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1 The Schur-Szegő composition and polynomial inequalities

We survey and develop a large variety of polynomial inequalities for the integral
norms on the unit disk. An especially important tool in this study is the Schur-
Szegő composition (or convolution) of polynomials, which is defined via certain
coefficient multipliers. In particular, it played prominent role in the development of
polynomial inequalities in Hardy spaces. Let Cn[z] be the set of all polynomials of
degree at most n with complex coefficients. Define the standard Hardy space H p

norm for Pn ∈ Cn[z] by

‖Pn‖H p =

(
1

2π

∫ 2π

0
|Pn(eiθ )|p dθ

)1/p

, 0 < p < ∞.

It is well known that the supremum norm of the space H∞ satisfies

‖Pn‖H∞ = max
|z|=1
|Pn(z)|= lim

p→∞
‖Pn‖H p .
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We note the other limiting case [12, p. 139] of the so-called H0 norm:

‖Pn‖H0 = exp
(

1
2π

∫ 2π

0
log |Pn(eiθ )|dθ

)
= lim

p→0+
‖Pn‖H p .

It is also known as the contour geometric mean or the Mahler measure of a polyno-
mial Pn ∈Cn[z]. An application of Jensen’s inequality for Pn(z) = an ∏

n
j=1(z− z j) ∈

Cn[z] immediately gives that

‖Pn‖H0 = |an|
n

∏
j=1

max(|z j|,1).

The above explicit expression is very convenient, and it is frequently used in our
paper and other literature. This direct connection with the roots of Pn explains why
the Mahler measure and its close counterpart the Weil height play an important role
in number theory, see a survey of Smyth [20].

For a polynomial Λn(z) = ∑
n
k=0 λk

(n
k

)
zk ∈Cn[z], we define the Schur-Szegő com-

position with another polynomial Pn(z) = ∑
n
k=0 akzk ∈ Cn[z] by

ΛPn(z) :=
n

∑
k=0

λkakzk. (1)

If Λn is a fixed polynomial, then ΛPn is a multiplier (or convolution) operator acting
on a space of polynomials Pn. More information on the history and applications of
this composition may be found in [6], [1], [2] and [18]. De Bruijn and Springer [6]
proved a remarkable inequality stated below.

Theorem 1. Suppose that Λn ∈ Cn[z] and Pn ∈ Cn[z]. If ΛPn ∈ Cn[z] is defined by
(1), then

‖ΛPn‖H0 ≤ ‖Λn‖H0‖Pn‖H0 . (2)

If Λn(z) = (1+ z)n then ΛPn(z) ≡ Pn(z) and ‖Λn‖H0 = 1, so that (2) turns into
equality, showing sharpness of Theorem 1. This result was not sufficiently recog-
nized for a long time. In fact, Mahler [14] proved the following special case of (2)
nearly 15 years later by using a more complicated argument.

Corollary 1. ‖P′n‖H0 ≤ n‖Pn‖H0

We add that equality holds in Corollary 1 if and only if the polynomial Pn has all
zeros in the closed unit disk, and present a proof of this fact in Section 3. To see how
Theorem 1 implies the above estimate for the derivative, just note that if Λn(z) =
nz(1+ z)n−1 = ∑

n
k=0 k

(n
k

)
zk, then ΛPn(z) = zP′n(z) and ‖Λn‖H0 = n. Furthermore,

(2) immediately answers the question about a lower bound for the Mahler measure
of derivative raised in [9, pp. 12 and 194]. Following Storozhenko [21], we consider
P′n(z) = ∑

n−1
k=0 akzk and write
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1
z
(Pn(z)−Pn(0)) =

n−1

∑
k=0

ak

k+1
zk = ΛP′n(z),

where

Λn−1(z) =
n−1

∑
k=0

1
k+1

(
n−1

k

)
zk =

(1+ z)n−1
nz

.

The result of de Bruijn and Springer (2) gives

Corollary 2. [21] For any Pn ∈ Cn[z], we have

‖Pn(z)−Pn(0)‖H0 ≤ cn ‖P′n‖H0 ,

where
cn :=

1
n
‖(z+1)n−1‖H0 =

1
n ∏

n/6<k<5n/6
2sin

kπ

n
.

It is easy to see that cn ≈ (1.4)n as n→∞. Moreover, equality holds in Corollary
2 for Pn(z) = (z+1)n−1.

