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EXPECTED DISCREPANCY FOR ZEROS OF RANDOM

ALGEBRAIC POLYNOMIALS

IGOR E. PRITSKER AND ALAN A. SOLA

Dedicated to Vladimir Andrievskii on his 60th birthday

Abstract. We study asymptotic clustering of zeros of random poly-
nomials, and show that the expected discrepancy of roots of a polyno-
mial of degree n, with not necessarily independent coefficients, decays
like

√
logn/n. Our proofs rely on discrepancy results for deterministic

polynomials, and order statistics of a random variable. We also consider
the expected number of zeros lying in certain subsets of the plane, such
as circles centered on the unit circumference, and polygons inscribed in
the unit circumference.

1. Introduction

1.1. Random polynomials and their zeros. Let {Ck}∞k=0 be a sequence
of independent and identically distributed (iid) complex-valued random vari-
ables. In this paper, we study families of random polynomials

(1.1) Pn(z) =
n∑

k=0

Ckz
k

and the geometry of their zeros; we let Z(Pn) = {Z1, . . . , Zn} denote the
set of complex zeros of such a polynomial of degree n. We use the nota-
tion Pn(z) =

∑n
k=0 ckz

k whenever we make statements that apply to any
polynomial with c0, . . . , cn ∈ C and reserve capital letters for random co-
efficients. The zeros {Zk}nk=1 of a random polynomial Pn define a natural
random measure on C, the counting measure of roots or empirical measure

τn =
1

n

n∑
k=1

δZk
.

Random polynomials of the form (1.1) have been studied by many au-
thors, and it is known that, under mild conditions on the distribution of the
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coefficients of Pn, these empirical measures converge to µT, the normalized
arc-length measure, in the weak* topology (or weakly, in the language of
probability theory) as n → ∞. For the history of the subject and a list of
references we refer the reader to the books [5, 12]; we shall discuss some
recent results shortly.

It is natural to ask how fast the empirical measures converge, and in this
work, we provide estimates on the expected rate of convergence of associated
quantities that measure the distance between counting measures and the
uniform measure on the unit circle T = {eiθ : θ ∈ [0, 2π)}.

1.2. Discrepancy of zeros and norms on polynomials. For a polyno-
mial Pn, we write N(α, β) for the number of elements of Z(Pn) that are
contained in the sector

S(α, β) = {z ∈ C : 0 < α ≤ arg z < β ≤ 2π};

later on we shall also work with annular sectors of the form

(1.2) Ar(α, β) = {z ∈ C : r < |z| < 1/r, α ≤ arg z < β}, 0 < r < 1.

A very classical result concerning the angular discrepancy of zeros is the
theorem of Erdős and Turán [11], which in its improved form due to Ganelius
(see [14]) asserts that

(1.3)

∣∣∣∣N(α, β)

n
− β − α

2π

∣∣∣∣ ≤
√

2π

k

√√√√ 1

n
log

[
∥Pn∥∞√
|c0cn|

]
;

here k =
∑∞

k=0(−1)k/(2k + 1)2 denotes Catalan’s constant, and ∥Pn∥∞ =
supT |Pn|. Suppose now that the coefficients of Pn (random or deterministic)
are uniformly bounded with |ck| ≤ K, say. We then have the easy estimate

log ∥Pn∥∞ ≤ log

(
max
z∈T

n∑
k=0

|ckzk|

)
≤ log(n+ 1) + logK,

and by (1.3), it follows that∣∣∣∣N(α, β)

n
− β − α

2π

∣∣∣∣ ≤ C

√
log(n+ 1) + logK − log

√
|c0cn|

n
.

Thus we see that if c0cn ̸= 0 (almost surely), the discrepancy is of the order√
log n/n. Moreover, it can be shown that this rate of decay is essentially

best possible in the sense that one can construct (deterministic) families of
polynomials that exhibit discrepancy of this order (see [11, 2, 21]). For gen-
eral coefficients however, it is hard to obtain effective estimates on ∥Pn∥∞.

