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Summary. In this paper, we continue the study of inequalities connecting the
product of uniform norms of polynomials with the norm of their product, begun
in [28]. Asymptotically sharp constants are known for such inequalities over ar-
bitrary compact sets in the complex plane. We show here that such constants
can be improved under some natural additional assumptions. Thus we find the
best constants for rotationally symmetric sets. In addition, we characterize all
sets that allow an improvement in the constant when the number of factors is
fixed, and find the improved value.
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1 The problem and its history

Let E be a compact set in the complex plane C. For a function f : E → C
define the uniform (sup) norm as follows:

‖f‖E = sup
z∈E

|f(z)|.

Kneser [18] proved the first sharp inequality for norms of products on [−1, 1]
(see also Aumann [1] for a preliminary result)

‖p1‖[−1,1]‖p2‖[−1,1] ≤ K`,n‖p1p2‖[−1,1], deg p1 = `, deg p2 = n− `, (1.1)

where

K`,n := 2n−1
∏̀

k=1

(
1 + cos

2k − 1
2n

π

) n−∏̀

k=1

(
1 + cos

2k − 1
2n

π

)
. (1.2)
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Observe that equality holds in (1.1) for the Chebyshev polynomial
t(z) = cos n arccos z = p1(z)p2(z), with a proper choice of the factors p1(z) and
p2(z). P. B. Borwein [7] generalized this to the multifactor inequality

m∏

k=1

‖pk‖[−1,1] ≤ 2n−1

[ n
2 ]∏

k=1

(
1 + cos

2k − 1
2n

π

)2

‖p‖[−1,1]. (1.3)

Note that

2n−1

[ n
2 ]∏

k=1

(
1 + cos

2k − 1
2n

π

)2

∼ (3.20991 . . .)n as n →∞. (1.4)

For another slight generalization of Kneser’s result see Theorem 3.3 below.
A similar inequality for E = D, where D := {w : |w| ≤ 1} is the closed unit

disk, was considered by Gelfond [14, p. 135] in connection with the theory of
transcendental numbers:

m∏

k=1

‖pk‖D ≤ en‖p‖D, (1.5)

Mahler [22] later replaced e by 2:
m∏

k=1

‖pk‖D ≤ 2n‖p‖D. (1.6)

It is easy to see that the base 2 cannot be decreased, if m = n and n → ∞.
However, (1.6) has been further improved in two directions. D. W. Boyd [8, 9]
showed that, given the number of factors m in (1.6), one has

m∏

k=1

‖pk‖D ≤ (Cm)n‖p‖D, (1.7)

where

Cm := exp

(
m

π

∫ π/m

0

log
(

2 cos
t

2

)
dt

)
(1.8)

is asymptotically best possible for each fixed m, as n → ∞. Kroó and Pritsker
[19] showed that, for any m ≤ n,

m∏

k=1

‖pk‖D ≤ 2n−1‖p‖D, (1.9)

where equality holds in (1.9) for each n ∈ N, with m = n and p(z) = zn − 1.
A natural general problem is to find, for a compact set E ⊂ C, the smallest

constant ME ∈ (0,∞], independent of n, such that
m∏

k=1

‖pk‖E ≤ (ME)n‖p‖E (1.10)
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holds for arbitrary polynomials {pk(z)}m
k=1 with complex coefficients, where

p(z) =
∏m

k=1 pk(z) and n := deg p. The solution of this problem is based on the
logarithmic potential theory (cf. [30] and [29]). Let cap(E) be the logarithmic
capacity of a compact set E ⊂ C. For E with cap(E) > 0, denote the equilibrium
measure of E by µE . We remark that µE is a positive unit Borel measure
supported on ∂E (see [30, p. 55]). Define

dE(z) := max
t∈E

|z − t|, z ∈ C, (1.11)

which is clearly a positive and continuous function in C. It is easy to see that
the logarithm of this distance function is subharmonic in C. Furthermore, it has
the following integral representation

log dE(z) =
∫

log |z − t|dσE(t), z ∈ C,

where σE is a positive unit Borel measure in C with unbounded support, see
Lemma 5.1 of [26] and [21]. For further in-depth analysis of the representing
measure σE , we refer to the recent paper of Gardiner and Netuka [13]. This
integral representation is the key fact used by the first author to prove the
following result [26].

