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How to find a measure from its potential
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Abstract. We consider the problem of finding a measure from the given val-
ues of its logarithmic potential on the support. It is well known that a solution
to this problem is given by the generalized Laplacian. The case of our main
interest is when the support is contained in a rectifiable curve, and the mea-
sure is absolutely continuous with respect to the arclength on this curve. Then
the generalized Laplacian is expressed by a sum of normal derivatives of the
potential. Such representation was available for smooth curves, and we show
it holds for any rectifiable curve in the plane. We also relax the assumptions
imposed on the potential.

Finding a measure from its potential often leads to another closely related
problem of solving a singular integral equation with Cauchy kernel. The theory
of such equations is well developed for smooth curves. We generalize this
theory to the class of Ahlfors regular curves and arcs, and characterize the
bounded solutions on arcs.

Keywords. Potential, measure, boundary values, Cauchy singular integral,
integral equations.
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1. Logarithmic potentials in the complex plane

Let µ be a positive Borel measure with the compact support supp µ in the com-
plex plane C. Consider its logarithmic potential

u(z) :=

∫
log |z − t| dµ(t),(1.1)

which is a subharmonic function in C, see, e.g., Hayman and Kennedy [13] and
Ransford [25]. Furthermore, u is harmonic in C \ supp µ. Suppose that we know
the values of the potential function u on a certain set. How can one recover
the measure from those values? A general answer to this question is well known
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[13, 25] in terms of the generalized (distributional) Laplacian, and is a part of
the Riesz Representation Theorem for subharmonic functions (cf. Chapter 3 of
[13] and Section 3.7 of [25]).

Theorem A. Suppose that µ is a positive Borel measure with compact support
supp µ ⊂ C, whose potential u is defined by (1.1). Then the measure is repre-
sented by

dµ =
1

2π
∆ u,(1.2)

where ∆ is the generalized Laplacian.

While this theorem gives a very general answer, it is not always easy to apply
in specific problems. The generalized Laplacian may, in particular, take quite
different forms. The most known and natural case is when the generalized Lapla-
cian reduces to the regular one, under the additional C2 smoothness assumptions
on the potential u (see Theorem 1.3 in Saff and Totik [28, p. 85]).

Theorem B. If u has continuous second partial derivatives in a domain D ⊂ C,
then µ is absolutely continuous with respect to the area Lebesgue measure dxdy
in D, and

dµ(x, y) =
1

2π
∆ u(z) dxdy, z = x + iy ∈ D,(1.3)

where ∆ is the regular Laplacian.

We remark that the C2 assumption on u may be relaxed if one follows a standard
proof as given in [28], but uses a more general version of Green’s theorem found
in Shapiro [29] or Cohen [5] (see also Bochner [1]). In particular, it is sufficient
to assume in Theorem B that the second partial derivatives of u exist and are
integrable in D with respect to dxdy.

Another well known example of the generalized Laplacian is given by a sum of
points masses. If p(z) =

∏n
j=1(z − aj) is any polynomial and u(z) = log |p(z)|,

then µ =
∑n

j=1 δaj
, where δaj

is a unit point mass at aj ∈ C (cf. Theorem 3.7.8

in [25, p. 76]).

We are mostly interested in the case when µ is supported on a rectifiable curve
(or arc), and is absolutely continuous with respect to the arclength measure on
this curve. Then the form of the result expressed through the normal derivatives
of potential is also classical, while it is certainly difficult to find the original
source. We follow the statement of Theorem 1.5 in [28, p. 92].

Theorem C. Suppose that the intersection of supp µ with a domain D ⊂ C is a
simple C1+δ arc, δ > 0, with the left normal n+ and the right normal n−. If the
potential u is Lip 1 in a neighborhood of this arc then µ is absolutely continuous
with respect to the arclength ds on this arc and

dµ(s) =
1

2π

(
∂u

∂n+

(s) +
∂u

∂n−
(s)

)
ds.(1.4)
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Attempts to remove smoothness assumptions imposed on the curve go back to
Plemelj [18] and Radon [24], where the idea of flux of a potential along a curve
was introduced. This approach was further developed by Burago, Maz’ya and
Sapozhnikova [4], and by Burago and Maz’ya [3]. We show that (1.4) remains
valid for an arbitrary rectifiable curve, and also relax assumptions on the po-
tential u. In order to state our assumptions, we need to introduce the Smirnov
spaces of analytic and harmonic functions.

Let Γ ⊂ C be a closed Jordan rectifiable curve. The complement of Γ in C is
the union of a bounded Jordan domain D+ and an unbounded Jordan domain
D−. Consider a conformal mapping ψ : D→ D+, where D := {w : |w| < 1}, and
define the level curves Γr := {z = ψ(w) ∈ D+ : |w| = r}, 0 ≤ r < 1. A function
f analytic in D+ is said to belong to the Smirnov space Ep(D+), 1 ≤ p < ∞, if

sup
0≤r<1

∫

Γr

|f(z)|p |dz| < ∞,(1.5)

see Chapter 10 of Duren [9]. These spaces are natural analogs of the Hardy spaces
Hp on the unit disk D. Furthermore, f ∈ Ep(D+) if and only if f(ψ(w))(ψ′(w))1/p ∈
Hp, cf. [9, p. 169]. A function from Ep(D+) has nontangential limit values al-
most everywhere on Γ with respect to the arclength measure by Theorem 10.3 of
[9, p. 170], and these values are in Lp(Γ, ds). We similarly introduce the harmonic
Smirnov space ep(D+) that consists of harmonic functions in D+ satisfying (1.5).
Using a conformal mapping Ψ : D→ D−, we repeat the same steps to define the
corresponding spaces Ep(D−) and ep(D−) for the unbounded domain D−.