In order to state our results, we need to introduce certain additional norms
on the circle. For a polynomial Pn and 0 < p < ∞, we set

∥Pn∥p =
(

1

2π

∫
T
|Pn(e

iθ)|p dθ
)1/p

.
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When Pn(z) =
∑n

k=0 ckz
k and p = 2, we have ∥Pn∥22 =

∑n
k=0 |ck|2.

As usual, we define the Mahler measure (geometric mean) of Pn by

M(Pn) = exp

(
1

2π

∫ 2π

0
log |Pn(e

iθ)|dθ
)
,

and we set m(Pn) = log(M(Pn)). We also use

M+(Pn) = exp

(
1

2π

∫ 2π

0
log+ |Pn(e

iθ)|dθ
)

and m+(Pn) = log(M+(Pn)). It is well known that

M(Pn) ≤ ∥Pn∥p ≤ ∥Pn∥q ≤ ∥Pn∥∞, 0 < p < q < ∞.(1.4)

Furthermore, the definitions immediately give that

M(Pn) ≤ M+(Pn) ≤ ∥Pn∥∞.(1.5)

Recent papers on random polynomials and the behavior of their roots
include [22, 15, 16, 17, 18]. Improving an earlier result of Šparo and Šur,
Ibragimov and Zaporozhets [17] prove that the condition E[log+ |C0|] < ∞
is both necessary and sufficient for almost sure asymptotic concentration of
roots on the unit circumference. The paper [18] deals with the interesting
case of heavy-tailed coefficients, where E[log+ |C0|] = ∞ and the asymptotic
distribution of roots is uniform in argument, but the radial positions of the
roots accumulate on more than one circle. In [15], Hughes and Nikeghbali
deal with polynomials with not necessarily independent coefficients, and use
estimates on E[log(

∑
k |Ck|)] to deduce, via Erdős and Turán’s theorem,

that roots concentrate on the unit circumference.

1.3. Overview of the paper. In this paper, we initiate a systematic quan-
titative study of convergence results for general random polynomials with
coefficients that are not necessarily bounded, but satisfy the condition for as-
ymptotic concentration. Using rather elementary methods, similar in spirit
to those in [15], we obtain results that are optimal unless further restrictions
are introduced. If it is not stated otherwise, we shall impose the following
standing assumption on the coefficients:

• C0, C1, . . . are independent and identically distributed (iid) com-
plex random variables, with absolutely continuous distribution and
E[|C0|t] = µ < ∞ for some t > 0.

We sometimes relax this assumption at the price of other more restrictive
hypotheses.

Our main object of study are expected discrepancies, and we proceed
as follows. We seek to control the discrepancy of zeros of a given ran-
dom polynomial in annular sectors, first in terms of m+(Pn) and m(Pn),
and then log(∥Pn∥2). To achieve this, we need to extend certain results of
Mignotte and others; this is done in Section 2. When estimating the ex-
pected discrepancy of zeros, we find it convenient to consider the quantity
E[log(maxk |Ck|)], since it appears in both upper and lower estimates on
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E[log(∥Pn∥2)] and is amenable to elementary estimates. Under our standing
assumption, we find that E[log(maxk |Ck|)] = O(log n). More precise state-
ments are given in Section 3. Our main result on the expected discrepancy
is contained in Theorem 3.3, and it deals with radial and angular parts of
zeros simultaneously:

E
[∣∣∣∣τn (Ar(α, β))−

β − α

2π

∣∣∣∣] ≤ C(r, t)

√
log(n+ 1) + logµ

n

as n → ∞; here, C(r, t) is a constant that only depends on r < 1 and on
t > 0. Inspired by the work of Borwein, Erdélyi, and Littmann [7], we also
derive a number of corollaries concerning the expected number of zeros of
random polynomials in polygons inscribed in the unit disk, and other nat-
ural sets. Under the additional assumption of a finite second moment, we
indicate how our results extend to random coefficients that are not neces-
sarily independent or identically distributed, yielding the same rate of decay
for the expected discrepancy. Finally, in Section 4, we present some elemen-
tary examples that illustrate that while E[log(maxk |Ck|)] can be smaller
in special cases, O(log n) is the correct order of magnitude if no additional
assumptions are made.