Theorem 1.1 Let E ⊂ C be a compact set, cap(E) > 0. Then (1.10) holds
with

ME =
exp

(∫
log dE(z)dµE(z)

)

cap(E)
. (1.12)

Furthermore, this constant cannot be replaced with a smaller number.

Observe that ME is invariant under similarity transformations of the plane [26].
For the closed unit disk D, we have that cap(D) = 1 [30, p. 84] and that

dµD =
dθ

2π
, (1.13)

where dθ is the arclength on ∂D. Thus Theorem 1.1 yields

MD = exp
(

1
2π

∫ 2π

0

log dD(eiθ) dθ

)
= exp

(
1
2π

∫ 2π

0

log 2 dθ

)
= 2, (1.14)

so that we immediately obtain Mahler’s inequality (1.6).
If E = [−1, 1] then cap([−1, 1]) = 1/2 and

dµ[−1,1] =
dx

π
√

1− x2
, x ∈ [−1, 1], (1.15)
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which is the Chebyshev (or arcsin) distribution (see [30, p. 84]). Using Theorem
1.1, we obtain

M[−1,1] = 2 exp
(

1
π

∫ 1

−1

log d[−1,1](x)√
1− x2

dx

)
= 2 exp

(
2
π

∫ 1

0

log(1 + x)√
1− x2

dx

)

= 2 exp

(
2
π

∫ π/2

0

log(1 + sin t)dt

)
≈ 3.2099123, (1.16)

which gives the asymptotic version of Borwein’s inequality (1.3)-(1.4).
Considering the above analysis of Theorem 1.1, it is natural to conjecture

that the sharp universal bounds for ME are given by

2 = MD ≤ ME ≤ M[−1,1] ≈ 3.2099123, (1.17)

for any bounded non-degenerate continuum E, see [27]. We treated this problem
in a recent paper [28], where the lower bound ME ≥ MD = 2 is proved for all
compact sets E, and the upper bound is proved for certain special classes of
continua (see also [3]).

It turns out that the upper bound in (1.17) can be decreased under additional
assumptions. In particular, Section 2 contains improved bounds of the constant
ME for rotationally symmetric sets. The results of Boyd (1.7)-(1.8) suggest that
for some sets the constant ME can be replaced by a smaller one, if the number
of factors is fixed. We characterize such sets in Section 3, and also find the
improved constant. All proofs are given in Section 4.

The problems considered in this paper have many applications in analysis,
number theory and computational mathematics. We mention specifically appli-
cations in transcendence theory (see Gelfond [14]), and in designing algorithms
for factoring polynomials (see Boyd [10] and Landau [20]). A survey of the re-
sults involving norms different from the sup norm (e.g., Bombieri norms) can be
found in [10]. For polynomials in several variables, see the results of Mahler [23]
for the polydisk, of Avanissian and Mignotte [2] for the unit ball in Ck. Also,
see Beauzamy and Enflo [5], and Beauzamy, Bombieri, Enflo and Montgomery
[4] for multivariate polynomials in different norms.

Acknowledgements. This paper was written while the first author was
visiting the University of Würzburg as a Humboldt Foundation Fellow. He
would like to thank the Department of Mathematics and the Function Theory
research group for their hospitality.

2 Symmetric sets

Since D has all possible rotational symmetries, one still has ME ≥ 2 as the
best lower estimate for a symmetric set E (see [28]). However, if E has some
symmetry, then it is usually possible to improve the upper bounds for ME

obtained in the previous section. We show this for sets invariant under the
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cyclic group of rotations generated by the angle 2π/k, k ∈ N, with respect to a
fixed point. Translating the set, we can assume that the center of rotation is at
the origin.

The following result was proved in [28] (see Corollary 2.3 there). It shows
that the constant decreases when the set is enlarged in a certain way. For a
compact set H ⊂ C, we define the unbounded domain ΩH as the connected
component of C \H that contains ∞. Note that the boundary ∂ΩH represents
the “outer boundary” of H. Consider the compact set

H∗ :=
⋂

z∈∂ΩH

D(z, dH(z)).

Since H ⊂ D(z, dH(z)) for any z ∈ C, we have that H ⊂ H∗.