Assume that supp µ ⊂ Γ. Recall that the potential u is harmonic in C \ supp µ.
Hence its partial derivatives ux and uy are harmonic in C \ supp µ too. We say
that ∇u ∈ ep(D±) if both ux, uy ∈ ep(D+) and ux, uy ∈ ep(D−) hold. Let n+ be
the inner normal vector (pointing into D+), and n− be the outer normal vector
(pointing into D−) on Γ. The normal direction is well defined on Γ for almost
every point with respect to the arclength measure. Hence we can define the
directional derivatives ∂u/∂n+ in D+ and ∂u/∂n− in D−. The corresponding
boundary limit values for these normal derivatives exist a.e. on Γ, as we show in
the proof of the theorem stated below. Thus (1.4) is understood in the sense of
such boundary values.

Theorem 1.1. Let Γ ⊂ C be an arbitrary rectifiable Jordan curve. Suppose that
supp µ ⊂ Γ and u is the potential of µ defined by (1.1). If ∇u ∈ e1(D±) then µ
is absolutely continuous with respect to the arclength ds on Γ and (1.4) holds.

We present a “complex function theory” proof of Theorem 1.1 in Section 3, which
is based on the Cauchy transform of µ. It is possible to extend Theorem C by
following the conventional proof of [28], and by employing a version of Green’s
theorem from [29]. However, this gives a less general result than the one in
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Theorem 1.1. Note that if u is Lipschitz continuous in an open neighborhood G
of supp µ, then the partial derivatives of u are bounded on G\Γ by the Lipschitz
constant. But they are also bounded in a neighborhood of Γ\G, being harmonic
outside supp µ. Hence the assumptions of Theorem C imply that ux and uy are
bounded in both domains D+ and D− by the maximum principle. It immediately
follows that ∇u ∈ e1(D±), i.e. our assumption on u is indeed weaker.

We also remark that Theorem 1.1 has local nature, in fact. If the intersection
of supp µ with a domain G ⊂ C is a Jordan arc γ, then we write µ1 := µ|γ and
µ2 := µ|supp µ\γ. Hence

u(z) =

∫
log |z − t| dµ1(t) +

∫
log |z − t| dµ2(t),

and Theorem 1.1 is applicable to the first potential in the above equation for
recovering the measure on γ, provided u satisfies the assumptions. Note that
the second potential is harmonic in G, so that it gives no contribution to the
measure on γ by Theorem A (or B, or C).

One of the most natural applications for Theorem 1.1 is to the equilibrium poten-
tial of a compact set E ⊂ C. If E is not polar, then the equilibrium measure µE

exists and is a unique positive Borel measure of mass one, whose potential uE is
equal to a constant VE everywhere on E, with a possible exception of a polar sub-
set (cf. [13, 25]). Furthermore, if E := D+∪Γ is the closure of a Jordan domain,
then uE(z) = VE for all z ∈ E, and supp µE = Γ, see [13, 25] and Theorem B. Let
gE be the Green function of D−, with pole at infinity. Then uE(z) = VE + gE(z)
and gE(z) = log |Φ(z)|, z ∈ D−, where Φ : D− → {w : |w| > 1} is a conformal
map satisfying Φ(∞) = ∞. Since Φ ∈ E1(D−) for a rectifiable Γ, see [9, 11, 20],
we have that ∇uE = ∇gE ∈ e1(D−). Obviously, ∇uE = (0, 0) ∈ e1(D+), be-
cause uE is constant in this domain. Hence all assumptions of Theorem 1.1 are
satisfied. Also, ∂uE/∂n+ has zero boundary values a.e. on Γ and (1.4) takes the
following familiar form.

Example 1.2. Let E ⊂ C be the closure of a Jordan domain D+ bounded by
a rectifiable Jordan curve Γ. The equilibrium measure µE for E is absolutely
continuous with respect to the arclength measure ds on Γ, and

dµE =
1

2π

∂gE

∂n−
ds.

More examples of applications to the equilibrium measures for energy problems
with external fields may be found in [28, 8, 21, 22] (see also references therein).

The problem of finding a measure from its potential is of interest in higher
dimensions too. For example, consider a positive Borel measure σ compactly
supported in R3, and define its Newtonian potential by

U(x) :=

∫
d σ(y)

|x− y| , x ∈ R3,
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where |x − y| is the Euclidean distance between x, y ∈ R3. Clearly, U is super-
harmonic in R3 and harmonic in R3 \ supp σ, see [13] and [15]. If U ∈ C2(D) for
a domain D in R3, then an analog of Theorem B gives [15, p. 156]

dσ = − 1

4π
∆U dV,

where dV is the volume measure. When σ is supported on a sufficiently smooth
surface S, we have an analog of Theorem C [15, p. 164]

dσ = − 1

4π

(
∂U

∂n+

+
∂U

∂n−

)
dS,

where dS is the surface area measure, and n+, n− are the inner and the outer
normals to S. Clearly, one should be able to relax smoothness assumptions for
the surface S, but a natural analog of rectifiable curve (cf. Theorem 1.1) in this
setting is not obvious at all.

