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Abstract

We study the approximation of conformal mappings with the poly-

nomials defined by Keldysh and Lavrentiev from an extremal problem

considered by Julia. These polynomials converge uniformly on the

closure of any Smirnov domain to the conformal mapping of this do-

main onto a disk. We prove estimates for the rate of such convergence

on domains with piecewise analytic boundaries, expressed through the

smallest exterior angles at the boundary.
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1 Extremal problems in Smirnov spaces and

the associated polynomials

Let G be a Jordan domain in the complex plane, bounded by a rectifiable
curve L of length l. We consider the Smirnov spaces Ep(G), 0 < p < ∞, of
analytic functions in G, whose boundary values satisfy

‖f‖p :=

(
∫

L

|f(z)|p|dz|

)1/p

<∞
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(see Duren [8], Smirnov and Lebedev [23]). Julia [12] studied the extremal
problem

inf{‖f‖p : f ∈ Ep(G), f(ζ) = 1)}, (1.1)

where ζ ∈ G is a fixed point. He showed that the above infimum is attained
by the function (φ′)1/p, where φ is the conformal mapping of G onto a disk
DR := {w : |w| < R}, normalized by the conditions φ(ζ) = 0, φ′(ζ) = 1. It
is known that one can define sequences of polynomials associated with many
extremal problems. Thus Keldysh and Lavrentiev (cf. [14], [13] and [15])
considered the polynomials Qn,p(z) that minimize (1.1) among all polyno-
mials Pn(z) of degree n, such that P (ζ) = 1. These extremal polynomials
were attributed to Julia by Keldysh and Lavrentiev in [14]. Perhaps, it is
more appropriate to call them Julia-Keldysh-Lavrentiev polynomials. The
goal of such construction is that, provided polynomials are dense in Ep(G),
it would furnish the approximation to (φ′)1/p by Qn,p as n → ∞. Keldysh
and Lavrentiev [15] characterized a class of domains for which these desired
properties hold true. Their results are summarized below.

Theorem KL Let ψ = φ−1. The following conditions are equivalent:

1. log |ψ′| is representable in DR by the Poisson integral of its boundary

values

2. lim
n→∞

‖(φ′)1/p −Qn,p‖p = 0

3. Qn,p converge to (φ′)1/p locally uniformly in G

4. Polynomials are dense in norm in Ep(G)

The domains with property 4 were later named after Smirnov. Although
there is no complete geometric description of such domains, many standard
classes of domains possess the Smirnov polynomial density property. The
widest currently known class is probably that of Ahlfors-regular domains (cf.
Pommerenke [18, Chap. 7]). They are defined by the condition that there
exists a constant C > 0 such that

|L ∩Dr| ≤ Cr,

for any disk Dr of radius r, where | · | denotes the arclength measure on
L = ∂G.
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Since Qn,p converge locally uniformly to (φ′)1/p in Smirnov domains, they
have no zeros in any fixed compact subset of G for large n, by Hurwitz’s
theorem. Hence the following functions

Jn,p(z) :=

∫ z

ζ

(Qn,p(t))
p dt, z ∈ G, (1.2)

are well defined for p ∈ (0,∞), when n is large. Of course, they are well
defined polynomials for any n ∈ N, if p ∈ N. Let ‖ · ‖∞ denote the uniform
(sup) norm on G.

Theorem 1.1 If p ∈ N then

‖φ− Jn,p‖∞ ≤
1

2

(

(2πR)1/p + l1/p
)p−1 ∥

∥(φ′)1/p −Qn,p

∥

∥

p
.

Hence ‖φ− Jn,p‖∞ → 0 as n→∞, when G is a Smirnov domain.

For p = 1, the uniform convergence of Jn,1 on G was already observed by
Keldysh and Lavrentiev in [15], but without any estimate. The case p = 2
is of special interest because of its close connections with the Szegő kernel
and orthogonal polynomials. Ahlfors [1] considered these polynomials for the
numerical approximation of conformal mappings, and developed interesting
representations for Qn,2 via iterated integrals of Vandermonde determinants.
For p = 2, a similar result to Theorem 1.1 was proved by Warschawski [26].
Gaier [9, pp. 130-131] gave the estimates of the uniform convergence rates for
some smooth domains, based on the results of Rosenbloom and Warschawski
[22]. The explicit rates of convergence for domains with corners are stated
in the following section. Note that the case p = 2 was already considered in
[20], but with a somewhat different normalization for the polynomials.