Proposition 2.1 Let H ⊂ C be compact, cap(H) > 0. If E is a compact
set such that H ⊂ E ⊂ H∗, then ME ≤ MH . Equality holds if and only if
cap(ΩH \ ΩE) = 0.

Define the k-star as Sk := {re2πil/k : r ∈ [0, 1], l = 1, . . . , k}. We need to
determine the corresponding set S∗k , which was defined in Proposition 2.1. It
is not difficult to make a geometric observation that we have S∗k = D for even
k ∈ N. However, for odd k ≥ 3, S∗k is obtained by intersecting k congruent disks
centered at the roots of unity (the vertices of Sk), whose radius is equal to the
distance to the farthest vertex:

S∗k =
k⋂

l=1

D
(
e2πil/k, dSk

(e2πil/k)
)

, k is odd, k ≥ 3.

This is illustrated in Figure 1.

Theorem 2.2 If Sk ⊂ E ⊂ S∗k , k ≥ 2, then

ME ≤ MSk
= exp

(
k

π

∫ π
k

0

log

∣∣∣∣∣
∫ 2π

k [ k
2 ]+ π

k

t

(eikx + 1)(eikx − 1)
2
k−1e−ix dx

∣∣∣∣∣ dt

)
.

Several numerical values of MSk
are given in the table below, while Figure 2

contains a listplot of MSk
.

k MSk

2 3.20991
3 2.35653
4 2.46834
5 2.24386

10 2.15730

k MSk

20 2.07389
30 2.04823
40 2.03579
50 2.02845

100 2.01404
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Figure 1: S3 and S∗3 .

Next we state a corresponding result for convex sets. Let Pk be a regular
k-gon, with vertices at the kth roots of unity. If E is a compact convex set (not a
single point) that is invariant under the rotation by the angle 2π/k, k ∈ N, k ≥
2, then we can assume that Pk ⊂ E ⊂ D. Note that P ∗k = S∗k for odd k ≥ 3.
When k ≥ 4 is even, one obtains that P ∗k is the intersection of k congruent disks
centered at the midpoints of sides of Pk, with radius equal to the distance to
the farthest vertex (see Figure 3):

P ∗k =
k⋂

l=1

D

(
e2πil/k + e2πi(l−1)/k

2
, dPk

(
e2πil/k + e2πi(l−1)/k

2

))
, k is even, k ≥ 4.

Theorem 2.3 If Pk ⊂ E ⊂ P ∗k , k ≥ 2, then

ME ≤ MPk
= exp

(
k

π

∫ π
k

0

log

∣∣∣∣∣
∫ 2π

k [ k+1
2 ]

t

(eikx − 1)
2
k e−ix dx

∣∣∣∣∣ dt

)
.

Several numerical values of MPk
are listed below.

k MPk

2 3.20991
3 2.19901
4 2.16503
5 2.07882

10 2.02405

k MPk

20 2.00604
30 2.00270
40 2.00152
50 2.00098

100 2.00025
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Figure 2: MSk
, k = 2, . . . , 100.

Note that the MPk
converge to the limit 2 much more rapidly than the MSk

,
which, of course, is expected.

Observe that P2 (as well as S2) is just a segment, and Theorems 2.2 and 2.3
reduce to Corollary 2.2 of [28] in this case. We conjecture that Theorems 2.2
and 2.3 hold without the inclusion restrictions. Namely, the largest value of the
constant ME among all rotationally symmetric sets as defined above is attained
for Sk, while for the convex rotationally symmetric sets ME is maximized for
Pk.

3 Fixed number of factors

In this section, we explore possible improvements in the constant when the
number of factors is fixed. The key results in this direction are due to Boyd
[8, 9] for the unit disk, see (1.7)-(1.8). For general sets, this question was touched
upon in [26], where it was shown that the possibility of improvement essentially
depends on the number of extreme points in the set (see Theorem 4.1 in [26]).
Specifically, let {Fn(z)}∞n=1, deg Fn = n, be the Fekete polynomials for the set
E (cf. [29, p. 155]), where E ⊂ C is compact, cap(E) > 0. Suppose that there
exist points {ζl}s

l=1 such that

dE(z) = max
1≤l≤s

|z − ζl| for all z ∈ ∂E. (3.1)

If m ≥ s then we can find such factoring for the sequence of Fekete polynomials

Fn(z) =
m∏

k=1

Fk,n(z), n ∈ N, (3.2)

that

lim
n→∞

(∏m
k=1 ‖Fk,n‖E

‖Fn‖E

)1/n

= ME . (3.3)
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Figure 3: P4 and P ∗4 .

