(C) be the
variable of smallest index in C. We construct a bipartite graph G as follows. Let
X be the set of elements of C dividing m and Y be the set of minimal elements
of C. Let X ∪ Y be the vertex set of G. Construct an edge between x ∈ X and
y ∈ Y if and only if x and y are comparable in Q. Without loss of generality,
relabel the variables of C (and vertices of G) so that for xi and xj minimal in C,
distG(xi, xmin(C)) < distG(xj , xmin(C)) implies that i < j.

Given a minimal element xi, take a minimum length path

xi → x` → · · · → xmin(C)

from xi to xmin(C) in G. Let p be the minimal index with xp ≤Q x`. It follows from
the relabeling that p < i. Recall that there is a correspondence between the divisors
of m (counted with multiplicity) and the divisors of µ (counted with multiplicity).
By the construction of µ, this correspondence sends every copy of x` to a copy of
xp. In particular, xp divides µ.

Let Iµ be the ideal generated by the minimal monomial generators of I except for
µ. Because µ · xixp ∈ I and i 6= p, we have µ · xixp ∈ Iµ. Thus pd(S/I) ≥ n− t+ 1. �

Proposition 5.3. Let Q be a poset, and let I = Q(m). Then

codim I = min
xi|m
|A(xi)|,

where A(xi) is the order ideal generated by xi.

Proof. The codimension of I is the smallest codimension of an associated prime of
S/I. By Theorem 4.3, the associated primes are the connected order ideals of Q
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generated by nonempty subsets of variables dividing m, from which the result is
immediate. �

As a consequence, we get a special case of Herzog and Hibi’s classification of
Cohen-Macaulay polymatroidal ideals [HH, Theorem 4.2].

Corollary 5.4. Let Q be a poset, and suppose I = Q(m) for some monomial m.
Assume Q is the maximal poset stabilizing I and that the maximal elements of Q
divide m. Then S/I is Cohen-Macaulay if and only if one of the following holds:

(1): Q is the chain x1 <Q x2 <Q · · · <Q xn, and m = xann for some an. (That
is, I is a power of the maximal homogeneous ideal.)

(2): Q is the antichain. (That is, I is a principal ideal.)

Relaxing the assumptions of this section, Corollary 5.4 becomes the following:

Theorem 5.5 ([HH]). Let Q be a poset, and suppose I = Q(m) is a principal Q-
Borel ideal. Then S/I is Cohen-Macaulay if and only if one of the following holds:

(1): m = xdi for some i and d (and I is a power of the prime ideal Q(xi)).
(2): I is a principal ideal.

Proof of Corollary 5.4. Suppose first thatQ is connected. By Theorem 5.2, pd(S/I) =
n, and thus S/I is Cohen-Macaulay if and only if codim I = n. By Proposition 5.3,
this forces A(xi) = {x1, . . . , xn} for all xi dividing m. That is, m = xann and
xi <Q xn for all i. We are assuming that Q is the maximal poset stabilizing I, and
thus Q is the chain x1 <Q x2 <Q · · · <Q xn. Hence I = (x1, . . . , xn)an .

Now suppose that Q is not connected, and let t be the number of connected
components of Q, so pd(S/I) = n − t + 1. Then I is Cohen-Macaulay if and
only if the smallest principal order ideal of Q generated by a divisor of m has
cardinality n − t + 1. In this case, because Q has t connected components and
n elements, we have one component with cardinality ≥ n − t + 1, and then the
other t − 1 components must have cardinality one. Therefore Q consists of t − 1
isolated vertices and a connected component of size n− t+1 with a unique maximal
element. We are assuming that each maximal element of Q divides m. Thus each
variable that is isolated in Q divides m and, moreover, the codimension of I is the
cardinality of the smallest principal order ideal of Q generated by a divisor of m.
Thus n− t+ 1 = pd(S/I) = codim I = 1, and so n = t. This means that Q consists
of n isolated vertices, so Q is the antichain. �

6. Interpolation between Borel ideals and monomial ideals

In this section, we describe procedures for computing free resolutions and primary
decompositions of Q-Borel ideals which specialize to familiar objects in both the
Borel case (i.e., Q is the chain) and the arbitrary monomial case (i.e., Q is the
antichain). We begin with some remarks on intersections of Q-Borel ideals.