2. Singular integral equations with Cauchy kernel

Define the Cauchy transform of the measure µ by

Cµ(z) :=
1

2πi

∫
dµ(t)

t− z
, z ∈ C \ supp µ,

which is an analytic in C\supp µ function such that Cµ(∞) = 0. It is well known
that Cµ is closely related to the potential u of (1.1). Indeed, if we consider a
multivalued analytic function F (z) :=

∫
log(z − t) dµ(t), then u = <(F ) and

Cµ = −F ′ in C \ supp µ. In fact, these ideas are used in the proof of Theorem
1.1, see the argument beginning with (3.1). More discussion and history of such
relations may be found in Muskhelishvili [17] and Danilyuk [6], see also the work
of Plemelj [18, 19], Radon [24] and Bertrand [2].

Suppose that supp µ ⊂ Γ, where Γ is a Jordan rectifiable curve of length l. We
keep the same notation D+ for the bounded component of the complement of
Γ, and D− for the unbounded one. Let Γ be parametrized by z = z(s), where
s ∈ [0, l] is the arclength parameter and z′(s) is the unit tangent vector to the
curve. Recall that the tangent and normal vectors exist almost everywhere on
Γ with respect to the arclength measure. Assume further that µ is absolutely
continuous with respect to ds with the density f(z(s))z′(s), where f ∈ L1(Γ, ds).
Then we can consider the singular Cauchy integral of f defined by

Sf(z) :=
1

πi

∫

Γ

f(t)dt

t− z
= lim

ε→0

1

πi

∫

Γε(z)

f(t)dt

t− z
, z ∈ Γ,(2.1)

where Γε(z) := {t ∈ Γ : |t−z| ≥ ε}, i.e. the integral is understood as the Cauchy
principal value, cf. [17], [11] and [6]. Existence of Sf is subject to appropriate
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conditions on the function f and the curve Γ. For the Cauchy transform

Cf(z) =
1

2πi

∫

Γ

f(t) dt

t− z
, z ∈ C \ Γ,(2.2)

let Cf+(ζ) (respectively Cf−(ζ)) denote the nontangential limit value from D+

(respectively from D−) at a point ζ ∈ Γ. A classical and important result of
Privalov [23] gives connections between Sf and the boundary values of Cf .

Privalov’s Fundamental Lemma. The nontangential boundary limit values
Cf+ (or Cf−) exist a.e. on Γ if and only if Sf exists a.e. on Γ. Furthermore,
in the case of a.e. existence, the Plemelj-Sokhotski formulas

Cf+(z)− Cf−(z) = f(z) and Cf+(z) + Cf−(z) = Sf(z)(2.3)

hold for a.e. z ∈ Γ.

For the proof and thorough discussion of this result, we refer to [23, 11, 6].
If 1 < p < ∞, then another fundamental result of David [7] states that S :
Lp(Γ, ds) → Lp(Γ, ds) is a bounded operator if and only if Γ is Ahlfors regular.
The Ahlfors regularity condition means that there is a constant A > 0 such that
for any disk Dr of radius r we have

|Γ ∩Dr| ≤ Ar,

where |Γ∩Dr| is the length of the intersection. This class of curves is sufficiently
wide as it allows any angles (even cusps), see Chapter 7 of Pommerenke [20] for
more on geometry. A Jordan arc is said to be Ahlfors regular if it is a subarc of an
Ahlfors regular curve. In the sequel, we shall always make a natural assumption
that Γ is Ahlfors regular, to insure the a.e. existence of Sf ∈ Lp(Γ, ds) for f ∈
Lp(Γ, ds), and the validity of (2.3). If f belongs to the class Hα(Γ), 0 < α < 1,
of Hölder continuous functions on Γ, then Sf ∈ Hα(Γ) for Ahlfors regular Γ.
This generalization of the Plemelj-Privalov theorem was proved by Salaev [26].
A complete description of curves that allow the Cauchy singular operator to
preserve moduli of continuity is contained in Guseinov [12].

Singular integral equations with Cauchy kernel arise naturally in the problem of
finding a measure from its potential. For example, the equation

Sf(z) =
1

πi

∫

Γ

f(t) dt

t− z
= g(z)(2.4)

was used repeatedly to find the weighted equilibrium measures in [28, 8, 16, 21,
22] and many other papers. Here, the function g is either obtained by differenti-
ation of the known values for the potential u on the support of µ, or found from
the Plemelj-Sokhotski formula (2.3) as g(z) = Cf+(z) + Cf−(z). The solution of
(2.4) for a closed contour Γ is well known (see, e.g., [17, §27]), and represents
the self-inversive property of the operator S.
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Proposition 2.1. Suppose that Γ is an Ahlfors regular closed Jordan curve, and
that g ∈ Lp(Γ, ds), 1 < p < ∞. The equation Sf = g on Γ has the unique
solution f = Sg ∈ Lp(Γ, ds).