Another interesting consequence of (2) is the well known estimate for coefficients
(usually attributed to Mahler).

Corollary 3. If Pn(z) =
n

∑
k=0

akzk then

|ak| ≤
(

n
k

)
‖Pn‖H0 , k = 0, . . . ,n.

The above inequality follows at once from (2) by letting Λn(z) =
(n

k

)
zk, k =

1, . . . ,n, and taking into account that ‖ΛPn‖H0 = ‖akzk‖H0 = |ak| and ‖Λn‖H0 =
(n

k

)
.

Many other inequalities may be obtained from Theorem 1, including the one
below, found in [16].

Corollary 4. Let Pn(z) =
n

∑
k=0

akzk and m = 0, . . . ,n. We have

∥∥∥∥∥∑
k 6=m

akzk

∥∥∥∥∥
H0

≤
∥∥∥∥(1+ z)n−

(
n
m

)
zm
∥∥∥∥

H0
‖Pn‖H0 .

In particular, if m= 0 then ‖(1+z)n−1‖H0 = ∏
n/6<k<5n/6

2sin
kπ

n
≈ (1.4)n as n→∞.

Again, the proof is a simple application of (2) with Λn(z) = (1+z)n−
(n

m

)
zm, so that

λm = 0 and λk = 1, k 6= m.

An important generalization of Theorem 1 for the H p norms was obtained by
Arestov [1].
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Theorem 2. Suppose that Λn ∈ Cn[z] and Pn ∈ Cn[z]. If ΛPn ∈ Cn[z] is defined by
(1), then

‖ΛPn‖H p ≤ ‖Λn‖H0‖Pn‖H p , 0≤ p≤ ∞. (3)

In fact, Arestov obtained an even more general inequality, and also described the
set of extremal polynomials for it, see [1] for details. One of the main motivations for
such a result was the Bernstein inequality for derivative of a polynomial in H p, p ∈
(0,1).

Corollary 5. For any Pn ∈ Cn[z] we have

‖P′n‖H p ≤ n‖Pn‖H p , 0≤ p≤ ∞. (4)

If p > 0 then equality holds in (4) only for polynomials of the form Pn(z) = czn, c ∈
C.

This inequality was originally proved by Bernstein for p = ∞ [5, 15, 18], and
generalized to p ≥ 1 by Zygmund, see [24]. For p = 0, (4) reduces to the result of
de Bruijn-Springer-Mahler stated in Corollary 1. The case p ∈ (0,1) remained open
for a long time, and was finally settled by Arestov [1]. A more complete history of
this result can be found in the book [18] and the recent survey [3].

Lower bounds for the derivative are also of interest. While Theorem 2 immedi-
ately gives the analogue of Corollary 2 for H p (in the same manner as before), the
resulting constant cn of Corollary 2 is no longer sharp. In fact, one can prove much
better estimates.

Theorem 3. If Pn ∈ Cn[z] then

‖Pn−Pn(0)‖H∞ ≤ π ‖P′n‖H1 (5)

and

‖Pn−Pn(0)‖H∞ ≤ π n1/p−1‖P′n‖H p , 0 < p < 1. (6)

The constant π in (5) cannot be replaced by a smaller number.

A different application of Theorem 2 gives the solution of the Chebyshev mini-
mization problem in H p.

Corollary 6. Any monic polynomial Pn(z) = zn + . . . ∈ Cn[z] satisfies

‖Pn‖H p ≥ 1, 0≤ p≤ ∞. (7)

If p > 0 then equality holds in (7) only for the monomial Pn(z) = zn.

The case of p = ∞ in (7) reduces to the classical Chebyshev problem for the unit
disk. It is readily seen that for p = 0 equality holds in Corollary 6 if and only if Pn
has all zeros in the closed unit disk.
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Yet another useful application of (3) is the following sharp estimate of the growth
for the circular means of polynomials.

Corollary 7. For any Pn ∈ Cn[z] and any R > 1, we have

‖Pn(Rz)‖H p ≤ Rn‖Pn‖H p , 0≤ p≤ ∞. (8)

If p > 0 then equality holds in (8) only for polynomials of the form Pn(z) = czn, c ∈
C.

The above estimate is a special case of the classical Bernstein-Walsh Lemma on
the growth of polynomials outside the set, when p = ∞.