A natural analogue of the polynomials Qn,p is given by the best approxi-
mating polynomials Q̃n,p to (φ′)1/p in Ep(G):

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
= inf

{

∥

∥(φ′)1/p − Pn
∥

∥

p
: Pn(ζ) = 1

}

, (1.3)

where the inf is taken over the polynomials Pn of degree n. Following the
same convention as for (1.2), we define the functions

J̃n,p(z) :=

∫ z

ζ

(Q̃n,p(t))
p dt. (1.4)
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It can be readily seen that Q̃n,2 ≡ Qn,2 and J̃n,2 ≡ Jn,2 (for p = 2), because

∥

∥(φ′)1/2 − Pn
∥

∥

2
= ‖Pn‖2 −

∥

∥(φ′)1/2
∥

∥

2

for any polynomial Pn of degree at most n, Pn(ζ) = 1, see [9, p. 128] and [1].
The explicit representation of Qn,2 via the contour orthonormal polynomials
{pn}

∞
n=0 in E2(G) follows from the standard Hilbert space theory (cf. [9,

Chap. III] and [23, Chap. 4]):

Qn,2(z) =

∑n
k=0 pk(ζ)pk(z)
∑n

k=0 |pk(ζ)|
2
, n ∈ N.

Thus these polynomials coincide (up to a constant factor) with the partial
sums of the Szegő kernel K(z, ζ) =

∑∞
k=0 pk(ζ)pk(z) (cf. Szegő [24]). They

can be used for the constructive approximation of the conformal mapping φ,
see [9], [23] and [20] for the details.

Our interest in Q̃n,p and J̃n,p is explained by the fact that one can produce
estimates of the convergence rates for these polynomials. We first state the
analogue of Theorem 1.1 in this case.

Theorem 1.2 If p ∈ N then

∥

∥

∥
φ− J̃n,p

∥

∥

∥

∞
≤

1

2

(

3(2πR)1/p + l1/p
)p−1

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
.

Hence

∥

∥

∥
φ− J̃n,p

∥

∥

∥

∞
→ 0 as n→∞, when G is a Smirnov domain.

The rates of convergence quantifying this result are studied in the next sec-
tion.

We conclude this section by showing that the zeros of the polynomials
Q̃n,p are typically dense in L. This indicates that the definition J̃n,p in (1.4)
cannot be extended to G for p 6∈ N, as every zero generates a branch point.
Let νn,p and ν̃n,p be the normalized counting measures for the zeros of Qn,p

and Q̃n,p respectively. They are obtained by placing the point mass 1/n at
each zero ofQn,p and Q̃n,p, according to multiplicities. Denote the equilibrium
measure of G (in the sense of logarithmic potential theory) by µ [21]. The
following Jentzsch-Szegő type theorem on the asymptotic zero distribution
is stated in terms of the weak* convergence for measures.
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Theorem 1.3 Let G be a Smirnov domain. Suppose that φ cannot be con-

tinued as analytic on G function. Then for any p ∈ (0,∞) there exists an

infinite subsequence Ñ ⊂ N such that

ν̃n,p
∗
→ µ as n→∞, n ∈ Ñ .

We conjecture that this theorem also holds for the zeros of Qn,p, i.e.,

νn,p
∗
→ µ as n→∞, n ∈ N,

where N ⊂ N is an infinite subsequence. Such asymptotic behavior is generic
for zeros of many extremal polynomials, see [3]. It is possible to prove a con-
verse of Theorem 1.3, i.e., if there is a subsequence of ν̃n,p weakly convergent
to µ, then φ is not analytic on G (cf. [7]).

2 Convergence in domains with piecewise an-

alytic boundaries

We consider domains with piecewise analytic boundaries in this section,
which are important in applications. An analytic arc is defined as the image
of a segment under a mapping that is conformal in an open neighborhood of
the segment. Thus a domain has piecewise analytic boundary if it is bounded
by a Jordan curve consisting of a finite number of analytic arcs. Let L be
piecewise analytic, with the smallest exterior angle λπ, 0 < λ ≤ 2, at the
junction points of the analytic arcs. The following results contain estimates
for the rates of convergence of Q̃n,p in terms of geometric properties of do-
mains.

Theorem 2.1 If 0 < λ < 2 then

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
≤ C1











n−
λ

p(2−λ) , 1 < p <∞,

n−
λ

2−λ log n, p = 1,

n−
λ(λ−1)
p(2−λ)

−λ, 1−λ
2−λ

< p < 1.

(2.1)

Note that p ≥ 1/2 works for all λ ∈ (0, 2). For p ∈ N, we also have

‖φ− J̃n,p‖∞ ≤ C2

{

n−
λ

2−λ log n, p = 1,

n−
λ

p(2−λ) , p = 2, 3, . . . .
(2.2)

The constants C1 > 0 and C2 > 0 are independent of n ≥ 2.
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The rates of convergence were previously known only in the case of p = 2
for some smooth domains, see [9, p. 131]. This theorem is new for any
p ∈ (0,∞). It is worth noting that the exponent λ/(2− λ) for p = 1 in (2.1)
and (2.2) is best possible. Indeed, it is known that this exponent cannot be
improved, in general, for approximation of φ in the uniform norm by any

sequence of polynomials (cf. [10] and [11]). We believe that the exponents
of n are also sharp in (2.1) and (2.2) for any p ∈ (1,∞).

When all angles at the boundary are the outward pointing cusps, we can
make an even stronger conclusion.