In many applications to recovering a measure from its potential, (2.4) holds
on the support of the measure, which may be different from a closed curve.
A rather common situation is when the support consists of several arcs, see
[28, 8, 16, 21, 22]. Let L := ∪N

j=1γ(aj, bj) be the union of N disjoint Ahlfors

regular arcs γ(aj, bj) with endpoints aj and bj. For a function f ∈ L1(L, ds), we
define the Cauchy singular integral operator SLf on L similarly to (2.1). We
can assume that L ⊂ Γ, where Γ is an Ahlfors regular closed Jordan curve with
interior D+ and exterior D−. It is always possible to extend f from L to Γ by
letting f(z) = 0, z ∈ Γ \ L, and view the operator SL as a restriction of S, by
setting SLf = Sf for f ∈ L1(Γ, ds), f |Γ\L ≡ 0. Hence Privalov’s Fundamental
Lemma and many other facts easily carry over to the case of SL.

For R(z) :=
∏N

j=1(z − aj)(z − bj), we consider the branch of
√

R(z) defined in

the domain C \ L by limz→∞
√

R(z)/zN = 1. By the values of
√

R(z) on L,
we understand the boundary limit values from D+. A general solution of the
equation SLf = g for Hölder continuous g on smooth arcs was first found by
Muskhelishvili [17, Chap. 11]. The case of Lp solutions was later considered by
Hvedelidze [14]. We generalize their ideas to prove the following.

Theorem 2.2. Let L := ∪N
j=1γ(aj, bj) be a union of disjoint Ahlfors regular arcs,

and let R(z) :=
∏N

j=1(z − aj)(z − bj). If g ∈ Lp(L, ds), 2 < p < ∞, then any

solution of the equation SLf = g in L1(L, ds) has the form

f(z) =
1

πi
√

R(z)

∫

L

g(t)
√

R(t) dt

t− z
+

PN−1(z)√
R(z)

a.e. on L,(2.5)

where PN−1 ∈ CN−1[z].

Here, CN−1[z] denotes the set of polynomials with complex coefficients of degree
at most N − 1.

It is of interest that certain solutions may also be written in a different form.

Corollary 2.3. Let L and g be as in Theorem 2.2. The function

f0(z) =

√
R(z)

πi

∫

L

g(t) dt√
R(t)(t− z)

, z ∈ L,(2.6)

is a solution of SLf = g in L1(L, ds) if and only if
∫

L

tkg(t) dt√
R(t)

= 0, k = 0, . . . , N − 1.(2.7)
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If the right hand side of the equation SLf = g is Hölder (or Dini) continuous,
then the continuity properties are also preserved for the solutions, provided that
we stay away from the endpoints of L. This follows from the corresponding results
for the operator S on closed contours, see [26, 12].

Corollary 2.4. Let L be as in Theorem 2.2. If g ∈ Hα(L), 0 < α < 1, then for
any compact set E ⊂ L\{aj, bj}N

j=1 the general solution (2.5) belongs to Hα (E) .

It is important for applications to find the bounded solution of the equation
SLf = g, and describe conditions for its existence. For example, bounded solu-
tions play a special role in finding the weighted equilibrium measures for “good”
weights [28, 8, 16, 21, 22].

Corollary 2.5. Assume that L satisfies the conditions of Theorem 2.2, and that
g ∈ Hα(L), α > 0. A bounded solution f0 ∈ L∞(L, ds) for SLf = g exists if and
only if (2.7) holds true.

Furthermore, if (2.7) is satisfied, then

f0(z) =

√
R(z)

πi

∫

L

g(t) dt√
R(t)(t− z)

, z ∈ L,(2.8)

where f0 ∈ C(L) and f0(aj) = f0(bj) = 0, j = 1, . . . , N.

Several applications of Corollary 2.5 on arcs of the unit circle may be found
in [22], see Theorems 1.5, 2.1 and 2.2. In particular, those results describe
the explicit forms of equilibrium measures with external fields defined by the
exponential and polynomial weights.

3. Proofs

Proof of Theorem 1.1. Let v+ be a harmonic conjugate of u in D+, so that
F+ := u + iv+ is analytic in D+. By the Cauchy-Riemann equations, we have
ux(z) = v+

y (z) and uy(z) = −v+
x (z) for all z ∈ D+. Hence v+

x , v+
y ∈ e1(D+) and

F ′
+ = ux + iv+

x ∈ E1(D+). It immediately follows that the nontangential limit
values of F ′

+ exist almost everywhere on Γ with respect to the arclength measure,
and the same is true for ux, uy, v

+
x , v+

y . Since Γ is rectifiable, the tangent and
normal vectors exist at almost every z ∈ Γ. Therefore, for almost every z ∈ Γ,
we simultaneously have the normal vector and the nontangential limit values for
ux and uy. If n+ = (− sin θ, cos θ) is the inner unit normal (pointing inside D+)
at such a point z, then the derivative in the direction n+ at any point ζ ∈ D+ is
∂u/∂n+(ζ) = −ux sin θ + uy cos θ. Thus we can define the limit boundary values
of ∂u/∂n+(z) for a.e. z ∈ Γ and

∫

Γ

∣∣∣∣
∂u

∂n+

(z(s))

∣∣∣∣ ds ≤
∫

Γ

|ux(z(s))| ds +

∫

Γ

|uy(z(s))| ds < ∞.
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Applying the same argument to a conjugate v− and the analytic completion
F− := u+iv− for u in D−, we obtain that F ′

− ∈ E1(D−) and ∂u/∂n− ∈ L1(Γ, ds).
Note that F− is multi-valued, in general, but F ′

− is single-valued.