The intersection of two Q-Borel ideals is again Q-Borel, and can be computed
efficiently in terms of their Q-Borel generators:
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Lemma 6.1. Let I = Q(T1) and J = Q(T2), for sets T1 and T2 of monomials.
Then I ∩ J =

∑
t1∈T1,t2∈T2

Q(t1) ∩Q(t2).

In the extremal cases, the intersection of principal (Borel) ideals is always prin-
cipal. This is not the case for general Q, as the following example shows.

Example 6.2. Let S = k[a, b, c], with poset structure a < b, a < c. Then for all k
we have Q(akb)∩Q(akc) = Q(akbc, ak+1), and Q(akbc)∩Q(ak+1) = Q(ak+1b, ak+1c).

In particular, if I = Q(T ), then ∩t∈T Q(t) need not be a principal Q-Borel ideal.
In fact, successively intersecting generators as in this example can yield an infinite
decreasing chain of Q-Borel ideals. Note, however, that such a chain stabilizes at
zero in every degree.

6.1. Resolutions. Let T be a set of monomials, and put I = Q(T ). Recall that
Q(m) has linear resolution for all monomials m. Now let m ∈ T be a monomial of
minimal degree, and put Im = Q(T rm).

The Mayer-Vietoris sequence is

0→ Im ∩Q(m)→ Im ⊕Q(m)→ I → 0.

Given resolutions for Im, Q(m), and Im ∩Q(m), the mapping cone would yield a
(usually not minimal) resolution of I. Q(m) has known linear resolution (see [HT]),
and Im, having fewer generators than I, can in some sense be resolved inductively.
Unfortunately, as Example 6.2 shows, Im∩Q(m) is not well-behaved: An attempt to
resolve I inductively in this manner may never terminate. However, we can produce
a truncated resolution.

Algorithm 6.3. For a fixed degree d, this algorithm produces a complex F of R-
modules which satisfies F0 = I and (Hi(F))j = 0 whenever j − i ≤ d.

Step 1: Delete any Q-generators of I having degree greater than d; let J be
the resulting ideal.

Step 2: If J is a principal Q-Borel ideal, then it is minimally resolved by
the linear quotients on its monomial generators (see section 2). Otherwise,
choose a Q-generator m of minimal degree, and let Jm be the Q-Borel ideal
generated by the Q-generators of J other than m. Let G be the minimal
resolution of Q(m).

Step 3: Observe that Hilb≤d(Jm) and Hilb≤d(Jm ∩ Q(m)) are both smaller
than Hilb≤d(J). Inductively apply this algorithm to find complexes H and
K that agree with resolutions of Jm and Q(m) ∩ Jm in degrees less than d.

Step 4: Set F = G⊕H⊕K[−1].

Remark 6.4. If Q is the antichain, and d is greater than or equal to the degree of
the least common multiple of the generators of I, then Algorithm 6.3 produces the
Taylor resolution [T] of I.

Remark 6.5. The truncated resolution produced by Algorithm 6.3 is a sum of
linear strands corresponding to monomial generators of the principal Q-Borel ideals
arising at various stages of the algorithm. If at any stage (Jm ∩ Q(m)) shares a
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monomial generator with either Jm or Q(m), we may obtain a smaller complex by
performing a cancellation on the resulting linear strands.

If Q is the chain (so I is Borel), d is greater than or equal to the largest degree
of a generator of I, and we perform these cancellations at every opportunity, we get
the Eliahou-Kervaire resolution [EK] of I (see [FMS]).

6.2. Irreducible decompositions. We describe a process for producing an irre-
ducible decomposition of a Q-Borel ideal I.

Definition 6.6. We say that an ideal J is Q-irreducible if J has a Q-generating set
consisting of pure powers of variables.