If we use Theorem 2 to estimate the coefficients of a polynomial as in Corollary
3, then the result is certainly valid, but is not best possible. Given any polynomial
Pn(z) = ∑

n
k=0 akzk, we obtain that

|ak| ≤
(

n
k

)
‖Pn‖H p , k = 0, . . . ,n, 0≤ p≤ ∞.

Apart from the cases k = 0 and k = n, this is far from being precise. In particular,
recall the well known elementary (and sharp) estimate:

|ak| ≤ ‖Pn‖H1 , k = 0, . . . ,n.

Many more interesting estimates for the coefficients of a polynomial may be found
in Chapter 16 of [18].

It is useful to have a bound for the regular convolution (or the Hadamard product)
of two polynomials, in addition to the Schur-Szegő convolution we mainly consider
here. In fact, one version of such an estimate follows directly from Theorem 2, as
observed by Tovstolis [22].

Theorem 4. If Pn(z) = ∑
n
k=0 akzk ∈ Cn[z] and Qn(z) = ∑

n
k=0 bkzk ∈ Cn[z] then we

have for Pn ∗Qn(z) = ∑
n
k=0 akbkzk that

‖Pn ∗Qn‖H p ≤ ‖Θn‖H0‖Pn‖H0‖Qn‖H p , 0≤ p≤ ∞,

where

Θn(z) =
n

∑
k=0

(
n
k

)2

zk and lim
n→∞
‖Θn‖1/n

H0 ≈ 3.20991230072 . . . .

We conclude this section with a bound for the derivative of a polynomial without
zeros in the unit disk that was originally proved by Lax for p = ∞, then by de Bruijn
for p≥ 1, and finally by Rahman and Schmeisser for all p≥ 0. See [18, p. 553] for
a detailed account.

Theorem 5. If Pn ∈ Cn[z] has no zeros in the unit disk, then
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‖P′n‖H p ≤ n
‖z+1‖H p

‖Pn‖H p , 0≤ p≤ ∞,

where

‖z+1‖H p = 2
(

Γ (p/2+1/2)√
π Γ (p/2+1)

)1/p

, 0 < p < ∞,

‖z+1‖H0 = 1 and ‖z+1‖H∞ = 2.

Note that Theorem 5 is sharp as equality holds for polynomials of the form
Pn(z) = azn + b with |a| = |b| 6= 0. Since ‖z+ 1‖H p > 1 for p > 0, this result is an
improvement over the standard Bernstein inequality stated in Corollary 5. Arestov
[2] considered generalizations of Theorem 5 in the spirit of Theorem 2.

2 Polynomial inequalities in Bergman spaces

Polynomial inequalities for Bergman spaces (with norms defined by the area mea-
sure) are not developed as well as those for Hardy spaces considered in the pre-
vious section. Given a non-negative radial function w(z) = w(|z|), z ∈ D, with
bw =

∫∫
D wdA > 0, we define the weighted Bergman space Ap

w norm by setting

‖Pn‖Ap
w

:=
(

1
bw

∫∫
D
|Pn(z)|p w(z)dA(z)

)1/p

, 0 < p < ∞,

where dA is the Lebesgue area measure. If w≡ 1 then we use the standard notation
Ap for the regular Bergman space, with bw = π. Detailed information on Bergman
spaces can be found in the books [8] and [13]. We also define the A0

w norm by

‖Pn‖A0
w

:= exp
(

1
bw

∫∫
D

log |Pn(z)|w(z)dA(z)
)
.

This norm was studied in [16] and [17], and it has the same relation to Bergman
spaces as H0 norm to Hardy spaces:

‖Pn‖A0
w
= lim

p→0+
‖Pn‖Ap

w
,

see [12, p. 139]. If w ≡ 1 then the following explicit form for ‖Pn‖A0 is found in
[16, 17].

Theorem 6. Let Pn(z) = an ∏
n
j=1(z− z j) = ∑

n
k=0 akzk ∈ Cn[z]. If Pn has no roots in

D, then ‖Pn‖A0 = |a0|. Otherwise,
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‖Pn‖A0 = ‖Pn‖H0 exp

1
2 ∑
|z j |<1

(|z j|2−1)

 . (9)

We immediately obtain the following comparison result from Theorem 6.

Corollary 8. For any Pn ∈ Cn[z], we have

e−n/2‖Pn‖H0 ≤ ‖Pn‖A0 ≤ ‖Pn‖H0 .