Full proofs are given in Section 5.

2. Annular discrepancies and norms on T

The theorem of Erdős and Turán has been extended by several authors
(see, for instance [3, 2, 19, 20, 21]). In particular, Mignotte showed that
one can use the weaker norm M+ in estimates like (1.3), see [19] and [2].
It is also desirable to include information about the radial behavior of the
roots. This can be easily done by using Jensen’s formula, which leads to the
following discrepancy estimate for the annular sectors (1.2).

Proposition 2.1. Let Pn(z) =
∑n

k=0 ckz
k, ck ∈ C, and assume c0cn ̸= 0.

For any r ∈ (0, 1) and 0 ≤ α < β < 2π, we have∣∣∣∣τn (Ar(α, β))−
β − α

2π

∣∣∣∣ ≤
√

2π

k

√√√√ 1

n
m+

(
Pn√
|c0cn|

)
(2.1)

+
2

n(1− r)
m

(
Pn√
|c0cn|

)
.

This estimate shows how close the zero counting measure τn is to µT. It
is often more convenient to use the standard Lp norms, especially the L2

norm. We mention the following elementary but useful estimate.

Proposition 2.2. If p ∈ (0,∞) and ∥Pn∥p ≥ 1, then

m+(Pn) ≤ log ∥Pn∥p + 1/(ep).
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3. Expected discrepancies for random polynomials

3.1. Expectation of norms and the maximum of coefficients. In or-
der to estimate the expected discrepancy of zeros for classes of random poly-
nomials, we apply Propositions 2.1 and 2.2, which requires an estimate on

E[log ∥Pn∥2] =
1

2
E

[
log

(
n∑

k=0

|Ck|2
)]

.

Expected values of Lp norms and Mahler measures for random polynomials
have been considered by a number of authors. For instance, Fielding (see
[13]) has computed E[logM(Pn)] for polynomials with coefficents uniformly
distributed on T; he obtains

E[logM(Pn)] =
1

2
log(n+ 1)− γ

2
+O(n−1/2+δ)

for arbitrary δ > 0. Here, γ denotes Euler’s constant. Expected values of
Lp norms of random polynomials have also been studied by Borwein and
Lockhart, and Choi and Mossinghoff (see [8, 9]), among others.

It is elementary that

max
k=0,...,n

|Ck| ≤

(
n∑

k=0

|Ck|p
)1/p

≤ (n+ 1)1/p max
k=0,...,n

|Ck|,

and from this it follows that

(3.1) E[log(max
k

|Ck|)] ≤ E[log ∥Pn∥2] ≤
1

2
log(n+ 1) + E[log(max

k
|Ck|)].

Hence, we obtain an upper estimate for the discrepancy in terms of

1

2
log(n+ 1) + E

[
log max

k=0,...,n
|Ck|

]
− E[log |C0|],

and thus the same order of decay as for bounded coefficients if we can show,
for instance, that E [log(maxk=0,...,n |Ck|)] = O(log n). On the other hand,
the lower bound in (3.1) means that approaching the expected discrepancy
via ℓq norms of coefficients (which bound ∥Pn∥p from below for 1 ≤ p ≤ 2)
will not work if the expected value is too large; in view of Ibragimov and
Zaporozhets’ result [17], the roots do not exhibit (almost sure) asymptotic
clustering if E[log+ |C0|] = ∞.