Lemma 6.7. Suppose that J = Q(xe11 , . . . , x
en
n ) is a Q-irreducible ideal. (Here, we

allow ei to be integers in [0,∞] with the understanding that x∞i = 0.) Then J has

(possibly redundant) irreducible decomposition J =
⋂

(xf1
1 , . . . , x

fn
n ), the intersection

taken over exponent vectors (fi) satisfying the conditions:

(i) If ek <∞ and xi ≤Q xk, then fi <∞.
(ii) For all k,

∑
xi≤Qxk(fi − 1) ≤ ek − 1.

Proof. Assume without loss of generality that all ei are finite. Let T be the inter-
section of irreducible ideals given above. Suppose m ∈ T , and let xi be a variable
dividing m. Then m

xi
∈ T ′ =

⋂
(xg1

1 , . . . , x
gn
n ), where gi = fi − 1 and gj = fj for

j 6= i. Inductively, T ′ = Q(xa1
1 , . . . , x

an
n ), where aj = ej − 1 whenever xi ≤Q xj and

ej ≥ 1, and aj = ej otherwise. We conclude m ∈ xiT ′ = J . �

Thus to obtain an irreducible decomposition of a Q-Borel ideal I, it suffices to
decompose I into Q-irreducible ideals.

Lemma 6.8. Let I = Q(m) be a principal Q-Borel ideal. Let z be Q-maximal
among the variables dividing m, and write m = zezµν, where every element x of
supp(µ) satifies x �Q z, and every element of supp(ν) is incomparable to z. Put

d = deg(µ). Then I = Q(zez+dν) ∩Q(µν).

Proof. Let J denote the intersection, and suppose f ∈ J is a monomial. To prove
f ∈ I, we have to show the existence of a matching from the variables dividing m
(counted with multiplicity) to those dividing f , with the property that xi >Q xj
whenever a copy of xi is matched to a copy of xj . We will use Hall’s marriage
theorem.

Let X be a subset of the divisors of m; we will show that, if N(X) is the set of
of divisors xj of f satisfying xj <Q xi for some xi ∈ X, then |N(X)| ≥ |X|. Write
X = Y ∪Z, where the elements of Z are all comparable to z and the elements of Y
are not.

First suppose z ∈ Z. Then, since f ∈ Q(zeZ+dν), there is a matching from the di-
visors of this monomial to the divisors of f and we have |X| ≤ |Y ∪{(ez + d) copies of z}| ≤
|N(Y ∪ {z})| = N(X).

Now suppose that z 6∈ Z. Then, since f ∈ Q(µν), there is a matching from
the divisors of this monomial to the divisors of f and we have |X| ≤ |N(X)| as
desired. �
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Algorithm 6.9. This algorithm computes a Q-irreducible decomposition of a Q-
Borel ideal I = Q(m1, . . . ,ms).

Step 1: If I is already Q-irreducible, we are done. If not, without loss of gen-
erality let z be Q-maximal among the variables dividing those Q-generators
of I which are not pure powers, and suppose z divides m1.

Step 2: Write m1 = zezµ; set J = I +Q(zez) and K = I +Q(µ). By Lemma
6.8 we have I = J ∩K.

Step 3: Both J and K have a smaller number of Q-generators which are divis-
ible by z and are not pure powers (or a smaller number of variables dividing
their non-pure-power Q-generators), so this algorithm may be recursively
applied to find Q-irreducible decompositions of J and K.

Remark 6.10. When Q is the antichain, Algorithm 6.9 is the algorithm for pro-
ducing irreducible decompositions given in [MS, Lemma 5.18].

Remark 6.11. When Q is the chain (so I is Borel), Algorithm 6.9 reduces to the
following.

Proposition 6.12. Let I be a Borel ideal, and assume without loss of generality
that xn divides some generators of I but that I contains no power of xn. Write
I = N +M , where N is the Borel ideal generated by the Borel generators of I which
are divisible by xn, and M is the Borel ideal generated by those generators which
are not. Let d be the minimal degree of a generator of N . Then I = (Borel(xdn) +
M) ∩ (M + (N : x∞n )).