The Cauchy-Riemann equations imply, after passing to the boundary values, that

∂u

∂n+

(z) = −∂v+

∂s
(z) and

∂u

∂n−
(z) =

∂v−

∂s
(z) for a.e. z ∈ Γ.

Therefore, we have a.e. on Γ that

∂u

∂n+

(z) +
∂u

∂n−
(z) =

∂v−

∂s
(z)− ∂v+

∂s
(z) = =

(
∂F−
∂s

(z)− ∂F+

∂s
(z)

)
(3.1)

= = (
[F ′
−(z)− F ′

+(z)]z′(s)
)
,

where z′(s) is the unit tangent vector to Γ at z(s).

Introducing the multivalued function
∫

log(z − t) dµ(t) with the real part u(z),
we observe that F+ and F− are branches of this function and

F ′
±(z) =

∫
dµ(t)

z − t
, z ∈ D±.

Consider the Cauchy transform of µ

Cµ(z) =
1

2πi

∫
dµ(t)

t− z
, z ∈ C \ supp µ.

Since 2πiCµ(z) = −F ′
±(z), z ∈ D±, the nontangential limit values Cµ+ from

D+ and Cµ− from D− exist a.e. on Γ. The Fundamental Lemma of Privalov on
the Cauchy singular integral for measures (cf. Privalov [23, pp. 183-189] and
Danilyuk [6, pp. 118-125]) gives that the Plemelj-Sokhotski formula

[Cµ+(z(s))− Cµ−(z(s))]z′(s) =
dµ

ds
(s)

holds a.e. on Γ, where dµ/ds is the density of the absolutely continuous part of
µ. Note that the right hand side is real. It now follows from (3.1) that

1

2π

(
∂u

∂n+

(z(s)) +
∂u

∂n−
(z(s))

)
= [Cµ+(z(s))− Cµ−(z(s))]z′(s) a.e. on Γ.

Let ν be the measure supported on Γ, which is absolutely continuous with respect
to ds, and whose density is defined by the left hand side of the above equation (cf.
(1.4)). We shall show that µ = ν. Recall that F ′

+ ∈ E1(D+) and F ′
− ∈ E1(D−)

with F ′
−(∞) = 0. Using Cauchy’s integral formula, we obtain by Theorem 10.4

of [9, p. 170] that
∫

dν(t)

t− z
=

∫

Γ

(Cµ+(t)− Cµ−(t))dt

t− z
=

1

2πi

∫

Γ

(F ′
−(t)− F ′

+(t))dt

t− z

= −F ′
±(z) = 2πi Cµ(z), z ∈ D±.
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Hence the Cauchy transforms of ν and µ coincide, i.e.,∫
d(ν − µ)(t)

t− z
= 0, z ∈ D±.

Expanding 1/(t− z) in a series of negative powers of z around z = ∞, we obtain
in a standard way that∫

tn d(ν − µ)(t) = 0, n = 0, 1, 2, . . . .

Similarly, expanding the kernel 1/(t− z) near a fixed point z0 ∈ D+, we have∫
d(ν − µ)(t)

(t− z0)n
= 0, n ∈ N.

But the span of the function system {tn}∞n=0

⋃{(t− z0)
−n}∞n=1 is dense in C(Γ),

see Chapter 3, §1 of Gaier [10]. Hence∫
f(t) d(ν − µ)(t) = 0,

for any continuous function f on Γ. Since ν − µ is orthogonal to all continuous
functions on its support, it must vanish identically.

Proof of Proposition 2.1. Observe that for g ∈ Lp(Γ, ds) we also have that
Sg ∈ Lp(Γ, ds) by [7]. Hence we have from (2.3) that Cg+ − Cg− = g and
Cg+ + Cg− = Sg a.e. on Γ. Note that the function H+(z) := Cg(z), z ∈ D+,
is analytic in D+ and has the boundary values Cg+ ∈ Lp(Γ, ds). It follows that
H+ ∈ Ep(D+) and we obtain by Theorem 10.4 of [9] that

C(Cg+)(z) =
1

2πi

∫

Γ

Cg+(t) dt

t− z
=

{
H+(z), z ∈ D+,
0, z ∈ D−.

(3.2)

Thus we also have for H−(z) := Cg(z), z ∈ D−, that H− ∈ Ep(D−) and
H−(∞) = 0. Hence

C(Cg−)(z) =
1

2πi

∫

Γ

Cg−(t) dt

t− z
=

{ −H−(z), z ∈ D−,
0, z ∈ D+,

(3.3)

where the integral is taken in the positive direction with respect to D+.

Applying (2.3) to h := Sg, we have that Ch+ −Ch− = h and Ch+ + Ch− = Sh
a.e. on Γ, where Sh ∈ Lp(Γ, ds). Consider the Cauchy transform Ch(z) for
z ∈ D+ and use (3.2)-(3.3) to evaluate

Ch(z) =
1

2πi

∫

Γ

Sg(t) dt

t− z
=

1

2πi

∫

Γ

(Cg+(t) + Cg−(t)) dt

t− z
= H+(z).