Theorem 2.2 If λ = 2 then for any p ∈ (0,∞) there exist q, r ∈ (0, 1) such
that

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
≤ C3 q

nr , n ∈ N. (2.3)

Furthermore, if p ∈ N then

‖φ− J̃n,p‖∞ ≤ C4 q
nr , n ∈ N. (2.4)

Here, C3 > 0 and C4 > 0 are independent of n.

It should be mentioned that r cannot be equal to 1 in the above theorem,
because the geometric rate of convergence implies that φ is analytic on G [25].
However, this is clearly not possible when G has an outward pointing cusp,
see [5]. A convergence result of similar form was proved in [5] for Bieberbach
polynomials in the Bergman kernel method.

3 Proofs

3.1 Proofs of the results from Section 1

Proof of Theorem 1.1. Using the mapping ψ := φ−1, we obtain for any
z ∈ G that

|φ(z)− Jn,p(z)| =

∣

∣

∣

∣

∫ z

ζ

(

φ′(t)− J ′n,p(t)
)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ φ(z)

0

(

φ′(ψ(u))− J ′n,p(ψ(u))
)

ψ′(u)du

∣

∣

∣

∣

∣

≤

∫ φ(z)

0

∣

∣φ′(ψ(u))− J ′n,p(ψ(u))
∣

∣ |ψ′(u)||du|,
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where the integration is carried over the segment connecting 0 and φ(z) in
DR. Since L is rectifiable, the function under the latter integral belongs to
the Hardy class H1(DR). Hence we obtain by the Fejér-Riesz inequality (cf.
[8, Theorem 3.13]) that

|φ(z)− Jn,p(z)| ≤
1

2

∫

|u|=R

∣

∣φ′(ψ(u))− J ′n,p(ψ(u)
∣

∣ |ψ′(u)||du|

=
1

2

∫

L

∣

∣φ′(t)−Qp
n,p(t)

∣

∣ |dt|.

If p = 1 then we are done. Applying Hölder’s inequality for p ≥ 2, we have

|φ(z)− Jn,p(z)| ≤
1

2

∫

L

∣

∣

∣
(φ′(t))

1/p
−Qn,p(t)

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

k=0

(φ′(t))
k/p

(Qn,p(t))
p−k−1

∣

∣

∣

∣

∣

|dt|

≤
1

2

∥

∥

∥
(φ′)

1/p
−Qn,p

∥

∥

∥

p

∥

∥

∥

∥

∥

p−1
∑

k=0

(φ′)
k/p

(Qn,p)
p−k−1

∥

∥

∥

∥

∥

q

, (3.1)

where q = p/(p− 1). Observe that

∣

∣

∣

∣

∣

p−1
∑

k=0

(φ′(t))
k/p

(Qn,p(t))
p−k−1

∣

∣

∣

∣

∣

≤

p−1
∑

k=0

|φ′(t)|
k/p
|Qn,p(t)|

p−k−1

≤
(

|φ′(t)|
1/p

+ |Qn,p(t)|
)p−1

,

so that
∥

∥

∥

∥

∥

p−1
∑

k=0

(φ′)
k/p

(Qn,p)
p−k−1

∥

∥

∥

∥

∥

q

≤

(
∫

L

(

|φ′(t)|
1/p

+ |Qn,p(t)|
)p

|dt|

)
p−1
p

≤

(

∥

∥

∥
(φ′)

1/p
∥

∥

∥

p
+ ‖Qn,p‖p

)p−1

,

by Minkowski’s inequality. Since
∥

∥

∥
(φ′)1/p

∥

∥

∥

p
=
(∫

L
|φ′(t)| |dt|

)1/p
= (2πR)1/p,

it follows from (3.1) that

‖φ− Jn,p‖∞ ≤
1

2

(

(2πR)1/p + ‖Qn,p‖p
)p−1 ∥

∥(φ′)1/p −Qn,p

∥

∥

p
. (3.2)
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Recall that ‖Qn,p‖p ≤ ‖1‖p = l1/p, by the definition of Qn,p, so that the
inequality is proved. The second statement now follows from Part 2 of The-
orem KL.

Proof of Theorem 1.2. Repeating all steps of the proof of Theorem 1.1
up to (3.2), but with J̃n,p and Q̃n,p instead of Jn,p and Qn,p, we obtain the
inequality

‖φ− J̃n,p‖∞ ≤
1

2

(

(2πR)1/p + ‖Q̃n,p‖p

)p−1 ∥
∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
.

The proof of the desired inequality is finished by estimating

‖Q̃n,p‖p ≤
∥

∥

∥
Q̃n,p − (φ′)1/p

∥

∥

∥

p
+
∥

∥(φ′)1/p
∥

∥

p
≤
∥

∥1− (φ′)1/p
∥

∥

p
+
∥

∥(φ′)1/p
∥

∥

p

≤ ‖1‖p + 2
∥

∥(φ′)1/p
∥

∥

p
= l1/p + 2(2πR)1/p.

We also have from the definition of Q̃n,p in (1.3) that

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
≤
∥

∥(φ′)1/p −Qn,p

∥

∥

p
,

which tends to 0 as n→∞ in Smirnov domains, by Part 2 of Theorem KL.

