Means of algebraic numbers in the unit disk

Igor E. Pritsker¹

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, U.S.A.

Abstract

Schur studied limits of the arithmetic means s_n of zeros for polynomials of degree n with integer coefficients and simple zeros in the closed unit disk. If the leading coefficients are bounded, Schur proved that $\limsup_{n\to\infty} |s_n| \le 1 - \sqrt{e}/2$. We show that $s_n \to 0$, and estimate the rate of convergence by generalizing the Erdős-Turán theorem on the distribution of zeros. To cite this article: I. E. Pritsker, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Moyennes de nombres algébriques dans le disque unité. Schur a étudié les limites des moyennes arithmétiques s_n des zéros pour les polynômes à coefficients entiers de degré n ayant des zéros simples dans le disque unité fermé. Lorsque les coefficients dominants restent bornés, Schur a démontré que $\limsup_{n\to\infty}|s_n|\leq 1-\sqrt{e}/2$. Nous prouvons que $s_n\to 0$. Nous donnons une estimation du taux de convergence, grâce à une généralisation d'un théorème de Erdős-Turán sur la distribution des zéros. Pour citer cet article : I. E. Pritsker, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

1. Schur's problem and equidistribution of zeros

Let $\mathbb{Z}_n(D)$ be the set of polynomials of degree n with integer coefficients and all zeros in the closed unit disk D. We denote the subset of $\mathbb{Z}_n(D)$ with simple zeros by $\mathbb{Z}_n^1(D)$. Given M>0, we write $P_n=a_nz^n+\ldots\in\mathbb{Z}_n^1(D,M)$ if $|a_n|\leq M$ and $P_n\in\mathbb{Z}_n^1(D)$ (respectively $P_n\in\mathbb{Z}_n(D,M)$ if $|a_n|\leq M$ and $P_n\in\mathbb{Z}_n(D)$). Schur [9, §8] studied the limiting behavior of the arithmetic means s_n of zeros for polynomials from $\mathbb{Z}_n^1(D,M)$ as $n\to\infty$, where M>0 is an arbitrary fixed number. He showed that $\limsup_{n\to\infty}|s_n|\leq 1-\sqrt{e}/2$, and remarked that this $\limsup_{n\to\infty}s_n=0$ for any sequence of polynomials from $\mathbb{Z}_n(D)$ by Kronecker's theorem [6]. We prove that $\lim_{n\to\infty}s_n=0$ for any sequence of polynomials from Schur's class $\mathbb{Z}_n^1(D,M)$, $n\in\mathbb{N}$. This result is obtained as a consequence of the asymptotic equidistribution of zeros near the unit circle. Namely, if $\{\alpha_k\}_{k=1}^n$ are the zeros of P_n , we define the counting measure $\tau_n:=0$

Email address: igor@math.okstate.edu (Igor E. Pritsker).

URL: http://www.math.okstate.edu/~igor/ (Igor E. Pritsker).

^{1.} Research was partially supported by NSA, and by the Alexander von Humboldt Foundation.

 $\frac{1}{n}\sum_{k=1}^{n}\delta_{\alpha_k}$, where δ_{α_k} is the unit point mass at α_k . Consider the normalized arclength measure μ on the unit circumference \mathbb{T} , with $d\mu(e^{it}) := \frac{1}{2\pi}dt$. If the τ_n converge weakly to μ as $n \to \infty$ $(\tau_n \overset{*}{\to} \mu)$ then $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \int z \, d\tau_n(z) = \int z \, d\mu(z) = 0$. Thus Schur's problem is solved by the following result.

Theorem 1.1 If $P_n(z) = a_n z^n + \ldots \in \mathbb{Z}_n^1(D)$, $n \in \mathbb{N}$, satisfy $\lim_{n \to \infty} |a_n|^{1/n} = 1$, then $\tau_n \stackrel{*}{\to} \mu$ as $n \to \infty$. Ideas on the equidistribution of zeros date back to Jentzsch and Szegő, cf. [1, Ch. 2]. They were developed further by Erdős and Turán [4], and many others; see [1] for history and additional references. More

recently, this topic received renewed attention in number theory, e.g. in the work of Bilu [2]. If the leading coefficients of polynomials are bounded, then we can allow even certain multiple zeros. Define the multiplicity of an irreducible factor Q of P_n as the integer $m_n \geq 0$ such that Q^{m_n} divides P_n , but Q^{m_n+1} does not divide P_n . If a factor Q occurs infinitely often in a sequence P_n , $n \in \mathbb{N}$, then $m_n = o(n)$ means $\lim_{n\to\infty} m_n/n = 0$. If Q is present only in finitely many P_n , then $m_n = o(n)$ by definition.