Hence no improvement is possible in (1.10), for a fixed number of factors m ≥ s,
as n → ∞. In particular, there is no improvement in constant, for any m ≥ 2,
for such sets as a circular arc of angular measure at most π and a segment, cf.
(1.1)-(1.3). Also, there is no improvement for any polygon with s vertices, if
m ≥ s.

We give a complete characterization for the possibility of improvement here.
A closed set S ⊂ E is called dominant if

dE(z) = max
t∈S

|z − t| for all z ∈ suppµE . (3.4)

This condition is somewhat less restrictive than (3.1), because supp µE ⊂ ∂ΩE ⊂
∂E, see [30, p. 79]. Note that if E is the closure of a Jordan domain, then
supp µE = ∂ΩE = ∂E. When E has at least one finite dominant set, we define a
minimal dominant set DE as a dominant set with the smallest number of points
card(DE). Of course, E might not have finite dominant sets at all, in which case
we can take any dominant set as the minimal dominant set with card(DE) = ∞,
e.g., DE = ∂E.

Theorem 3.1 Let E ⊂ C be compact, cap(E) > 0. For arbitrary polynomials
pk, k = 1, . . . , m, and their product p, deg(p) = n, we have

m∏

k=1

‖pk‖E ≤ (Bm(E))n ‖p‖E , (3.5)
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where

Bm(E) := max
ck∈∂E

exp
(∫

log max
1≤k≤m

|z − ck| dµE(z)
)

cap(E)
(3.6)

cannot be replaced by a smaller constant. Furthermore, if m < card(DE) then
Bm(E) < ME , while Bm(E) = ME for m ≥ card(DE). When DE is infinite,
Bm(E) < ME holds for all m ∈ N, m ≥ 2.

The following result shows that we always have an improvement for smooth
sets, which is similar to the disk case.

Corollary 3.2 If E ⊂ C is a compact set bounded by finitely many closed C1-
smooth Jordan curves, then Bm(E) < ME for all m ∈ N, m ≥ 2.

On the other hand, we have Bm(E) = ME for m ≥ s for every polygon with
s vertices. Furthermore, not all vertices may belong to the minimal dominating
set. For example, if E is an obtuse triangle, then DE consists of only two vertices
that are the endpoints of the longest side. Hence Bm(E) = ME for m ≥ 2 as
in the segment case. Any circular arc of the angular measure at most π has its
endpoints as the minimal dominating set, which gives Bm(E) = ME for m ≥ 2
here too. However, if the angular measure of this arc is greater than π, then
one immediately obtains that DE is infinite, and Bm(E) < ME for all m ≥ 2.

Finding the exact values of Bm(E) for general sets is very complicated.
Essentially the only known explicit value is due to Boyd for E = D, see (1.7)-
(1.8).

We conclude this section with a simple remark that Kneser’s inequality (1.1)-
(1.2) is true for any compact convex set.

Theorem 3.3 Let E ⊂ C be a compact convex set, which is not a single point.
For arbitrary polynomials p1, deg(p1) = `, and p2, deg(p2) = n− `, we have

‖p1‖E‖p2‖E ≤ K`,n‖p1p2‖E ,

where K`,n is given in (1.2).

4 Proofs

4.1 Proofs for Section 2

Proof of Theorem 2.2.
The inequality ME ≤ MSk

follows immediately from Proposition 2.1. Thus
we only need to find MSk

. Consider the conformal mapping

Ψ(w) =
∫ w

1

(sk + 1)(sk − 1)
2
k−1s−2 ds = w +

∞∑
m=0

am

wm
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of the exterior of the unit disk ΩD onto the exterior of a k-star, which we denote
by S′k (see [25, pp. 189-196], for example). Note from the symmetry that the
k-th roots of unity are mapped by Ψ to the origin, and the points obtained by
the rotation of these roots of unity by the angle π/k are mapped to the vertices
of S′k. Also, it is clear from the expansion of Ψ that the capacity of this k-star
is equal to 1. By the invariance with respect to the similarity transformations,
we have that MS′k = MSk