We connect the analyticity of φ on G and the asymptotics for the leading
coefficients of Q̃n,p in the following lemma.

Lemma 3.1 Let G be a Smirnov domain. Set Q̃n,p(z) = ãn,pz
n + . . . +

ã0,p, n ∈ N. If φ is not analytic on G, then

lim sup
n→∞

|ãn,p|
1/n =

1

cap(G)
, (3.3)

where cap(G) is the logarithmic capacity of G.

Proof. The idea of this proof is suggested by Blatt and Saff [6]. We first
note that, for any polynomial Pn(z) = anz

n + . . . , the following holds true

|an| ≤
(

cap(G)
)−n

‖Pn‖∞, (3.4)
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see Lemma 4.1 in [6]. Indeed, if Φ is the conformal mapping of Ω := C\G onto
the exterior of the unit disk, normalized by Φ(∞) =∞ and limz→∞Φ(z)/z =
1/cap(G), then

∣

∣

∣

∣

Pn(z)

Φn(z)

∣

∣

∣

∣

≤ ‖Pn‖∞, z ∈ Ω,

by the maximum modulus principle for Pn(z)/Φ
n(z) in Ω. Now let z → ∞

to obtain (3.4). It follows from Theorem 1.1 of [19] that

‖Pn‖∞ ≤ c1n
2/p‖Pn‖p, (3.5)

where c1 > 0 is independent of n. Therefore,

lim sup
n→∞

|ãn,p|
1/n ≤

lim supn→∞ ‖Q̃n,p‖
1/n
∞

cap(G)
≤

lim supn→∞ ‖Q̃n,p‖
1/n
p

cap(G)
=

1

cap(G)
,

because of (3.4), (3.5) and limn→∞ ‖Q̃n,p‖p = ‖ (φ
′)1/p ‖p. We assume that

lim sup
n→∞

|ãn,p|
1/n <

1

cap(G)
,

and show this leads to a contradiction. Consider a sequence of Fekete poly-
nomials Fn, n ∈ N, for G, so that

lim
n→∞

‖Fn‖
1/n
∞ = cap(G),

see [21, Sect. 5.5]. We define a new sequence qn(z) := ãn,p(z − ζ)Fn−1(z) =
ãn,pz

n + . . . , n ∈ N. It follows from the extremal property (1.3) that
∥

∥

∥
(φ′)1/p − Q̃n−1,p

∥

∥

∥

p
≤
∥

∥

∥
(φ′)1/p −

(

Q̃n,p − qn

)∥

∥

∥

p
≤
∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
+ ‖qn‖p,

for p ∈ [1,∞). Thus we obtain from the above that

lim sup
n→∞

(

∥

∥

∥
(φ′)1/p − Q̃n−1,p

∥

∥

∥

p
−
∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p

)1/n

≤ lim sup
n→∞

‖qn‖
1/n
p

≤ lim sup
n→∞

|ãn,p|
1/n lim

n→∞
‖Fn−1‖

1/n
∞ < 1.

Consequently,

d := lim sup
n→∞

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

1/n

p
< 1, (3.6)
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as limn→∞

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
= 0 by Theorem KL. If p ∈ (0, 1) then we have

that
∥

∥

∥
(φ′)1/p − Q̃n−1,p

∥

∥

∥

p

p
≤
∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p

p
+ ‖qn‖

p
p,

and (3.6) follows by a similar argument.
Since Q̃n,p converges to (φ′)1/p locally uniformly in G by Theorem KL,

we can write

(φ′(z))
1/p
− Q̃n,p(z) =

∞
∑

k=1

(

Q̃(k+1)n,p(z)− Q̃kn,p(z)
)

, z ∈ G.

Thus

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

∞
≤

∞
∑

k=1

∥

∥

∥
Q̃(k+1)n,p − Q̃kn,p

∥

∥

∥

∞

≤
∞
∑

k=1

c1 ((k + 1)n)2/p
∥

∥

∥
Q̃(k+1)n,p − Q̃kn,p

∥

∥

∥

p
,

by (3.5). It is clear from (3.6) that there exist c2, ε > 0 such that d + ε < 1
and

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

p
< c2(d+ ε/2)n, n ∈ N.

Hence for p ∈ [1,∞)
∥

∥

∥
Q̃(k+1)n,p − Q̃kn,p

∥

∥

∥

p
≤
∥

∥

∥
(φ′)1/p − Q̃(k+1)n,p

∥

∥

∥

p
+
∥

∥

∥
(φ′)1/p − Q̃kn,p

∥

∥

∥

p

≤ 2
∥

∥

∥
(φ′)1/p − Q̃kn,p

∥

∥

∥

p
≤ 2c2(d+ ε/2)kn,

and for p ∈ (0, 1)
∥

∥

∥
Q̃(k+1)n,p − Q̃kn,p

∥

∥

∥

p

p
≤
∥

∥

∥
(φ′)1/p − Q̃(k+1)n,p

∥

∥

∥

p

p
+
∥

∥

∥
(φ′)1/p − Q̃kn,p

∥

∥

∥

p

p

≤ 2
∥

∥

∥
(φ′)1/p − Q̃kn,p

∥

∥

∥

p

p
≤ 2cp2(d+ ε/2)knp.