3.2. Expectation of log(maxk |Ck|). We set RC(r) = P(|C0| ≤ r) and let
ρC(r) = R′

C(r), r ∈ [0,∞), denote the density of the non-negative random
variable |C0|, which exists and satisfies

∫∞
0 rtρC(r)dr < ∞ by our standing

assumptions. Indeed, if ρ(r, θ) is the density of C0 with respect to the

area measure, then we can write P(|C0| ≤ r) =
∫ r
0

(∫ 2π
0 s ρ(s, θ) dθ

)
ds =∫ r

0 ρC(s) ds. As is standard in order statistics (see [10]), we now express the
density of the random variable Yn = maxk=0,...,n |Ck| in terms of ρC .
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Lemma 3.1. Suppose n ≥ 1. Then the density of Yn = maxk=0,...,n |Ck| is
given by

(3.2) ρYn(r) = (n+ 1)ρC(r)[RC(r)]
n.

Using Lemma 3.1, we proceed by estimating

E [log Yn] =

∫ ∞

0
(n+ 1)ρC(r)[RC(r)]

n log r dr,

or equivalently, with x(u) = R−1
C (u),

E [log Yn] =

∫ 1

0
(n+ 1) log(x(u))un du.

We recall that E[|C0|t] = µ < ∞, and Jensen’s inequality now yields

Lemma 3.2. We have

(3.3) E [log Yn] ≤
1

t
(log(n+ 1) + log µ).

3.3. Main Results. Combining Propositions 2.1 and 2.2 with (3.1), and
using Lemma 3.2, we obtain the desired expected discrepancy result.

Theorem 3.3. If the coefficients of Pn(z) =
∑n

k=0Ckz
k are iid complex

random variables with absolutely continuous distribution and E[|C0|t] < ∞,
then we have for all large n ∈ N that

(3.4) E
[∣∣∣∣τn (Ar(α, β))−

β − α

2π

∣∣∣∣]

≤

(√
2π

k
+

2

1− r

)√
t+2
2t log(n+ 1) + 1

t logE[|C0|t] + 1
2e − E[log |C0|]

n
.

Note that for any set E ⊂ C, the number of zeros of the polynomial
Pn in E is given by nτn(E). Thus our results may be stated in terms of
the expected number of zeros in certain sets (see [1, Ch. 5] for a general
theorem). We give several examples of such statements below. We point
out that for some special families of coefficients, explicit formulas for the
density of zeros in a given set are available, see [5], [12], and the references
therein. The following result states that the expected number of zeros in
any compact set that does not meet T is of the order O(log n) as n → ∞.

Proposition 3.4. Let E ⊂ C be a compact set such that E ∩T = ∅, and set
d := dist(E,T). The expected number of zeros of Pn in E satisfies

E [nτn(E)] ≤ d+ 1

d

(
t+ 2

t
log(n+ 1) +

2

t
logE[|C0|t]− 2E[log |C0|]

)
.

(3.5)

If the set E does not have a “close” contact with the unit circle T, then
the expected number of zeros in E still remains of the order o(n) as n → ∞.
In particular, we have the following
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Proposition 3.5. If E is a polygon inscribed in T, then the expected number
of zeros of Pn in E satisfies

E [nτn(E)] = O(
√

n log n) as n → ∞.(3.6)

An estimate of this type for deterministic polynomials with restricted
coefficients was proved in [6]. Another estimate for the zeros of deterministic
polynomials in the disks Dr(w) = {z ∈ C : |z−w| < r}, w ∈ T, is contained
in [7]. We provide an analogue for the random polynomials below.

Proposition 3.6. For Dr(w) with w ∈ T, r < 2, the expected number of
zeros of Pn in Dr(w) satisfies

E [nτn(Dr(w))] =
2 arcsin(r/2)

π
n+O

(√
n log n

)
as n → ∞.(3.7)

3.4. Remarks on the non-iid case. Under additional assumptions on
ρC , we can say more. For instance, it is known (see [10, Chapter 4]) that if
Var(|C0|) = σ2 < ∞, then

E[Yn] ≤ µ+ σ
n√

2n+ 1
,

and that equality can be achieved for each n with a particular choice of
distribution. In this case, (3.3) takes on the asymptotic form E[log Y C

n ] ≤
(1/2) log n+O(1).