7. Y -Borel ideals

In our final section, we investigate ideals which are Borel with respect to the poset
Y defined by the relations x1 <Y · · · <Y xt <Y y and xt <Y z. Let I be a Y -Borel
ideal in S = k[x1, . . . , xt, y, z]. The minimal generators of I not divisible by z form
a Borel ideal in the ring k[x1, . . . , xt, y]. Because Y is similar to the chain on all the
variables of S, it is natural to believe that the minimal free resolution of I shares
many properties of an Eliahou-Kervaire resolution. We determine the minimal free
resolution of I in this section, providing evidence for our broader belief that if a
poset Q is close to the chain, a Q-Borel ideal will behave much like a Borel ideal.

We first recall the Eliahou-Kervaire resolution.

Notation 7.1 ([PS]). Given a monomial m ∈ k[x1, . . . , xn], set max(m) = max{i :
xi divides m} and min(m) = min{i : xi divides m}. Let I be a Borel ideal of
k[x1, . . . , xt]. Then, if µ is a monomial of I, there exists a unique factorization
µ = µ1µ2 such that µ1 is a generator of I and max(µ1) ≤ min(µ2). We say that
µ1 and µ2 are the beginning and end of µ, respectively, and write beg(µ) = µ1 and
end(µ) = µ2.

Theorem 7.2 ([EK], [PS]). Let I be a Borel ideal of k[x1, . . . , xt]. Then the minimal
free resolution of I has basis given by the “Eliahou-Kervaire symbols” [m,α], where
m is a monomial generator of I and α is a squarefree monomial with max(α) �
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max(m). The symbol [m,α] has homological degree deg(α) and multidegree mα.
The differential is

d([m,α]) =

degα∑
i=1

(−1)1+iαi[m,
α

αi
]−

degα∑
i=1

(−1)1+i end(mαi)[beg(mαi),
α

αi
],

where αi is the ith variable (in lex order) dividing α, and the symbol [beg(mαi),
α
αi

] is

treated as zero if it is not an Eliahou-Kervaire symbol (i.e., if max( ααi ) ≥ max(beg(mαi))).

The minimal free resolution of a Y -Borel ideal is similar, but nonlinear syzygies
between powers of y and z appear because the variables are incomparable in in Y .

Theorem 7.3. Let I be a Y -Borel ideal. Then the minimal free resolution of I has
basis given by the symbols [m,α] and [m,αykm ], where m is a monomial generator of
I, α is a squarefree monomial of k[x1, . . . , xt] satisfying max(α) � max(m), and km
is minimal such that m

z y
km ∈ I. The symbol [m,α] has homological degree deg(α)

and multidegree mα. The symbol [m,αykm ] has homological degree 1 + deg(α) and
multidegree mαykm. The differential of the symbol [m,α] is exactly the Eliahou-
Kervaire differential. The differential of the symbol [m,αykm ] is

d([m,αykm ]) =

degα∑
i=1

(−1)1+iαi[m,
α

αi
ykm ] + (−1)deg(α)ymk [m,α]

−

(
degα∑
i=1

(−1)1+i end(mαi)[beg(mαi),
α

αi
ykm ]

+ (−1)deg(α) end(mykm)[beg(mykm , α]

)
,

where, as in the Eliahou-Kervaire resolution, symbols that don’t exist are treated as
zero.

The proof of Theorem 7.3 is by induction on the largest power of z appearing in
a generator of I. We need some new notation and a lemma.

Notation 7.4. Given a Y -Borel ideal I, put Iz = 1
z (I ∩ (z)), and let I1 be the ideal

generated by the monomial generators of I which are not divisible by z. Because
I is an ideal, we have I1 ⊂ Iz. Note also that I = I1 + zIz, that I1 is Borel in
k[x1, . . . , xt, y], that Iz is Y -Borel, and that Theorem 7.3 applies to Iz by induction.