Equality holds in the lower estimate if and only if Pn(z) = czn, c ∈ C. The upper
estimate turns into equality if and only if Pn has no zeros in D.

We state the following generalization of Theorem 2 for the weighted Bergman
space.

Theorem 7. Suppose that Λn ∈ Cn[z] and Pn ∈ Cn[z]. If ΛPn ∈ Cn[z] is defined by
(1), then

‖ΛPn‖Ap
w
≤ ‖Λn‖H0‖Pn‖Ap

w
, 0≤ p≤ ∞. (10)

Note that equality holds in (10) for any polynomial Pn ∈ Cn[z] when Λn(z) = (1+
z)n = ∑

n
k=0
(n

k

)
zk, because ΛPn ≡ Pn and ‖(1+z)n‖H0 = 1. This result allows to treat

many problems in a unified way, and it has numerous interesting consequences.
We start with the following version of the Bernstein inequality for derivative of a

polynomial in Bergman spaces.

Theorem 8. For any Pn ∈ Cn[z], we have that

‖zP′n‖Ap
w
≤ n‖Pn‖Ap

w
, 0≤ p < ∞.

If p> 0 then equality holds here only for polynomials on the form Pn(z)= czn, c∈C.
The same is true for p = 0 provided 0 ∈ suppw.

By writing 0 ∈ suppw we mean that
∫∫
|z|<ε

wdA > 0 for all ε > 0, which is the
same as

∫
ε

0 w(r)dr > 0 ∀ε > 0. While the set of extremal polynomials remains the
same, note the difference in the left hand side comparing to the classical H p case.
It is clear that the norms of H∞ and A∞ coincide, and that Theorem 8 reduces to
Corollary 5 in this case.

Continuing in the parallel pattern to the results for H p spaces, we turn to the
lower bounds of the derivative for polynomials in Bergman norms. The approach
used in Corollary 2 can be applied to produce a similar inequality for Ap

w (with the
same constant cn). But that inequality is not sharp even for p = 0 now, in contrast
with Corollary 2. Instead, we follow different approaches to obtain the following
estimates for Ap.
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Theorem 9. Any Pn ∈ Cn[z] satisfies

‖Pn−Pn(0)‖A∞ ≤ n2/p−1

(2− p)1/p ‖P
′
n‖Ap , 1≤ p < 2, (11)

‖Pn−Pn(0)‖A∞ ≤

(
n

∑
k=1

1
k

)1/2

‖P′n‖A2 ≤
√

1+ logn‖P′n‖A2 , n ∈ N, (12)

and

‖Pn−Pn(0)‖A∞ ≤ p
p−2

‖P′n‖Ap , p > 2. (13)

Note that the first inequality in (12) turns into equality for Qn(z) = ∑
n
k=1 zk/k, as

‖Qn−Qn(0)‖A∞ =
n

∑
k=1

1
k

and ‖Q′n‖A2 =

(
n

∑
k=1

1
k

)1/2

.

We also show in the proof of Theorem 9 that the exponent of n in (11) is optimal.
Theorem 7 implies, among many other results, that zn has the smallest Bergman

space norm among all monic polynomials.

Corollary 9. If Pn ∈ Cn[z] is a monic polynomial, then

‖Pn‖Ap
w
≥ ‖zn‖Ap

w
, 0≤ p < ∞. (14)

If p > 0 then equality holds above only for Pn(z) = zn. This is also true for p = 0
provided 0 ∈ suppw.

For w≡ 1 we have

‖zn‖Ap =


e−n/2, p = 0,(

2
pn+2

)1/p

, 0 < p < ∞.

Since ‖Pn‖A∞ = ‖Pn‖H∞ , the inequality ‖Pn‖A∞ ≥ ‖zn‖∞ = 1 is well known, see
Corollary 6 and [5, 18].

Another useful estimate compares norms on the concentric disks DR := {z : |z|<
R} to that on the unit disk.

Corollary 10. If Pn ∈ Cn[z] and R≥ 1, then(
1

πR2

∫∫
DR

|Pn(z)|p dA(z)
)1/p

≤ Rn ‖Pn‖Ap , p ∈ (0,∞),

and
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exp
(

1
πR2

∫∫
DR

log |Pn(z)|dA(z)
)
≤ Rn ‖Pn‖A0 ,

where equality holds for Pn(z) = zn.