It now follows that

∥

∥

∥
(φ′)1/p − Q̃n,p

∥

∥

∥

∞
≤ c3

∞
∑

k=1

((k + 1)n)2/p (d+ ε/2)kn ≤ c4

∞
∑

k=1

(d+ ε)kn

≤ c5(d+ ε)n, n ∈ N.
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The latter estimate is well known to imply that (φ′)1/p is analytic on G, see
[25]. Contradiction.

Proof of Theorem 1.3. Consider the monic polynomials Q̃n,p(z)/ãn,p, n ∈
N. Let Ñ be a subsequence such that (3.3) holds along Ñ as a regular limit.
Then we obtain with the help of (3.5) that

lim sup
n→∞

n∈Ñ

∥

∥

∥
Q̃n,p/ãn,p

∥

∥

∥

1/n

∞
= lim

n→∞

n∈Ñ

|ãn,p|
−1/n lim sup

n→∞

n∈Ñ

∥

∥

∥
Q̃n,p

∥

∥

∥

1/n

∞
≤ cap(G),

as limn→∞ ‖Q̃n,p‖p = ‖ (φ′)1/p ‖p. Since Q̃n,p converge to (φ′)1/p locally uni-
formly in G, we have

lim
n→∞

ν̃n,p(E) = 0

for any compact E ⊂ G, by Hurwitz’s theorem. Theorem 1.3 now follows
from Theorem 2.1 of [7] (or Theorem 2.1.7 of [3]).

3.2 Proofs of the results from Section 2

Proof of Theorem 2.1. We extend the ideas of [20] for p = 2 to the general
case. Let us continue the mapping φ conformally beyond the boundary L,
by using reflections across the analytic arcs Li, L = ∪mi=1Li. Suppose that
τi is a mapping such that Li = τi([0, 1]), which is conformal in an open
neighborhood of [0, 1]. Then we can find a symmetric lens shaped domain Si,
bounded by two circular arcs subtended by [0, 1], whose closure is contained
in this open neighborhood of [0, 1]. Defining

G̃ := G ∪ (∪mi=1τi(Si)) ,

we extend φ into G̃ as follows:

φ(z) :=
R2

φ
[

τi

(

τ−1i (z)
)]

, z ∈ τi(Si)\G,

where i = 1, . . . ,m. The boundary ∂G̃ consists of m analytic arcs Γi that
share endpoints with the arcs Li of ∂G:

∂G̃ ∩ ∂G = {zi}
m
i=1,
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which are clearly the corner points of ∂G. Since each τi, i = 1, . . . ,m, is
conformal and has bounded derivative (together with its inverse) on Si, we
obtain the inequalities

dist(z, ∂G) ≥ c1 min
1≤i≤m

|z − zi|, z ∈ ∂G̃, (3.7)

where dist(z, ∂G) is the distance from z to ∂G, and

|γ| ≤ c2|z − t|, z, t ∈ ∂G̃, (3.8)

where |γ| is the length of the shorter arc γ ⊂ ∂G̃, connecting z and t. We
denote various positive constants by c1, c2, etc.

Let Γj be an arc of ∂G̃ with the endpoints zj and zj+1, and let ζj ∈ Γj
be a fixed point, j = 1, . . . ,m. Note that ζj divides Γj into Γ1j and Γ2j , so

that ∂G̃ =
⋃m
j=1

⋃2
i=1 Γ

i
j. We obtain from Cauchy’s integral formula for the

continuation of (φ′)1/p into G̃ that

(φ′(z))
1/p

=
1

2πi

∫

∂G̃

(φ′(t))1/p

t− z
dt =

1

2πi

m
∑

j=1

2
∑

i=1

∫

Γij

(φ′(t))1/p

t− z
dt, z ∈ G̃.

(3.9)

Hence we need to approximate the functions of the form

g(z) :=

∫

γ

(φ′(t))1/p

t− z
dt (3.10)

in Ep(G) norm, where γ is any of the arcs Γij, with i = 1, 2 and j = 1, . . . ,m.

Let Ω := C \ G. Consider the standard conformal mapping Φ : Ω → ∆,
where ∆ := {w : |w| > 1}, normalized by Φ(∞) = ∞ and Φ′(∞) > 0. We
define the level curves of Φ by

Ln := {z : |Φ(z)| = 1 + 1/n}, n ∈ N.

