Selected Theorems for Test 2

We use the standard notation \(s = \sum_{n=1}^{\infty} a_n, \) \(s_n = \sum_{k=1}^{n} a_k \) and \(R_n = s - s_n = \sum_{k=n+1}^{\infty} a_k. \)

The Integral Test Suppose that \(f \) is a continuous positive decreasing function on \([1, \infty)\), and let \(a_n = f(n) \). The series \(\sum_{n=1}^{\infty} a_n \) is convergent if and only if the improper integral \(\int_{1}^{\infty} f(x) \, dx \) is convergent. Furthermore, if the integral is convergent, then

\[
\int_{n+1}^{\infty} f(x) \, dx \leq R_n \leq \int_{n}^{\infty} f(x) \, dx.
\]

The Comparison Test Assume that \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are series with positive terms.

(i) If \(\sum_{n=1}^{\infty} b_n \) is convergent and \(a_n \leq b_n \) for all \(n \), then \(\sum_{n=1}^{\infty} a_n \) is also convergent.

(ii) If \(\sum_{n=1}^{\infty} b_n \) is divergent and \(a_n \geq b_n \) for all \(n \), then \(\sum_{n=1}^{\infty} a_n \) is also divergent.

The Limit Comparison Test Suppose that \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are series with positive terms. If the limit

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = c
\]

exists, where \(c \) is a finite positive number, then either both series converge or both diverge.

The Alternating Series Test If the alternating series \(\sum_{n=1}^{\infty} (-1)^{n-1} b_n \) satisfies

(i) \(b_n \geq 0 \) for all \(n \)

(ii) \(b_{n+1} \leq b_n \) for all \(n \)

(iii) \(\lim_{n \to \infty} b_n = 0 \)

then the series converges. Furthermore, we have \(|R_n| \leq b_{n+1} \) in this case.

The Ratio Test For a series \(\sum_{n=1}^{\infty} a_n \), assume that the following limit exists:

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.
\]

(i) If \(L < 1 \) then the series is absolutely convergent.

(ii) If \(L > 1 \) (or \(L = \infty \)) then the series is divergent.

(iii) If \(L = 1 \) then the test is inconclusive.

The Root Test For a series \(\sum_{n=1}^{\infty} a_n \), assume that the following limit exists:

\[
\lim_{n \to \infty} |a_n|^{1/n} = L.
\]

(i) If \(L < 1 \) then the series is absolutely convergent.

(ii) If \(L > 1 \) (or \(L = \infty \)) then the series is divergent.

(iii) If \(L = 1 \) then the test is inconclusive.