.
Recall that the equilibrium measure µS′k is the harmonic measure of the

exterior of S′k at ∞, which is invariant under the conformal transformation Ψ,
see [29, p. 105]. Using this conformal invariance of µS′k , we obtain that

log MS′k =
∫

log dS′k(z) dµS′k(z) =
1
2π

∫ 2π

0

log dS′k(Ψ(eit)) dt

=
k

π

∫ π
k

0

log
∣∣∣Ψ(eit)−Ψ

(
e

2πi
k [ k

2 ]+ πi
k

)∣∣∣ dt

=
k

π

∫ π
k

0

log

∣∣∣∣∣
∫ 2π

k [ k
2 ]+ π

k

t

(eikx + 1)(eikx − 1)
2
k−1e−ix dx

∣∣∣∣∣ dt.

Proof of Theorem 2.3.
The proof of this theorem closely follows the previous one. We obtain the

inequality ME ≤ MPk
from Proposition 2.1. Next we find MPk

, by introducing
the conformal mapping

Ψ(w) =
∫ w

1

(sk − 1)
2
k s−2 ds = w +

∞∑
m=0

am

wm

of ΩD onto the exterior of a regular k-gon denoted by P ′k [25, p. 196]. The k-th
roots of unity are mapped by Ψ to the vertices of P ′k. Also, it is clear from the
expansion of Ψ that the capacity of P ′k is equal to 1. Hence we obtain that

log MPk
= log MP ′k =

∫
log dP ′k(z) dµP ′k(z) =

1
2π

∫ 2π

0

log dP ′k(Ψ(eit)) dt

=
k

π

∫ π
k

0

log
∣∣∣Ψ(eit)−Ψ

(
e

2πi
k [ k+1

2 ]
)∣∣∣ dt

=
k

π

∫ π
k

0

log

∣∣∣∣∣
∫ 2π

k [ k+1
2 ]

t

(eikx − 1)
2
k e−ix dx

∣∣∣∣∣ dt.

4.2 Proofs for Section 3

Proof of Theorem 3.1.
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For any k = 1, . . . ,m, there exists ck ∈ ∂E such that

‖pk‖E = |pk(ck)|. (4.1)

Applying Lemma 5.1 of [26] to the set {ck}m
k=1, we obtain for the function

um(z) := max
1≤k≤m

|z − ck|, z ∈ C, (4.2)

that
log um(z) =

∫
log |z − t|dσm(t), z ∈ C, (4.3)

where σm is a probability measure on C. If Zk is the set of zeros of pk(z)
(counted according to multiplicities), k = 1, . . . , m, then

m∑

k=1

log ‖pk‖E =
m∑

k=1

log |pk(ck)| =
m∑

k=1

∑

z∈Zk

log |ck − z| ≤
m∑

k=1

∑

z∈Zk

log um(z)

=
∑

z∈⋃m
k=1 Zk

∫
log |z − t|dσm(t) =

∫
log |p(t)|dσm(t). (4.4)

Using the Bernstein-Walsh lemma [29, p. 156], we proceed further as follows:

m∑

k=1

log ‖pk‖E ≤
∫

(log ‖p‖E + ngE(t,∞)) dσm(t)

=
∫ (

log ‖p‖E + n log
1

cap(E)
+ n

∫
log |z − t|dµE(z)

)
dσm(t)

= log ‖p‖E + n log
1

cap(E)
+ n

∫ ∫
log |z − t|dµE(z)dσm(t)

= log ‖p‖E + n log
1

cap(E)
+ n

∫ ∫
log |z − t|dσm(t)dµE(z)

= log ‖p‖E + n log
1

cap(E)
+ n

∫
log um(z)dµE(z),

where we changed the order of integration by Fubini’s theorem. It follows from
the above estimate that

m∏

k=1

‖pk‖E ≤
(

exp
(∫

log um(z)dµE(z)
)

cap(E)

)n

‖p‖E . (4.5)

Note that log um(z) is a continuous function of ck ∈ ∂E, k = 1, . . . , m. Hence
exp

(∫
log um(z)dµE(z)

)
is also continuous for ck ∈ ∂E, k = 1, . . . , m, and

attains its maximum on (∂E)m for some set c∗k ∈ ∂E, k = 1, . . . , m. Thus (3.5)-
(3.6) are proved. We now show that Bm(E) cannot be replaced by a smaller
constant, by following the proof of Theorem 4.1 in [26]. Let

u∗m(z) := max
1≤k≤m

|z − c∗k|, z ∈ C.
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For the n-th Fekete points {al,n}n
l=1 of E, consider the Fekete polynomials [29,

pp. 152-155]

Fn(z) =
n∏

l=1

(z − al,n), n ∈ N.