Denote by γ2 the part of γ from its endpoint ζj ∈ Γj to the first point ξ of
intersection with Ln, so that γ2 ⊂ {z : |Φ(z)| > 1 + 1/n}. Then γ1 := γ \ γ2
connects ξ with the corner point zj of L. Write

g(z) :=

∫

γ1

(ϕ′(t))1/p

t− z
dt+

∫

γ2

(ϕ′(t))1/p

t− z
dt =: g1(z) + g2(z). (3.11)

12



We show that ‖g1‖p → 0 sufficiently fast as n → ∞, while g2 is well ap-
proximated by polynomials of degree n. To estimate the norm of g1, we need
to know the behavior of (φ′)1/p near the corner point zj ∈ L. This is found
from the asymptotic expansion of Lehman [16]. Assume that zj = 0 and that
λjπ, 0 < λj < 2, is the exterior angle formed by L at this point. Then we
have in a neighborhood of zj = 0 that

φ(z)− φ(0) = b z
1

2−λj + o
(

z
1

2−λj

)

as z → 0,

where b 6= 0, and

φ′(z) =
b

2− λj
z

1
2−λj

−1
+ o

(

z
1

2−λj
−1
)

as z → 0.

Hence there exists a constant c3 > 0 such that

|φ′(z)|
1/p
≤ c3 |z|

α, z ∈ G̃ ∪ ∂G̃, (3.12)

where we set

α :=
1

p(2− λj)
−

1

p
.

For the endpoints ξ ∈ Ln and 0 of γ1, we let

dn := |ξ − 0| = |ξ|.

It follows from (3.8) that
|γ1| ≤ c2dn.

We now estimate that

‖g1‖
p
p =

∫

L

∣

∣

∣

∣

∣

∫

γ1

(ϕ′(t))1/p

t− z
dt

∣

∣

∣

∣

∣

p

|dz| ≤ c4

∫

L

(
∫

γ1

|t|α|dt|

|t− z|

)p

|dz|, (3.13)

by (3.11) and (3.12). Note that if z ∈ L satisfies |z| ≥ dn, then |t− z| ∼ |z|
by (3.7). Consequently,

∫

L∩{|z|≥dn}

(
∫

γ1

|t|α|dt|

|t− z|

)p

|dz| ≤ c5

∫

L∩{|z|≥dn}

(

dα+1n

|z|

)p

|dz| (3.14)

≤ c6







dpα+1n , 1 < p <∞,
dα+1n | log dn|, p = 1,
dpα+pn , 1−λ

2−λ
< p < 1,
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because α+1 > 0 (which defines the latter range for p). On the other hand,
if z ∈ L satisfies |z| ≤ dn, then |t− z| ∼ |t|+ |z| by (3.7), and we obtain by
using (3.8) that

∫

L∩{|z|≤dn}

(
∫

γ1

|t|α|dt|

|t− z|

)p

|dz| ≤ c7

∫ c8dn

0

(
∫ c9dn

0

sαds

s+ r

)p

dr (3.15)

≤ c7

∫ c8dn

0

(
∫ r

0

sα

r
ds+

∫ c9dn

r

sα−1ds

)p

dr

= c7

∫ c8dn

0

(

rα

α + 1
+

(c9dn)
α − rα

α

)p

dr

≤ c10 d
pα+1
n ,

for α 6= 0. If α = 0 then we estimate

∫

L∩{|z|≤dn}

(
∫

γ1

|dt|

|t− z|

)p

|dz| =

∫

L∩{|z|≤dn}

(
∫

γ1

|t|1/2 |t|−1/2 |dt|

|t− z|

)p

|dz|

≤ (c2 dn)
p/2

∫

L∩{|z|≤dn}

(
∫

γ1

|t|−1/2 |dt|

|t− z|

)p

|dz|

≤ c
p/2
2 dp/2n c10 d

−p/2+1
n = c

p/2
2 c10 dn,

as above. Combining (3.13)-(3.15), we have that

‖g1‖p ≤ c11







d
α+1/p
n , 1 < p <∞,
dα+1n | log dn|, p = 1,
dα+1n , 1−λ

2−λ
< p < 1.

≤ c11















d
1

p(2−λ)
n , 1 < p <∞,

d
1

2−λ
n | log dn|, p = 1,

d
λ−1

p(2−λ)
+1

n , 1−λ
2−λ

< p < 1,

(3.16)

where λ = min1≤j≤m λj.
The next step is the construction of approximating polynomials Pn for g2.

This is accomplished by using Dzjadyk’s kernels (see, e.g., [2]) of the form

Kn(t, z) =
n
∑

i=0

ai(t)z
i, n ∈ N,
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which approximate the Cauchy kernel. It was proved in Lemma 5 of [4] that
a sequence of such kernels can be selected, so that for any fixed k ∈ N, and
for all t ∈ γ with |Φ(t)| ≥ 1 + 1/n, we have

∣

∣

∣

∣

1

t− z
−Kn(t, z)

∣

∣

∣

∣

≤ c12
dkn

|t− z|k+1
, z ∈ L, (3.17)

for all sufficiently large n ∈ N. In particular, (3.17) holds for t ∈ γ2. Define
the polynomials

Pn(z) :=

∫

γ2

(φ′(t))
1/p

Kn(t, z) dt,

and estimate

‖g2 − Pn‖
p
p =

∫

L

∣

∣

∣

∣

∫

γ2

(

1

t− z
−Kn(t, z)

)