Theorem 1.2 Assume that $P_n \in \mathbb{Z}_n(D,M)$, $n \in \mathbb{N}$. If every irreducible factor in the sequence of polynomials P_n has multiplicity o(n), then $\tau_n \stackrel{*}{\to} \mu$ as $n \to \infty$.

Corollary 1.3 If $P_n(z) = a_n \prod_{k=1}^n (z - \alpha_k)$, $n \in \mathbb{N}$, satisfy the assumptions of Theorem 1.1 or 1.2, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \alpha_k^m = 0, \quad m \in \mathbb{N}.$$

We also show that the norms $||P_n||_{\infty} := \max_{|z|=1} |P_n(z)|$ have at most subexponential growth. **Corollary 1.4** If P_n , $n \in \mathbb{N}$, satisfy the assumptions of Theorem 1.1 or Theorem 1.2, then

$$\lim_{n \to \infty} ||P_n||_{\infty}^{1/n} = 1.$$

This result is somewhat unexpected, as we have no direct control of the norm or coefficients (except for the leading one). For example, $P_n(z) = (z-1)^n$ has norm $||P_n||_{\infty} = 2^n$.

We now consider quantitative aspects of the convergence $\tau_n \stackrel{*}{\to} \mu$. As an application, we obtain estimates of the convergence rate of s_n to 0 in Schur's problem. A classical result on the distribution of zeros is due to Erdős and Turán [4]. For $P_n(z) = \sum_{k=0}^n a_k z^k$ with $a_k \in \mathbb{C}$, let $N(\phi_1, \phi_2)$ be the number of zeros in the sector $\{z \in \mathbb{C} : 0 \le \phi_1 \le \arg(z) \le \phi_2 < 2\pi\}$, where $\phi_1 < \phi_2$. Erdős and Turán [4] proved that

$$\left| \frac{N(\phi_1, \phi_2)}{n} - \frac{\phi_2 - \phi_1}{2\pi} \right| \le 16\sqrt{\frac{1}{n} \log \frac{\|P_n\|_{\infty}}{\sqrt{|a_0 a_n|}}}.$$
 (1)

The constant 16 was improved by Ganelius, and $||P_n||_{\infty}$ was replaced by weaker integral norms by Amoroso and Mignotte; see [1] for more history and references. Our main difficulty in applying (1) to Schur's problem is the absence of an effective estimate for $||P_n||_{\infty}$, $P_n \in \mathbb{Z}_n^1(D,M)$. We prove a new "discrepancy" estimate via energy considerations from potential theory. These ideas originated in part in the work of Kleiner, and were developed by Sjögren and Hüsing, see [1, Ch. 5]. We also use the Mahler measure of a polynomial $P_n(z) = a_n \prod_{k=1}^n (z - \alpha_k)$, defined by $M(P_n) := \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log |P_n(e^{it})| dt\right)$. Note that

 $M(P_n) = \lim_{p \to 0} \|P_n\|_p$, where $\|P_n\|_p := \left(\frac{1}{2\pi} \int_0^{2\pi} |P_n(e^{it})|^p dt\right)^{1/p}$, p > 0. Jensen's formula readily gives $M(P_n) = |a_n| \prod_{k=1}^n \max(1, |\alpha_k|)$ [3, p. 3]. Hence $M(P_n) = |a_n| \le M$ for any $P_n \in \mathbb{Z}_n(D, M)$.

Theorem 1.5 Let $\phi: \mathbb{C} \to \mathbb{R}$ satisfy $|\phi(z) - \phi(t)| \le A|z - t|, \ z, t \in \mathbb{C}$, and $\operatorname{supp}(\phi) \subset \{z: |z| \le R\}$. If $P_n(z) = a_n \prod_{k=1}^n (z - \alpha_k)$ is a polynomial with integer coefficients and simple zeros, then

$$\left| \frac{1}{n} \sum_{k=1}^{n} \phi(\alpha_k) - \int \phi \, d\mu \right| \le A(2R+1) \sqrt{\frac{\log \max(n, M(P_n))}{n}}, \quad n \ge 55.$$
 (2)

This theorem is related to recent results of Favre and Rivera-Letelier [5], obtained in a different setting. Choosing ϕ appropriately, we obtain an estimate of the means s_n in Schur's problem.