Moreover, the requirement that C0, C1, . . . be independent and identically
distributed can be dropped if the second moments of their moduli are finite.
Namely, if

(3.8) E[|C0|] = E[|C1|] = · · · = µ and Var(|C0|) = Var(|C1|) = · · · = σ2,

then it follows from a result of Arnold and Groeneveld (see [10, Chapter 5])
that

(3.9) E[Yn] ≤ µ+ σ
√
n.

Returning once more to (3.1), and applying Jensen’s inequality, we deduce
the following version of our result on expected discrepancies (which can then
be applied to extend the other results in the previous subsection).

Theorem 3.7. If the (not necessarily iid) coefficients of Pn(z) =
∑n

k=0Ckz
k

have absolutely continuous distributions, and satisfy (3.8), then

E
[∣∣∣∣τn (Ar(α, β))−

β − α

2π

∣∣∣∣]

≤

(√
2π

k
+

2

1− r

)√
log(n+ 1)− 1

2E[log |C0|]− 1
2E[log |Cn|] +O(1)

n
,

as n → ∞.
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4. Examples

4.1. Gaussian coefficients. Let C0, C1, . . . be iid with density ρG given by

(4.1) dµG(z) = ρG(z)dA(z) = e−r2 rdrdθ

π
;

that is, the coefficients are simply centered two-dimensional Gaussians. We
readily compute that E[log |C0|] = −γ/2.

We determine the asymptotics of E[log(Y G
n )] by elementary computations.

Lemma 4.1. Let n ≥ 1. Then

E[log Y G
n ] = 2(n+ 1)

∫ ∞

0
x log x e−x2

(1− e−x2
)ndx,

and, asymptotically,

E[log Y G
n ] = −γ

2
+

1

2

n+1∑
k=2

(−1)k
(

n+ 1
k

)
log k ≤ log log n+O(1), n → ∞.

We obtain a slightly better expected discrepancy result (cf. [4, Sect. 3]).

Proposition 4.2. For large enough n,

E
[∣∣∣∣τn (Ar(α, β))−

β − α

2π

∣∣∣∣] ≤
(√

2π

k
+

2

1− r

)√
log n+ log log n+O(1)

n
.

4.2. Heavy tails. We now turn to the case of heavy-tailed coefficients.
Let α > 1 and C0, C1, . . . be iid with a Pareto-type density

(4.2) ρPα(z) =

{
α−1
2rα+1 , |z| > 1,
0, otherwise.

Note that E[|C0|] = (α− 1)/(α− 2) for α > 2 and is infinite otherwise, and
that E[log |C0|] = E[log+ |C0|] < ∞ for every α > 0.

In view of (3.2), we obtain the following.

Lemma 4.3. Let n ≥ 1. Then

E[log(Y Pα
n )] = (α− 1)(n+ 1)

∫ ∞

1

log x

xα
(1− x−(α−1))ndx =

1

α− 1
Hn+1,

where Hn =
∑n

k=1 1/k is the nth harmonic number.

It is well-known that Hn = log n+O(1), and so the estimate (3.3) cannot
be improved in general.

5. Proofs

Let Dr = {z ∈ C : |z| < r}, r > 0. We need the following consequence of
Jensen’s formula.
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Lemma 5.1. If Pn(z) =
∑n

k=0 ckz
k, ck ∈ C and c0cn ̸= 0, then for any

r ∈ (0, 1) we have

(5.1) τn
(
Dr

)
≤ m(Pn)− log |c0|

n(1− r)

and

(5.2) τn
(
C \D1/r

)
≤ m(Pn)− log |cn|

n(1− r)
.