(φ′(t))
1/p

dt

∣

∣

∣

∣

p

|dz|

≤ c13d
kp
n

∫

L

(
∫

γ2

|t|α|dt|

|t− z|k+1

)p

|dz|,

by (3.17) and (3.12). Observe that |t− z| ∼ |t|+ |z| for t ∈ γ2. Therefore, we
have for k > α + 1/p that
∫

L

(
∫

γ2

|t|α|dt|

|t− z|k+1

)p

|dz| ≤ c14

∫ c15

0

(
∫ c17

c16dn

sαds

(s+ r)k+1

)p

dr

≤ c14

∫ c16dn

0

(
∫ c17

c16dn

sα−k−1 ds

)p

dr

+ c14

∫ c15

c16dn

(

r−k−1
∫ r

c16dn

sα ds+

∫ c17

r

sα−k−1 ds

)p

dr

≤ c18 d
p(α−k)+1
n + c19

∫ c15

c16dn

rp(α−k) dr

≤ c20 d
p(α−k)+1
n .

It follows that

‖g2 − Pn‖p ≤ c21 d
α+1/p
n ≤ c21 d

1
p(2−λ)
n . (3.18)

Combining (3.16) and (3.18), we obtain

‖g − Pn‖p ≤ ‖g1‖p + ‖g2 − Pn‖p ≤ c22

{

d
1

p(2−λ)
n , 1 < p <∞,

d
1

2−λ
n | log dn|, p = 1,

(3.19)
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and

‖g − Pn‖
p
p ≤ ‖g1‖

p
p + ‖g2 − Pn‖

p
p ≤ c22 d

λ−1
2−λ

+p
n ,

1− λ

2− λ
< p < 1. (3.20)

Recall that dn = |ξ|, where ξ ∈ Ln ∩ γ1. Applying the results of [16] to
the conformal mapping Ψ := Φ−1, we obtain

z = Ψ(Φ(z))−Ψ(Φ(0)) = a (Φ(z)− Φ(0))λj+o
(

(Φ(z)− Φ(0))λj
)

as z → 0,

where λjπ is the exterior angle at zj = 0, and a 6= 0. Thus

dn = |ξ| ≤ c23 min
z∈Ln

|z| ≤ c24 n
−λj ≤ c24 n

−λ, n ∈ N,

and

‖g − Pn‖p ≤ c25











n−
λ

p(2−λ) , 1 < p <∞,

n−
λ

2−λ log n, p = 1,

n−
λ(λ−1)
p(2−λ)

−λ, 1−λ
2−λ

< p < 1,

(3.21)

where n ≥ 2, by (3.19)-(3.20). Hence there exists a sequence of polynomials
Qn such that

‖(φ′)1/p −Qn‖p ≤ c26











n−
λ

p(2−λ) , 1 < p <∞,

n−
λ

2−λ log n, p = 1,

n−
λ(λ−1)
p(2−λ)

−λ, 1−λ
2−λ

< p < 1,

(3.22)

for n ≥ 2. Since
∣

∣

(

(φ′)1/p −Qn

)

◦ ψ
∣

∣

p
|ψ′| is subharmonic in DR, we have

|1−Qn(ζ)|
p =

∣

∣

∣
(φ′(ζ))

1/p
−Qn(ζ)

∣

∣

∣

p

=
∣

∣

∣
(φ′(ψ(0)))

1/p
−Qn(ψ(0))

∣

∣

∣

p

|ψ′(0)|

≤
1

2πR

∥

∥

∥
(φ′)

1/p
−Qn

∥

∥

∥

p

p
.

Thus (2.1) follows from (3.22) and the extremal property (1.3) of Q̃n,p, as
∥

∥

∥
(φ′)

1/p
− Q̃n,p

∥

∥

∥

p
≤
∥

∥

∥
(φ′)

1/p
− (Qn −Qn(ζ) + 1)

∥

∥

∥

p
.

The second part of the theorem, stated in (2.2), is a direct consequence
of (2.1) and Theorem 1.2.
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Proof of Theorem 2.2. We use a combination of methods employed in the
previous proof and in the proof of Theorem 2.1 of [5]. Note that the analytic
arcs can only have a polynomial order of contact at the junction points zj, j =
1, . . . ,m, as explained in Remark 2.3 of [5] and its proof. Thus we have xa-
type outward pointing cusps with some finite a > 1. Applying analytic
continuation via reflection to φ, we write the Cauchy integral formula (3.9)
for (φ′)1/p, and again reduce the problem to approximation of the function g
in (3.10). The only difference from the proof of Theorem 2.1 is that instead of
the lens shaped domain Si one has to use a symmetric in real axes domain,
bounded by the arcs of y = ±Axa and y = ±A(1 − x)a, where A > 0 is
sufficiently small (see [5] for the details). In this case, we have

dist(z, ∂G) ≥ c1 min
1≤i≤m

|z − zi|
a, z ∈ ∂G̃, (3.23)

instead of (3.7), by Lemma 4.2 of [5].
Let Φ : Ω→ ∆ be a conformal map of Ω := C\G onto ∆ := {w : |w| > 1},

satisfying the conditions Φ(∞) =∞ and Φ′(∞) > 0. Define the level curves
of Φ by

Lu := {z ∈ Ω : |Φ(z)| = u}, u > 1.