Corollary 1.6 If $P_n \in \mathbb{Z}_n^1(D, M)$ then

$$\left| \frac{1}{n} \sum_{k=1}^{n} \alpha_k \right| \le 8\sqrt{\frac{\log n}{n}}, \quad n \ge \max(M, 55).$$

We also have an improvement of Corollary 1.4 for Schur's class $\mathbb{Z}_n^1(D,M)$.

Corollary 1.7 If $\{P_n\}_{n=1}^{\infty} \in \mathbb{Z}_n^1(D,M)$ then there is some c > 0 such that $\|P_n\|_{\infty} \leq e^{c\sqrt{n}\log n}$ as $n \to \infty$. The proof of Theorem 1.5 gives a result for arbitrary polynomials with simple zeros, and for any continuous ϕ with finite Dirichlet integral $D[\phi] = \int \int (\phi_x^2 + \phi_y^2) dA$. Moreover, all arguments may be extended to general sets of logarithmic capacity 1, e.g. to [-2, 2]. Using the characteristic function $\phi = \chi_E$, we can prove general discrepancy estimates on arbitrary sets, and obtain an Erdős-Turán-type theorem. Our results have a number of applications to the problems on integer polynomials considered in [3].

2. Proofs

Proof of Theorem 1.1. Observe that the discriminant $\Delta(P_n) := a_n^{2n-2} \prod_{1 \le j < k \le n} (\alpha_j - \alpha_k)^2$ is an integer, as a symmetric form in the zeros of P_n . Since P_n has simple roots, we have $\Delta(P_n) \ne 0$ and $|\Delta(P_n)| \ge 1$. Using weak compactness, we assume that $\tau_n \stackrel{*}{\to} \tau$, where τ is a probability measure on D. Let $K_M(x,t) := \min(-\log|x-t|, M)$. Since $\tau_n \times \tau_n \stackrel{*}{\to} \tau \times \tau$, we obtain for the energy of τ that

$$\begin{split} I[\tau] &:= -\iint \log|x - t| \, d\tau(x) \, d\tau(t) = \lim_{M \to \infty} \left(\lim_{n \to \infty} \iint K_M(x, t) \, d\tau_n(x) \, d\tau_n(t) \right) \\ &= \lim_{M \to \infty} \left(\lim_{n \to \infty} \left(\frac{1}{n^2} \sum_{j \neq k} K_M(\alpha_j, \alpha_k) + \frac{M}{n} \right) \right) \leq \lim_{M \to \infty} \left(\liminf_{n \to \infty} \frac{1}{n^2} \sum_{j \neq k} \log \frac{1}{|\alpha_j - \alpha_k|} \right) \\ &= \liminf_{n \to \infty} \frac{1}{n^2} \log \frac{|a_n|^{2n-2}}{\Delta(P_n)} \leq \liminf_{n \to \infty} \frac{1}{n^2} \log |a_n|^{2n-2} = 0. \end{split}$$