Similarly, we obtain for z ∈ D− :

Ch(z) =
1

2πi

∫

Γ

Sg(t) dt

t− z
=

1

2πi

∫

Γ

(Cg+(t) + Cg−(t)) dt

t− z
= −H−(z).
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Hence Sh = Ch+ + Ch− = Cg+ − Cg− = g a.e. on Γ, so that h = Sg is a
solution. This also implies that S2g = S(Sg) = g for any g ∈ Lp(Γ, ds). If we
assume that there are two solutions f1 and f2, then applying S to Sf1 = Sf2 = g
gives f1 = f2 = Sg.

For the proof of Theorem 2.2, we need a lemma that describes all solutions of
the homogeneous equation SLf = 0 on L. It follows from the lemma below that
the kernel of the operator SL has dimension N , while the kernel of S is trivial in
the case of a closed curve, by the previous proof.

Lemma 3.1. Let L := ∪N
j=1γ(aj, bj) be a union of disjoint Ahlfors regular arcs,

and let R(z) :=
∏N

j=1(z − aj)(z − bj). All solution of the equation SLf = 0 in

L1(L, ds) are given by the functions f = PN−1/
√

R, where PN−1 ∈ CN−1[z].

Proof. For any PN−1 ∈ CN−1[z], we first show that

(3.4)
1

πi

∫

L

PN−1(t) dt

(t− z)
√

R(t)
=

{
0 for a.e. z ∈ L,

PN−1(z)/
√

R(z), z ∈ C \ L,

where the integral is understood in the Cauchy principal value sense for z ∈ L.
Let h(z) = PN−1(z)/

√
R(z), z ∈ C\L. It is clear that the limit values of

√
R(z)

as z tends to ζ ∈ L from D+ and from D− are negatives of each other. Hence
the boundary limit values of h on L satisfy

(3.5) h+(ζ) = h(ζ) = −h−(ζ) for a.e. ζ ∈ L.

Consider a contour Λ which consists of N simple closed curves, one around each
of the arcs γ(aj, bj). Then

1

2πi

∫

Λ

h(t)

t− z
dt = h(z)

for z in the exterior of Λ, and the integral equals zero for z ∈ L. If we take
z ∈ C \ L and shrink Λ to L, then

h(z) =
1

πi

∫

L

h(t)

t− z
dt, z ∈ C \ L,

by (3.5). Using Privalov’s Fundamental Lemma, we obtain that

SLh(z) =
1

πi

∫

L

h(t)

t− z
dt =

h+(z)

2
+

h−(z)

2
for a.e. z ∈ L.

But the right hand side is zero for a.e. z ∈ L by (3.5), and (3.4) is proved.

Thus we showed that every function h = PN−1/
√

R is a solution of the equation
SLf = 0.

Suppose now that f satisfies SLf(z) = 0 for a.e. z ∈ L. Then (2.3) gives that

(3.6) CLf+ + CLf− = 0 and CLf+ − CLf− = f a.e. on L,
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where

CLf(z) :=
1

2πi

∫

L

f(t)

t− z
dt, z ∈ C \ L.

It follows from the first equation of (3.6) that (
√

R CLf)+− (
√

R CLf)− = 0 and

(
√

R CLf)+ = (
√

R CLf)− a.e. on L. Clearly, these boundary values belong to
L1(L, ds) by (3.6). This allows us to show in the usual way that the integral of√

R CLf over any closed contour (even intersecting L) is zero. Hence the analytic

in C \ L function
√

R CLf can be continued analytically to the whole C by a

Morera-type theorem of Zalcman [30, Th. 1]. Observe that
√

R(z) CLf(z) =
O

(
zN−1

)
as z → ∞, which implies that this function is a polynomial PN−1 ∈

CN−1[z]. Finally, we apply the second equations of (3.6) and of (3.4) to find that

f(z) = CLf+(z)− CLf−(z) =
1

2

PN−1(z)√
R(z)

+
1

2

PN−1(z)√
R(z)

=
PN−1(z)√

R(z)

for a.e. z ∈ L.

Proof of Theorem 2.2. Consider the function

f0(z) =
1

πi
√

R(z)

∫

L

g(t)
√

R(t) dt

t− z
=

SL(g
√

R)(z)√
R(z)

, z ∈ L,

which is obtained from (2.5) by setting PN−1 ≡ 0. We proceed by first proving

that f0 is a solution of SLf = g. Since g
√

R ∈ Lp(L, ds), 2 < p < ∞, we also have

that SL(g
√

R) ∈ Lp(L, ds), see [7]. It is not difficult to see that 1/
√

R ∈ Lq(L, ds)
for all q < 2 (cf. [27], for example). Using Hölder’s inequality, we immediately
conclude that f0 ∈ Lr(L, ds) for some r > 1. Hence SLf0 ∈ Lr(L, ds). Consider
the analytic function

F (z) :=
1

2πi

∫

L

g(t)
√

R(t) dt

t− z
= CL(g

√
R)(z), z ∈ C \ L.

The Plemelj-Sokhotski formulas (2.3) read in this case

F+ − F− = g
√

R and F+ + F− = f0

√
R a.e. on L.