Lemma 7.5. Suppose that m is a monomial generator of I1. Because m ∈ Iz,
we may calculate beg(m) and end(m) in Iz. If xmax(m) = xi for some i ≤ t,
then end(m) = 1 or end(m) = xmax(m). If xmax(m) = y, then end(m) = 1 or

end(m) = ykmz .

Proof. Suppose that xmax(m) = xi for some some i ≤ t, and that xjxi divides end(m).
Then mz

xjxi
∈ I. Applying the Borel move sending z to xj , we have m

xi
∈ I. Since this

monomial is not divisible by z, it is in I1, contradicting the assumption that m was
a minimal generator for I1. The proof in the other case is similar. �
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Proof of Theorem 7.3. We induct on the largest power of z appearing in a generator
of I. In the base case, I ⊂ k[x1, . . . , xt, y] is Borel. In general, recall the Mayer-
Vietoris sequence:

0→ I1 ∩ zIz → I1 ⊕ zIz → I1 + zIz → 0.

This simplifies to
0→ zI1 → I1 ⊕ zIz → I → 0,

which is isomorphic to

0→ I1(z−1)

(
z
−1

)
−→ I1 ⊕ Iz(z−1)

(
1 z

)
−→ I → 0.

I is resolved (nonminimally) by the mapping cone of this short exact sequence. We
will analyze the cancellations in this mapping cone, allowing us to reduce to the
minimal resolution. First, we introduce some extra notation.

By induction, a basis for the resolution of Iz is given by symbols of the form [m,α]
and [m,αykm ] for generators m of Iz. Above Iz(z

−1) in the mapping cone, we will
refer to these symbols as [zm,α] and [zm,αykm ].
I1 is Borel in k[x1, . . . , xt, y], so a basis for its resolution is given by the Eliahou-

Kervaire symbols [m,α]. Above I1 in the middle term of the Mayer-Vietoris se-
quence, we refer to this by its natural name [m,α]. Above I1(z−1), we will refer to
the symbol [m,α] as [z beg(m), α end(m)], where beginning and end are computed in
the ideal 1

z Iz. However, by Lemma 7.5, end(m) is divisible by at most one variable.

Since I1(z−1) has componentwise linear resolution, the only opportunity for can-
cellation in the mapping cone is in the lift of the map from I1(z−1) to Iz(z

−1). The
lift of this map sends the symbol [z beg(m), α end(m)] to (−1)1+degα end(m)[z beg(m), α]

if end(m) is not divisible by y, and to (−1)1+degα end(m)
ykmz

[z beg(m), αykmz ] if end(m)

is divisible by ykmz . In the first case, there is cancellation if and only if end(m) = 1,
i.e., if and only if m is a minimal generator for Iz. In the second case, there is can-
cellation if and only if end(m) = ykmz , i.e., if and only if m

ykmz
is a minimal generator

for Iz.
The uncancelled symbols fall into three categories:

(1): Symbols of the form [m,α] where z does not divide m, arising from the
resolution of I1 in the middle term.

(2): Symbols of the form [mz,α] or [mz,αykmz ] where m is a minimal generator
for Iz but not for I1, arising from the resolution of Iz in the middle term.

(3): Symbols of the form [z beg(m), α end(m)] where z does not divide m, and
m is a minimal generator for I1 but not for Iz, arising from the resolution
of I1 in the intersection term.

Observe that these categories are disjoint. Thus it suffices to show that if µ is a
monomial generator of I, and β is a squarefree monomial with max(β) � max(µ),
then [µ, β] and [µ, βykµ ] each fall in one of the three categories above.

If µ is not divisible by z, then set m = µ and α = β, and observe that [µ, β] =
[m,α] in the first category. In this case, [µ, βykµ ] is nonsensical.
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If µ is divisible by z, set ν = µ
z . If max(β) � max(ν), set m = ν and α = β and

observe that [µ, β] and [µ, βykµ ] are [mz,α] or [mz,αykmz ] from the second category.

If not, set m = νxmax(β) and α = β
xmax(β

, and observe that [µ, β] and [µ, βykµ ] are

[z beg(m), α end(m)] from the third category. �
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