We define a subset Fk,n ⊂ {al,n}n
l=1, associated with the point c∗k, k = 1, . . . , m,

so that al0,n ∈ Fk,n for some 1 ≤ l0 ≤ n if

u∗m(al0,n) = |al0,n − c∗k|. (4.6)

In the case that (4.6) holds for more than one c∗k, we assign al0,n to only one
set Fk,n, to avoid an overlap of these sets. It is then clear that, for any n ∈ N,

m⋃

k=1

Fk,n = {al,n}n
l=1 and Fk1,n

⋂
Fk2,n = ∅, k1 6= k2.

The desired factors of Fn(z) are defined as

Fk,n(z) :=
∏

al,n∈Fk,n

(z − al,n), k = 1, . . . ,m, (4.7)

so that

‖Fk,n‖E ≥
∏

al,n∈Fk,n

|c∗k − al,n| =
∏

al,n∈Fk,n

u∗m(al,n), k = 1, . . . , m.

It follows by Lemma 5.3 of [26] (see also [29, p. 159]) that

lim inf
n→∞

(
m∏

k=1

‖Fk,n‖E

)1/n

≥ lim
n→∞

(
n∏

l=1

u∗m(al,n)

)1/n

= lim
n→∞

exp

(
1
n

n∑

k=1

log u∗m(ak,n)

)

= exp
(∫

log u∗m(z)dµE(z)
)

.

In addition, we have that limn→∞ ‖Fn‖1/n
E = cap(E) [29, p. 155], which gives

lim inf
n→∞

(∏m
k=1 ‖Fk,n‖E

‖Fn‖E

)1/n

≥ Bm(E). (4.8)

Since um(z) ≤ dE(z) for any z ∈ C, we immediately obtain that Bm(E) ≤
ME . Suppose that m < card(DE). Then there is z0 ∈ suppµE such that
u∗m(z0) < dE(z0). As both functions are continuous, the same strict inequality
holds in a neighborhood of z0, so that

∫
log u∗m(z) dµE(z) <

∫
log dE(z) dµE(z)

and Bm(E) < ME . When DE is infinite, this argument gives that Bm(E) <
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ME , m ≥ 2. Assume now that DE is finite and that m ≥ card(DE). Then
u∗m(z) = dE(z) for all z ∈ supp µE , because one of the possible choices of
the points {ck}m

k=1 ⊂ ∂E includes points of the set DE . It is immediate that∫
log u∗m(z) dµE(z) =

∫
log dE(z) dµE(z) and Bm(E) = ME in this case.

Proof of Corollary 3.2.
We need to show that the minimal dominant set is infinite, hence the result

follows from Theorem 3.1. Suppose to the contrary that DE = {ζl}s
l=1 is finite.

Let J ⊂ ∂ΩE be a smooth closed Jordan curve. Then J ⊂ supp µE = ∂ΩE [30,
p. 79]. Define

Jl := {z ∈ J : dE(z) = |z − ζl|}, l = 1, . . . , s.

It is clear that J = ∪s
l=1Jl. Observe that the segment [z, ζl], z ∈ Jl, is orthogonal

to ∂ΩE at ζl. Hence each Jl is contained in the normal line to ∂ΩE at ζl, l =
1, . . . , s. We thus obtain that J is contained in a union of straight lines, so that J
cannot have a continuously turning tangent, which contradicts the smoothness
assumption.

Proof of Theorem 3.3.
Let z1, z2 ∈ ∂E be such that ‖p1‖E = |p1(z1)| and ‖p2‖E = |p2(z2)|. Since

E is convex, we have that I := [z1, z2] ⊂ E and

‖p1‖E‖p2‖E

‖p1p2‖E
≤ |p1(z1)||p2(z2)|

‖p1p2‖I
≤ ‖p1‖I‖p2‖I

‖p1p2‖I
≤ Kl,n,

by Kneser’s inequality.
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