If we define Φ(z) := F (z)/
√

R(z), z ∈ C \ L, and use (
√

R)+(z) =
√

R(z) =

−(
√

R)−(z), z ∈ L, then we obtain

Φ+ + Φ− = g and Φ+ − Φ− = f0 a.e. on L.(3.7)

But we also have (CLf0)+ − (CLf0)− = f0 a.e. on L for the Cauchy transform
of f0, see (2.3). It follows that the function H := Φ− CLf0 is analytic in C \ L,
with H(∞) = 0, and satisfies H+ −H− = 0 a.e. on L. We can now argue in the
same way as in Lemma 3.1, and use a Morera-type theorem [30] to deduce that
H can be continued to an entire function. Thus this function is identically 0 in



00 (0000), No. 0 How to find a measure from its potential 13

C by Liouville’s theorem. Since Φ = CLf0 in C \ L, we have by (2.3) and (3.7)
that

SLf0 = (CLf0)+ + (CLf0)− = Φ+ + Φ− = g a.e. on L.

If f is any solution of SLf = g, then h = f − f0 is a solution of the homogeneous
equation SLh = 0. Hence it has the form h = PN−1/

√
R by Lemma 3.1.

Proof of Corollary 2.3. We shall compute the Cauchy transform of f0 to show
that f0 always satisfies a certain modified integral equation, which is found below.
Consider

CLf0(z) =
1

2πi

∫

L

f0(t) dt

t− z
, z ∈ C \ L,

and define

Ψ(z) :=

√
R(z)

2πi

∫

L

g(t) dt√
R(t)(t− z)

=
√

R(z) CL(g/
√

R)(z), z ∈ C \ L.

Since (
√

R)+ =
√

R = −(
√

R)− on L and SL(g/
√

R) = CL(g/
√

R)++CL(g/
√

R)−
a.e. on L by (2.3), we have that

f0 =
√

R SL(g/
√

R) =
√

R CL(g/
√

R)+ +
√

R CL(g/
√

R)−(3.8)

= Ψ+ −Ψ−

holds a.e. on L. Passing to the contour integral over both sides of the cut L in
the plane, we obtain

CLf0(z) =
1

2πi

∫

L

(Ψ+(t)−Ψ−(t)) dt

t− z
=

1

2πi

∮

L

Ψ(t) dt

t− z
, z ∈ C \ L.

Let Λ be a contour consisting of N simple closed curves, one around each of the
arcs of L, such that z is outside Λ. Cauchy’s integral theorem and the definition
of Ψ give that

CLf0(z) =
1

2πi

∫

Λ

Ψ(t) dt

t− z
=

1

2πi

∫

Λ

√
R(t)

t− z

(
1

2πi

∫

L

g(w) dw√
R(w)(w − t)

)
dt

=
1

2πi

∫

L

g(w)√
R(w)

(
1

2πi

∫

Λ

√
R(t) dt

(t− z)(w − t)

)
dw.

Next, we use residues at z and at∞ to evaluate the inner integral. For the residue
at z, we immediately obtain

√
R(z)/(w − z). Writing

√
R(t) = Q(t) + O(1/t)

near infinity, where Q(t) is a polynomial of degree N , it follows that
√

R(t)

t− z
= Q(z, t) + O

(
1

t

)
as t →∞,
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with

Q(z, t) :=
Q(z)−Q(t)

z − t
.(3.9)

Note that Q(z, t) is a polynomial in both variables z and t, of degree N − 1.
Hence the residue at infinity for the inner integral is equal to Q(z, w), and we
obtain that

1

2πi

∫

Λ

√
R(t) dt

(t− z)(w − t)
=

√
R(z)

w − z
+ Q(z, w).

Finally,

CLf0(z) =

√
R(z)

2πi

∫

L

g(w) dw√
R(w) (w − z)

+
1

2
P (z), z ∈ C \ L,

where

P (z) :=
1

πi

∫

L

g(w)Q(z, w) dw√
R(w)

(3.10)

is a polynomial of degree at most N − 1. Recall that (
√

R)+ =
√

R = −(
√

R)−
on L and g/

√
R = CL(g/

√
R)+ − CL(g/

√
R)− a.e. on L by (2.3). Thus

(CLf0)+ + (CLf0)− =
√

R
(
CL(g/

√
R)+ − CL(g/

√
R)−

)
+ P = g + P

a.e. on L. On the other hand, (2.3) directly gives that

(CLf0)+ + (CLf0)− = SLf0

a.e. on L. We established in this manner that f0 satisfies the modified integral
equation

SLf0 = g + P,(3.11)

where P is defined by (3.10). Obviously, f0 is a solution of the original equation
SLf = g if and only if P ≡ 0. Thus it remains to show that the vanishing of P
is equivalent to (2.7). Observe from (3.9) that

Q(z, t) = q0(t)z
N−1 + q1(t)z

N−2 + . . . + qN−1(t),

where each qk is a monic polynomial of degree k. Then P ≡ 0 is equivalent to
the system

1

2πi

∫

L

g(w)qk(w) dw√
R(w)

= 0, k = 0, . . . , N − 1,

by (3.10). Noting that the polynomials qk are linearly independent, we conclude
that the above system in equivalent to (2.7).
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Proof of Corollary 2.4. It is clear that (2.5) may be written in the form

f =
SL(g

√
R)√

R
+

PN−1√
R

,

where PN−1 ∈ CN−1[z]. Let E ⊂ L \ {aj, bj}N
j=1 be compact. In order to prove

that f ∈ Hα (E) , it is sufficient to show that SL(g
√

R) ∈ Hα (E) . The function

G := g
√

R ∈ Hα (L) can be continued to a function G̃ ∈ Hα (Γ) , where Γ is a
closed Ahlfors regular curve, so that SG̃ ∈ Hα (Γ) by [26, 12]. But the Cauchy
singular integral S of G̃|Γ\L is analytic at every z ∈ E. Thus it follows that
SLG ∈ Hα (E) .