Proof. Let Pn(z) = cn
∏n

k=1(z−zk). Using Jensen’s formula, we obtain that

m(Pn)− log |c0| =
1

2π

∫ 2π

0
log |Pn(e

iθ)|dθ − log |c0| =
∑

|zk|<1

log
1

|zk|

≥
∑

|zk|≤r

log
1

|zk|
≥ nτn

(
Dr

)
log

1

r
≥ nτn

(
Dr

)
(1− r).

Thus the first estimate follows, and we can apply it to the reciprocal polyno-
mial P ∗

n(z) = znPn(1/z̄). Note that the zeros of P ∗
n are 1/z̄k, k = 1, . . . , n,

and its constant term is c̄n. Since |P ∗
n(z)| = |Pn(z)| for |z| = 1, we have that

m(P ∗
n) = m(Pn). Hence (5.1) applied to P ∗

n now gives that

τn
(
C \D1/r

)
≤ m(P ∗

n)− log |c̄n|
n(1− r)

=
m(Pn)− log |cn|

n(1− r)
.

�

Proof of Proposition 2.1. Under the assumptions of this proposition, the re-
sult of Mignotte [19] (see also [2]) gives

∣∣∣∣τn (S(α, β))− β − α

2π

∣∣∣∣ ≤
√

2π

k

√√√√ 1

n
m+

(
Pn√
|c0cn|

)
.

On the other hand, applying Lemma 5.1, we obtain that

τn (C \Ar(α, β)) ≤
2

n(1− r)
m

(
Pn√
|c0cn|

)
.(5.3)

Since τn (Ar(α, β)) = τn (S(α, β))−τn (C \Ar(α, β)) , (2.1) follows as a com-
bination of the above estimates. �

Proof of Proposition 2.2. Consider the set E := {θ ∈ [0, 2π) : |Pn(e
iθ)| ≥

1}, and denote its length by |E|. Our assumption ∥Pn∥p ≥ 1 implies that
|E| ̸= 0. We use concavity of log and Jensen’s inequality in the following
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estimate

m+(Pn) =
1

2π

∫ 2π

0
log+ |Pn(e

iθ)| dθ =
1

2πp

∫
E
log |Pn(e

iθ)|p dθ

=
|E|
2πp

∫
E
log |Pn(e

iθ)|p dθ

|E|
≤ |E|

2πp
log

(∫
E
|Pn(e

iθ)|p dθ

|E|

)
=

|E|
2πp

(
log

2π

|E|
+ log

(
1

2π

∫
E
|Pn(e

iθ)|p dθ
))

≤ |E|
2πp

log
2π

|E|
+

|E|
2πp

log

(
1

2π

∫ 2π

0
|Pn(e

iθ)|p dθ
)

≤ 1

p
sup

x∈(0,1]
x log

1

x
+ log ∥Pn∥p =

1

ep
+ log ∥Pn∥p.

�

Proof of Lemmas 3.1 and 3.2. In view of the fact that the Ck’s are indepen-
dent, we have

FYn(r) = P(Yn ≤ r) = P(|C0| ≤ r, |C1| ≤ r, . . . , |Cn| ≤ r)

= P(|C0| ≤ r)P(|C1| ≤ r) · · ·P(|Cn| ≤ r),

and since they are identically distributed, FYn(r) = [P(|C0| ≤ r)]n+1. The
statement of Lemma 3.1 now follows upon differentiation.