Thus $I[\tau] \leq 0$. But $I[\nu] > 0$ for any probability measure ν on D, except for μ [7]. Hence $\tau = \mu$. Proof of Theorem 1.2. Let $\phi \in C(\mathbb{C})$. Note that for any $\epsilon > 0$ there are finitely many irreducible factors Q in the sequence P_n such that $|\int \phi \, d\tau(Q) - \int \phi \, d\mu| \geq \epsilon$, where $\tau(Q)$ is the zero counting measure for Q. Indeed, if we have an infinite sequence of such Q_m , then $\deg(Q_m) \to \infty$, as there are only finitely many $Q_m \in \mathbb{Z}_n(D,M)$ of bounded degree. Hence $\int \phi \, d\tau(Q_m) \to \int \phi \, d\mu$ by Theorem 1.1. Let the number of such exceptional factors Q_m be N. Then we have $|n\int \phi \, d\tau_n - n\int \phi \, d\mu| \leq No(n) \max_D |\phi - \int \phi \, d\mu| + (n-N)\epsilon$, $n\in \mathbb{N}$. Hence $\limsup_{n\to\infty} |\int \phi \, d\tau_n - \int \phi \, d\mu| \leq \epsilon$, and $\limsup_{n\to\infty} \int \phi \, d\tau_n = \int \phi \, d\mu$ after letting $\epsilon \to 0$. Proof of Corollary 1.3. Let $\phi(z) = z^m$ and write $\lim_{n\to\infty} \int z^m \, d\tau_n(z) = \int z^m \, d\mu(z) = 0$. Proof of Corollary 1.4. Let $\|P_n\|_\infty = |P_n(z_n)|$, $z_n \in D$, and assume $\lim_{n\to\infty} z_n = z_0 \in D$ by compactness. Then $\|P_n\|_\infty = \exp\left(\log|P_n(z_n)|\right) = |a_n|\exp\left(n\int \log|z_n - t|\, d\tau_n(t)\right)$. Since $\tau_n \stackrel{*}{\to} \mu$, Theorem I.6.8 of [8] gives $\limsup_{n\to\infty} \|P_n\|_\infty^{1/n} \leq \exp\left(\int \log|z_0 - t|\, d\mu(t)\right) = 1$ [8, p. 22]. But $\|P_n\|_\infty \geq |a_n| \geq 1$, see [1, p. 16]. Proof of Theorem 1.5. Given r > 0, define the measures ν_k^r with $d\nu_k^r(\alpha_k + re^{it}) = dt/(2\pi)$, $t \in [0, 2\pi)$. Let $\tau_n^r := \frac{1}{n} \sum_{k=1}^n \nu_k^r$, and estimate $|\int \phi \, d\tau_n - \int \phi \, d\tau_n^r| \leq \frac{1}{n} \sum_{k=1}^n \frac{1}{2\pi} \int_0^{2\pi} |\phi(\alpha_k) - \phi(\alpha_k + re^{it})| \, dt \leq \omega_\phi(r)$, where $\omega_\phi(r) := \sup_{|z-\zeta| \leq r} |\phi(z) - \phi(\zeta)|$ is the modulus of continuity of ϕ .

Let $p_{\nu}(z) := -\int \log|z - t| d\nu(t)$ be the potential of a measure ν . A direct evaluation gives that $p_{\nu_k^r}(z) = -\log \max(r, |z - \alpha_k|)$ and $p_{\mu}(z) = -\log \max(1, |z|)$ [8, p. 22]. Consider $\sigma := \tau_n^r - \mu$, $\sigma(\mathbb{C}) = 0$. One computes (or see [8, p. 92]) that $d\sigma = -\frac{1}{2\pi} \left(\partial p_{\sigma} / \partial n_+ + \partial p_{\sigma} / \partial n_- \right) ds$, where ds is the arclength on $\sup(\sigma) = \{|z| = 1\} \cup (\bigcup_{k=1}^n \{|z - \alpha_k| = r\})$, and n_{\pm} are the inner and the outer normals. We now use

Green's identity $\iint_G u \Delta v \, dA = \int_{\partial G} u \, \frac{\partial v}{\partial n} \, ds - \iint_G \nabla u \cdot \nabla v \, dA$ with $u = \phi$ and $v = p_\sigma$ in each component G of $\{|z| < R\} \setminus \text{supp}(\sigma)$. Since $\Delta p_\sigma = 0$ in G, adding the identities for all G, we obtain that

$$\left| \int \phi \, d\sigma \right| = \frac{1}{2\pi} \left| \iint_{|z| < R} \nabla \phi \cdot \nabla p_{\sigma} \, dA \right| \le \frac{1}{2\pi} \sqrt{D[\phi]} \sqrt{D[p_{\sigma}]},$$

where $D[\phi] = \int \int (\phi_x^2 + \phi_y^2) dA$ is the Dirichlet integral of ϕ . It is known that $D[p_\sigma] = 2\pi I[\sigma]$ [7, Thm 1.20], where $I[\sigma] = -\int \int \log|z - t| \, d\sigma(z) \, d\sigma(t) = \int p_\sigma \, d\sigma$. Since $p_\mu(z) = -\log \max(1,|z|)$, we observe that $\int p_\mu \, d\mu = 0$, so that $I[\sigma] = \int p_{\tau_n^r} \, d\tau_n^r - 2 \int p_\mu \, d\tau_n^r$. Further, $-\int p_\mu \, d\tau_n^r = \int \log \max(1,|z|) \, d\tau_n^r(z) \leq \left(\sum_{|\alpha_k| \leq 1+r} \log(1+2r) + \sum_{|\alpha_k| > 1+r} \log|\alpha_k|\right) / n \leq \log(1+2r) + \frac{1}{n} \log M(P_n) - \frac{1}{n} \log|a_n|$. We also have that $\int p_{\tau_n^r} \, d\tau_n^r \leq \left(-\sum_{j \neq k} \log|\alpha_j - \alpha_k| - n \log r\right) / n^2$. We next combine the energy estimates to obtain

$$I[\sigma] \le \frac{2}{n} \log M(P_n) - \frac{1}{n^2} \log \left| a_n^2 \Delta(P_n) \right| - \frac{1}{n} \log r + 4r.$$