Let Gu := IntLu, u > 1, be the domain bounded by Lu. Denote γ1 := γ∩Gu

and γ2 := γ\γ1, so that γ2 lies exterior to Lu. Hence the function g2 of (3.11)
is holomorphic in Gu, and is well approximable by polynomials. Namely,
we obtain from Theorem 3 of [23, p. 145] that there exists a sequence of
polynomials {pn}

∞
n=1 such that

‖g2 − pn‖∞ ≤ c2
n

(v − 1)2
max
z∈Gv

|g2(z)| v
−n, n ∈ N, (3.24)

where c2 is an absolute constant and 1 < v < u. On choosing u = 1 + 2n−s

and v = 1 + n−s, with s ∈ (0, 1), we estimate

max
z∈Gv

|g2(z)| ≤

∫

γ2

|φ′(t)|1/p

|t− z|
|dt| ≤

c3
min

z∈Gv , t∈γ2

|t− z|

≤
c3

dist(Lu, Lv)
,

where dist(Lu, Lv) is the distance between Lu and Lv. Note that

dist(Lu, Lv) ≥ c4(u− v)2,
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by a result of Loewner (see [2, p. 61]), which implies

dist(Lu, Lv) ≥ c4n
−2s.

We conclude that
max
z∈Gv

|g2(z)| ≤ c5n
2s,

and, using (3.24), we obtain that

‖g2 − pn‖∞ ≤ c6n
1+4s(1 + n−s)−n ≤ c7n

1+4se−n
1−s

, n ∈ N. (3.25)

For the companion function g1 of (3.11), we estimate

‖g1‖∞ ≤ max
z∈G

∫

γ1

|φ′(t)|1/p|dt|

|t− z|
≤ max

t∈γ1

|φ′(t)|1/p

dist(t, L)
, (3.26)

since |γ1| → 0 when n → ∞. We now show that ‖g1‖∞ is sufficiently small.
Indeed, we have by Corollary 1.4 of [18] that

|φ′(t)| ≤ c8
R− |φ(t)|

dist(t, L)
, t ∈ G.

Hence

|φ′(t)| ≤ c9
R− |φ(t)|

dist(t, L)
≤ c10

|φ(t)− φ(zj)|

dist(t, L)
, t ∈ γ1,

where zj is the endpoint of γ1 and the cusp point of L. It follows by Lemmas
4.4 and 4.2 of [5] that

|φ(t)− φ(zj)| ≤ c11 exp

(

−
c12

|t− zj|a−1

)

≤ c13 exp
(

−c14 [dist(t, L)]
b
)

, t ∈ γ1,

where b < 0. Applying these estimates in (3.26), we obtain that

‖g1‖∞ ≤ c15max
t∈γ1

exp
(

−c14 [dist(t, L)]
b/p
)

[dist(t, L)]1+1/p
.

Since the function x−1−1/p exp(−cxb), where c > 0 and b < 0, is strictly
increasing on an interval (0, x0), we deduce from the previous inequality that

‖g1‖∞ ≤ c15
exp

(

−c14 [dist(tu, L)]
b/p
)

[dist(tu, L)]1+1/p
, (3.27)
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where tu ∈ Lu and u = 1 + 2n−s is sufficiently close to 1. It is known that
Ψ := Φ−1 is Hölder continuous on ∆ (see Theorem 3 in [17]), so that

dist(tu, L) ≤ c16(u− 1)β ≤ c17n
−sβ,

for some β > 0. Hence we obtain from (3.27) that

‖g1‖∞ ≤ c18n
(1+1/p)sβ exp

(

−c19 n
−sβb/p

)

, n ∈ N. (3.28)

Combining (3.25) and (3.28), we have from (3.11) that

‖g − pn‖∞ ≤ c20 exp (−c21n
r) , n ∈ N,

where r ∈ (0, 1) is any number satisfying r < min(1 − s,−sβb). Further-
more, this immediately implies that there exists a sequence of polynomials
{Pn(z)}

∞
n=1 such that

‖(φ′)1/p − Pn‖∞ ≤ c22 exp (−c21n
r) , n ∈ N, (3.29)

by (3.9). That concludes the proof of (2.3), since by the extremal property
(1.3)

∥

∥

∥
(φ′)

1/p
− Q̃n,p

∥

∥

∥

p
≤
∥

∥

∥
(φ′)

1/p
− (Pn − Pn(ζ) + 1)

∥

∥

∥

p

≤ l
1
p

∥

∥

∥
(φ′)

1/p
− (Pn − Pn(ζ) + 1)

∥

∥

∥

∞
≤ 2l

1
p

∥

∥

∥
(φ′)

1/p
− Pn

∥

∥

∥

∞
.

Equation (2.4) follows from Theorem 1.2 and (2.3).
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