By Jensen’s inequality,

E[log Yn] ≤
1

t
logE[Y t

n],

and using (3.2), and RC(x) ≤ 1, we obtain

E[Y t
n] =

∫ ∞

0
xt(n+ 1)ρC(x)[RC(x)]

n dx ≤ (n+ 1)

∫ ∞

0
xtρC(x)dx

= (n+ 1)E[|C0|t],

�

Proofs of Theorems 3.3 and 3.7. We first apply Proposition 2.1 and Jensen’s
inequality to obtain

E
[∣∣∣∣τn (Ar(α, β))−

β − α

2π

∣∣∣∣] ≤
√

2π

k

√√√√ 1

n
E

[
m+

(
Pn√
|C0Cn|

)]

+
2

n(1− r)
E

[
m

(
Pn√
|C0Cn|

)]
.
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A combination of Proposition 2.2 with (3.1) and Lemma 3.2 gives that

E

[
m+

(
Pn√
|C0Cn|

)]
≤ E

[
log

∥∥∥∥∥ Pn√
|C0Cn|

∥∥∥∥∥
2

]
+

1

2e

≤ log(n+ 1)

2
+ E

[
log max

k=0,...,n
|Ck|

]
− E[log |C0|] +

1

2e

≤ t+ 2

2t
log(n+ 1) +

1

t
logE[|C0|t]− E[log |C0|] +

1

2e
.(5.4)

To justify the use of Proposition 2.2, we note that
∥∥∥Pn/

√
|C0Cn|

∥∥∥
2
≥ 1,

which is a consequence of the fact that ∥Pn∥2 ≥ |Ck|, k = 0, . . . , n.
Using (1.4), (3.1) and Lemma 3.2, we obtain that

E

[
m

(
Pn√
|C0Cn|

)]
≤ E

[
log

∥∥∥∥∥ Pn√
|C0Cn|

∥∥∥∥∥
2

]

≤ log(n+ 1)

2
+ E

[
log max

k=0,...,n
|Ck|

]
− E[log |C0|]

≤ t+ 2

2t
log(n+ 1) +

1

t
logE[|C0|t]− E[log |C0|].

Thus (3.4) follows from the above estimates.
The proof of Theorem 3.7 is similar. We first argue as above, bounding

the discrepancy in terms of E
[
log
∥∥∥Pn/

√
|C0Cn|

∥∥∥
2

]
. We then have

E
[
log
∥∥∥Pn/

√
|C0Cn|

∥∥∥
2

]
≤ log(n+ 1)

2
+ E[log(max

k
|Ck|)]

− E[log |C0|] + E[log |Cn|]
2

.

We now appeal to (3.9) and Jensen’s inequality instead of Lemma 3.2 to
obtain

E[log(max
k

|Ck)] ≤ log[µ+ σ
√
n] ≤ 1

2
log(n+ 1) +O(1),

and the theorem follows. �
Proof of Proposition 3.4. Using Lemma 5.1, we obtain as in (5.3) that

τn (C \Ar(0, 2π)) ≤
2

n(1− r)
m

(
Pn√
|C0Cn|

)
.

If r is selected so that E ⊂ C \Ar(0, 2π), then

E [nτn(E)] ≤ 2

1− r
E

[
m

(
Pn√
|C0Cn|

)]
≤ 2

1− r
E

[
log

∥∥∥∥∥ Pn√
|C0Cn|

∥∥∥∥∥
2

]

≤ 2

1− r

(
t+ 2

2t
log(n+ 1) +

1

t
logE[|C0|t]− E[log |C0|]

)
,
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where we used (1.4), (3.1) and Lemma 3.2. An elementary argument shows
that r = 1/(dist(E,T) + 1) implies E ⊂ C \Ar(0, 2π). �
Proof of Proposition 3.5. Suppose that the vertices of our polygon are lo-
cated at the points eiθj , j = 1, . . . , k. It follows from a simple Euclidean
geometry consideration that the polygon is contained in the union of the
closed disk U = {z ∈ C : |z| ≤ 1 −

√
log n/n} and sectors Sj = {z ∈ C :

| arg z − θj | < C
√
log n/n}, for each n ∈ N, where C > 0 is a constant that

depends only on the polygon. Note that Proposition 3.4 applies to U , so
that (3.5) gives

E [nτn(U)] = O
(√

n log n
)

as n → ∞.(5.5)