Collecting all estimates, we proceed with $\left|\int \phi \, d\tau_n - \int \phi \, d\mu\right| \leq \left|\int \phi \, d\tau_n - \int \phi \, d\tau_n^r\right| + \left|\int \phi \, d\tau_n^r - \int \phi \, d\mu\right| \leq \omega_{\phi}(r) + \sqrt{D[\phi]} \sqrt{D[p_{\sigma}]}/(2\pi) = \omega_{\phi}(r) + \sqrt{D[\phi]} \sqrt{I[\sigma]/(2\pi)}$. Thus we arrive at the main inequality:

$$\left| \int \phi \, d\tau_n - \int \phi \, d\mu \right| \le \omega_\phi(r) + \sqrt{\frac{D[\phi]}{2\pi}} \left(\frac{2}{n} \log M(P_n) - \frac{1}{n^2} \log \left| a_n^2 \Delta(P_n) \right| - \frac{1}{n} \log r + 4r \right)^{1/2}. \tag{3}$$

Note that $D[\phi] \leq 2\pi R^2 A^2$, as $|\phi_x| \leq A$ and $|\phi_y| \leq A$ a.e. in \mathbb{C} . Also, $\omega_\phi(r) \leq Ar$. Since $|\Delta(P_n)| \geq 1$ and $|a_n| \geq 1$, we have $|a_n^2 \Delta(P_n)| \geq 1$. Hence (2) follows from (3) by letting $r = 1/\max(n, M(P_n))$. Proof of Corollary 1.6. Since P_n has real coefficients, we have that $s_n = \int z \, d\tau_n(z) = \int \Re(z) \, d\tau_n(z)$. We let $\phi(z) = \Re(z)$, $|z| \leq 1$; $\phi(z) = \Re(z)(1 - \log|z|)$, $1 \leq |z| \leq e$; and $\phi(z) = 0$, $|z| \geq e$. An elementary computation shows that $|\phi_x(z)| \leq 1$ and $|\phi_y(z)| \leq 1/2$ for all $z = x + iy \in \mathbb{C}$. The Mean Value Theorem gives $|\phi(z) - \phi(t)| \leq |z - t| \max_{\mathbb{C}} \sqrt{\phi_x^2 + \phi_y^2}$. Hence we can use Theorem 1.5 with $A = \sqrt{5}/2$ and R = e. Proof of Corollary 1.7. Note that $\log |P_n(z)| = n \int \log |z - w| \, d\tau_n(w)$. For |z| = 1 + 1/n, we let $\phi(w) = \log |z - w|$, $|w| \leq 1$; $\phi(w) = (1 - \log |w|) \log |1 - \bar{z}w|$, $1 \leq |w| \leq e$; and $\phi(z) = 0$, $|w| \geq e$. Then $|\phi_x(w)| = O(|z - w|^{-1})$, $|w| \leq 1$; $|\phi_x(w)| = O(|1 - \bar{z}w|^{-1})$, $1 \leq |w| \leq e$; and the same estimates hold for $|\phi_y|$. Hence $D[\phi] = O\left(\int\int_{|w| \leq 1} |z - w|^{-2} dA(w)\right) = O\left(\int_{1/n}^1 r^{-1} dr\right) = O(\log n)$, and $\omega_\phi(r) \leq r \max_{\mathbb{C}} \sqrt{\phi_x^2 + \phi_y^2} = rO(n)$. Let $r = 1/n^2$ and use (3) to obtain $|\log |P_n(z)| - n \log |z| = O(\sqrt{n} \log n)$.

References

- V. V. Andrievskii and H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer-Verlag, New York, 2002.
- [2] Y. Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), 465-476.
- [3] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002.
- [4] P. Erdős and P. Turán, On the distribution of roots of polynomials, Ann. Math. 51 (1950), 105-119.
- [5] C. Favre and J. Rivera-Letelier, Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), 311-361; Corrigendum in Math. Ann. 339 (2007), 799-801.
- [6] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coëfficienten, J. reine ang. Math. 53 (1857), 173-175.
- [7] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
- [8] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.
- [9] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeit. 1 (1918), 377-402.