Lemma 3.2. Let L = ∪N
j=1γ(aj, bj) be a union of disjoint Ahlfors regular arcs.

If g ∈ Hα(L), α > 0, then the function f0 defined in (2.6) is continuous on L,
and f0(aj) = f0(bj) = 0, j = 1, . . . , N.

Proof. We observe that f0 =
√

R SL(g/
√

R), and that g/
√

R is Hölder continu-
ous on any compact set E ⊂ L that does not include the endpoints of L. Using a
similar argument with continuation to a Hölder continuous function on the closed
curve Γ, such as in the above proof of Corollary 2.4, we conclude that SL(g/

√
R)

is also Hölder continuous on E. Hence we now need to analyze the behavior
of SL(g/

√
R) near the endpoints of L. This analysis was already carried out in

Chapter 4 of [17] for smooth (or piecewise smooth) L. Since the argument is
rather technical, and requires relatively small adjustments for the case of Ahlfors
regular L, we do not reproduce it here. In particular, it is shown in [17] (see
equations (29.8) and (29.9) on page 75) and in [27] that

SL(g/
√

R)(z) = G(z)/|z − c|β, β < 1/2,

for z ∈ L near any of the endpoints c of L, where G is Hölder continuous on L.
It is immediate that

f0(z) = G(z) |z − c|1/2−β

for z ∈ L near c, so that f0 is Hölder continuous on L and f(aj) = f(bj) = 0, j =
1, . . . , N.

Proof of Corollary 2.5. Suppose that there exists a bounded function f that
satisfies SLf = g on L. We know from the proof of Corollary 2.3 that f0 defined
in (2.6) satisfies the equation SLf0 = g + P on L, where P is a polynomial of
degree at most N − 1, see (3.10)-(3.11). Defining h := f0 − f, we readily have
that SLh = P. It will be shown below that h ≡ 0, so that P ≡ 0 and SLf0 = g.
But then (2.7) holds by Corollary 2.3.
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Consider the equation SLh = P. All solutions of this equation are described by
(2.5):

h(z) =
1

πi
√

R(z)

∫

L

P (t)
√

R(t) dt

t− z
+

PN−1(z)√
R(z)

a.e. on L,(3.12)

where PN−1 ∈ CN−1[z] is arbitrary. We evaluate the integral SL(P
√

R) in the
above formula by following an idea used in the proof of Corollary 2.3. Recall
that (

√
R)+ =

√
R = −(

√
R)− on L and SL(P

√
R) = CL(P

√
R)+ + CL(P

√
R)−

a.e. on L by (2.3). We find the Cauchy transform CL(P
√

R) by passing to the
contour integral over both sides of the cut L in the plane. This yields

CL(P
√

R)(z) =
1

2πi

∫

L

P (t)
√

R(t) dt

t− z
=

1

4πi

∮

L

P (t)
√

R(t) dt

t− z
, z ∈ C \ L,

where in the second integral we have the boundary limit values of P (t)
√

R(t) on
L (from C\L). Let Λ be again a contour consisting of N simple closed curves, one
around each of the arcs of L, such that z is outside Λ. Using Cauchy’s integral
theorem, we obtain that

CL(P
√

R)(z) =
1

4πi

∫

Λ

P (t)
√

R(t) dt

t− z
, z ∈ C \ L.

The latter integral is found by evaluating the residues of the integrand at z and
at ∞. The residue at z is clearly equal to P (z)

√
R(z)/2. Writing P (t)

√
R(t) =

T (t)+O(1/t) near infinity, where T (t) is a polynomial of degree at most 2N −1,
we find that the residue at ∞ is equal to T (z)/2. Hence

CL(P
√

R)(z) =
P (z)

√
R(z)

2
+

T (z)

2
, z ∈ C \ L,

and (2.3) gives

SL(P
√

R)(z) = T (z), z ∈ L,

because (P
√

R)+ = −(P
√

R)− on L. Returning to (3.12), we have

h(z) =
T (z) + PN−1(z)√

R(z)
a.e. on L.

Note that the numerator is a polynomial of degree 2N−1, which has to vanish at
2N endpoints of L in order for h to be bounded on L. Therefore, this polynomial
is identically zero, with immediate implications that h ≡ 0, f0 ≡ f , P ≡ 0 and
SLf0 = g. Thus (2.7) holds by Corollary 2.3, and we showed that f0 is the unique
bounded solution of SLf = g.

Conversely, assume that (2.7) is satisfied. Corollary 2.3 shows that f0 of (2.8)
(or of (2.6)) is a solution of SLf = g. Applying Lemma 3.2, we obtain that f0 is
continuous on L, and it vanishes at the endpoints of L. Hence it is bounded on
L, and the uniqueness of such solution follows from the first part of this proof.
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