Please give complete and clearly written solutions.

1. (20 points) Determine the second-order Taylor formula for

\[f(x, y) = \sin(xy) + \cos(xy) \]

near \((0, 0)\).

Recall that the second-order Taylor formula is given by

\[
f(x, y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) \]

\[
+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(x_0, y_0)(x - x_0)^2 + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)(y - y_0)^2 \right) \]

\[
+ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)(x - x_0)(y - y_0) + \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)(y - y_0)(x - x_0) \]

\[+ R_2(x, y), \]

where \((x_0, y_0) = (0, 0)\). Computing the necessary partial derivatives, we obtain

\[
\frac{\partial f}{\partial x} = y \cos(xy) - y \sin(xy), \quad \frac{\partial f}{\partial y} = x \cos(xy) - x \sin(xy) \]

\[
\frac{\partial^2 f}{\partial x^2} = -y^2 \sin(xy) - y^2 \cos(xy), \quad \frac{\partial^2 f}{\partial y^2} = -x^2 \sin(xy) - x^2 \cos(xy) \]

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \cos(xy) - x y \sin(xy) - \sin(xy) - x y \cos(xy) \]

(Note that \(f \in C^2\), which implies that mixed partials are equal). It follows that

\[
f(x, y) = 1 + \frac{1}{2} \cdot 2 \cdot (x - 0)(y - 0) + R_2(x, y) = 1 + xy + R_2(x, y). \]
2. (20 points) Find all critical points of

\[f(x, y) = 3x^2 + 2xy + 2x + y^2 + y + 2, \]

and classify them as local minima, maxima or saddle points. State the theorem that is used in this problem.

In order to find the critical points of \(f \), we need to solve the system of equations:

\[
\frac{\partial f}{\partial x} = 6x + 2y + 2 = 0 \quad \frac{\partial f}{\partial y} = 2x + 2y + 1 = 0
\]

Subtracting the second equation from the first one, we obtain that \(4x + 1 = 0 \), i.e., \(x = -1/4 \) and \(y = -1/4 \). Thus there exists just one critical point for this function. We analyze it by Theorem 6 on page 198 of your textbook:

\[
(i) \quad \frac{\partial f}{\partial x}(-1/4, -1/4) = \frac{\partial f}{\partial y}(-1/4, -1/4) = 0
\]

\[
(ii) \quad \frac{\partial^2 f}{\partial x^2} = 6 > 0
\]

\[
(iii) \quad D = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 = 6 \cdot 2 - 2^2 > 0
\]

We conclude that \((-1/4, -1/4)\) is the strict local minimum, with \(f(-1/4, -1/4) = 13/8 \).
3. (20 points) Find the absolute maximum and minimum of the function

\[f(x, y) = x^2 - xy + y^2 \]

on the unit disk \(D = \{ (x, y) | x^2 + y^2 \leq 1 \} \). Use the method of Lagrange multipliers to locate the maximum and minimum points of \(f \) on the boundary of \(D \).

We first look for the critical points of \(f \) inside of \(D \):

\[
\frac{\partial f}{\partial x} = 2x - y = 0 \quad \frac{\partial f}{\partial y} = -x + 2y = 0.
\]

Solving this system, one finds that \(x = 0 \) and \(y = 0 \). Hence \((0,0)\) is the only critical point inside.

Next we locate the extrema of \(f \) on the boundary of \(D \), which is defined by the constraint \(g(x, y) = x^2 + y^2 = 1 \). Using the method of Lagrange multipliers, we obtain

\[\nabla f = \lambda \nabla g \quad \text{or} \quad (2x - y, -x + 2y) = \lambda (2x, 2y). \]

Consequently,

\[2x - y = \lambda 2x \quad \text{and} \quad -x + 2y = \lambda 2y. \]

Adding the equations, we have \(x + y = 2\lambda (x + y) \), i.e., \((x + y)(2\lambda - 1) = 0\). Thus either

(a) \(\lambda = 1/2 \) or (b) \(y = -x \).

(a) If \(\lambda = 1/2 \) then \(y = x \), so that \(x^2 + y^2 = 2x^2 = 1 \). This gives the points \((1/\sqrt{2}, 1/\sqrt{2})\) and \((-1/\sqrt{2}, -1/\sqrt{2})\).

(b) If \(y = -x \) then \(x^2 + y^2 = 2x^2 = 1 \) again, which gives two additional points \((1/\sqrt{2}, -1/\sqrt{2})\) and \((-1/\sqrt{2}, 1/\sqrt{2})\). Evaluating \(f \) at all five found points, we choose the largest value for the absolute maximum and the smallest value for the absolute minimum on \(D \):

\[
\begin{align*}
 f(1/\sqrt{2}, 1/\sqrt{2}) &= f(-1/\sqrt{2}, -1/\sqrt{2}) = 1/2, \\
 f(-1/\sqrt{2}, 1/\sqrt{2}) &= f(1/\sqrt{2}, -1/\sqrt{2}) = 3/2 \quad (\text{abs. max.}), \\
 f(0, 0) &= 0 \quad (\text{abs. min.})
\end{align*}
\]
4. (20 points)
(a) Find the length of the path \(c(t) = (\sqrt{3} \cos t, \sqrt{3} \sin t, t), \) where \(\pi \leq t \leq 3\pi. \)
(b) Find the path integral
\[
\int_{c} e^{z} ds
\]
along the path \(c(t) = (5, -9, t^2), \quad t \in [0, \sqrt{\ln 4}]. \)

(a) Recall that the length of a path \(c(t) = (x(t), y(t), z(t)), \quad t \in [t_0, t_1], \) is given by
\[
L = \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt.
\]
Thus
\[
L = \int_{\pi}^{3\pi} \sqrt{(-\sqrt{3} \sin t)^2 + (\sqrt{3} \cos t)^2 + 1^2} \, dt = \int_{\pi}^{3\pi} \sqrt{3(\sin^2 t + \cos^2 t) + 1} \, dt
\]
\[
= \int_{\pi}^{3\pi} 2 \, dt = 4\pi.
\]
(b)
\[
\int_{c} e^{z} ds = \int_{0}^{\sqrt{\ln 4}} e^{t^2} \| c'(t) \| \, dt = \int_{0}^{\sqrt{\ln 4}} e^{t^2} \sqrt{0^2 + 0^2 + (2t)^2} \, dt
\]
\[
= \int_{0}^{\sqrt{\ln 4}} e^{t^2} 2t \, dt = e^{\sqrt{\ln 4}} - e^{0} = e^{\ln 4} - e^{0} = 4 - 1 = 3.
\]
5. (20 points) Calculate the divergence and the curl of the vector field

\[\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}. \]

Is this a gradient vector field? Is this an irrotational vector field? Explain.

We only need to remember the formulas:

\[
\text{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = y + z + x.
\]

\[
\text{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_1 & F_2 & F_3
\end{vmatrix}
= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}
= (0 - y)\mathbf{i} + (0 - z)\mathbf{j} + (0 - x)\mathbf{k} = -y\mathbf{i} - z\mathbf{j} - x\mathbf{k}.
\]

Since \(\text{curl} \mathbf{F} \neq 0 \), this field is neither gradient (see Theorem 1 on page 280) nor irrotational.