We recall the result of Mignotte [19] (see also [2])∣∣∣∣τn (S(α, β))− β − α

2π

∣∣∣∣ ≤
√

2π

k

√√√√ 1

n
m+

(
Pn√
|C0Cn|

)
,

and apply it to each sector Sj . It follows from the above estimate and
Jensen’s inequality that

E [nτn(Sj)] = O
(√

n log n
)
+O


√√√√nE

[
m+

(
Pn√
|C0Cn|

)] as n → ∞,

for each j = 1, . . . , k. Using the already available inequality (5.4), we con-
clude that the second term is of the same order as the first, so that

E [nτn(Sj)] = O
(√

n log n
)

as n → ∞,

for each j = 1, . . . , k. Thus (3.6) is a consequence of (5.5) and the above
equation. �
Proof of Proposition 3.6. We follow ideas similar to those used in the proof
of Proposition 3.5. Note that the intersection of the disk Dr(w) and T is
an arc with endpoints eiα and eiβ , where α < β < α + 2π and β − α =
4arcsin(r/2). Furthermore, Dr(w) is contained in the union of the circular

sector S = {z ∈ C : α−C
√

log n/n < arg z < β+C
√

log n/n}, where C > 0

depends only on r, and the set F = {z ∈ C : |z| ≤ 1 −
√

log n/n or |z| ≥
1 +

√
log n/n}. Proposition 3.4 implies that

E [nτn(F )] = O
(√

n log n
)

as n → ∞.

On the other hand, Mignotte’s estimate gives that

E
[
nτn (S)−

β − α

2π
n

]
= O

(√
n log n

)
as n → ∞,

arguing as in the proof of Proposition 3.5. Combining the last two equations,
we arrive at (3.7). �
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Proofs of Lemmas 4.1 and 4.3. The first statement follows from Lemma 3.1

and the fact that RG(x) =
∫ x
0 r e−r2dr = (1− e−x2

)/2; the series expression
is readily obtained by using the binomial theorem.

To analyze the asymptotics of E[log Y G
n ], we first perform the obvious

change of variables u = exp(−x2) to obtain

E[log Y G
n ] =

n+ 1

2

∫ 1

0
log log

(
1

u

)
(1− u)n du

= I1(n) + I2(n) =

∫ 1
(n+1)2

0
+

∫ 1

1
(n+1)2

.

Since log log(1/u) is decreasing, for all sufficiently large n, the latter integral
admits the estimate

I2(n) ≤
(n+ 1) log log(n+ 1)2

2

∫ 1

1
(n+1)2

(1− u)ndu

=
log log(n+ 1)2

2

(
1− 1

(n+ 1)2

)n+1

≤ log log(n+ 1)2

2
.

We next show that the contribution arising from the first integral is negli-
gible. An integration by parts shows that∫ x

0
log log

(
1

u

)
du = x log log

(
1

x

)
− li(x), x > 0,

where li(x) =
∫ x
0 1/ log(u)du is the logarithmic integral. We use this identity

together with the crude estimate (1− u)n ≤ 1 to obtain

I1(n) ≤
n+ 1

2

∫ 1
(n+1)2

0
log log

(
1

u

)
du(5.6)

=
1

2(n+ 1)
log log(n+ 1)2 − n+ 1

2
li

(
1

(n+ 1)2

)
.

The first term on the right-hand side in (5.6) clearly tends to zero as n → ∞.
We then note that the function x 7→ li(x2)/x is continuous on (0, 1), and
by L’Hôpital’s rule, limx→0 li(x

2)/x = limx→0 x/ log(x) = 0. Hence I1(n) =
o(1) as required.

For ρPα , we have

E[log(Y Pα
n )] = (n+ 1)

∫ 1

0
log

[
1

(1− u)
1

α−1

]
un du

=
n+ 1

α− 1

∫ 1

0
log

1

1− u
un du,

and the result follows from Euler’s formula Hn =
∫ 1
0

1−un

1−u du and an inte-
gration by parts. �
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