Again, in the case p = ∞, it is already known that maxz∈DR |Pn(z)| ≤ Rn‖Pn‖∞

(cf. Corollary 7 and [18]).
Another consequence relates ‖Pn‖p to the coefficients of Pn.

Corollary 11. If Pn(z) = ∑
n
k=0 akzk ∈ Cn[z] then

|ak| ≤
(
‖zk‖Ap

w

)−1
(

n
k

)
‖Pn‖Ap

w
, k = 0, . . . ,n, 0≤ p < ∞.

If w≡ 1 then we have

|ak| ≤
(

pk+2
2

)1/p(n
k

)
‖Pn‖Ap , k = 0, . . . ,n, 0 < p < ∞,

and

|ak| ≤ ek/2
(

n
k

)
‖Pn‖A0 , k = 0, . . . ,n.

If k = 0 or k = n, then the estimates of Corollary 11 are sharp for the correspond-
ing monomials, but this is not generally so because binomial coefficients grow very
fast with n. One can often improve the estimates of Corollary 11 by using the coeffi-
cient estimates for general functions from Bergman spaces. For example, the result
of Horowitz (cf. [8, p. 81]) states that for any f (z) = ∑

∞
k=0 akzk ∈ Ap we have(

∞

∑
k=0

|ak|q

(k+1)q−1

)1/q

≤ ‖ f‖Ap , 1 < p≤ 2, q = p/(p−1). (15)

It is certainly possible to extend the list of corollaries by choosing appropriate coef-
ficient multipliers through the polynomials Λn.

A somewhat different kind of inequalities are related to comparing the norms of
polynomials in Hardy and Bergman spaces. It is well known [8, 13] that for any
function f ∈ H p we have

‖ f‖Ap ≤ ‖ f‖H p , 0≤ p≤ ∞.

Clearly, we have equality for p = ∞. One can prove inequalities for polynomials in
the opposite direction, of the form

‖Pn‖H p ≤C(n, p)‖Pn‖Ap .

For example, we have by Corollary 8 that
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‖Pn‖H0 ≤ en/2 ‖Pn‖A0 ,

where equality holds for Pn(z) = zn.
The case p = 2 is easy to handle, because

‖Pn‖2
H2 =

n

∑
k=0
|ak|2 ≤ (n+1)

n

∑
k=0

|ak|2

k+1
= (n+1)‖Pn‖2

A2 ,

where Pn(z) = ∑
n
k=0 akzk. Hence we obtain that

‖Pn‖H2 ≤
√

n+1‖Pn‖A2 , Pn ∈ Cn[z],

with equality for Pn(z) = zn. It is plausible that more generally

‖Pn‖H p ≤ (pn/2+1)1/p ‖Pn‖Ap , 0 < p < ∞,

with equality for Pn(z) = zn.

Estimates for the Bergman space norms of zero-free polynomials in the unit disk
are not available to the best of our knowledge. We give a bound for the derivative of
a polynomial without zeros in the unit disk that generalizes Theorem 5.

Theorem 10. If Pn ∈ Cn[z] has no zeros in the unit disk, then(
1

bw

∫ 2π

0

∫ 1

0
|P′n(reiθ )|p ‖rz+1‖p

H p w(r)r drdθ

)1/p

≤ n‖Pn‖Ap
w
, 0 < p < ∞,

where bw =
∫∫

D wdA. In particular, we have

‖P′n‖Ap
w
≤ n‖Pn‖Ap

w
, 0≤ p≤ ∞.

It is a peculiar fact that the original form of the Bernstein inequality holds for the
zero-free polynomials in this case. However, the above estimates are not sharp, see
the proof of Theorem 10.

3 Proofs

We prove all new results, and also selected known results where reasonably concise
proofs can be given. In particular, the proofs of Theorems 1 and 2 are not included,
and may be respectively found in the original papers of de Bruijn and Springer
[6], and of Arestov [1]. An alternative exposition of methods that include a proof of
Theorem 2 is contained in Section 13.2 of [18]. Proofs of Corollaries 1-4 are already
outlined in Section 1. We start with characterization of all extremal polynomials in
Corollary 1 by the location of their zeros in the closed unit disk. We are not aware
of this observation made previously in the literature.
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Proof of Corollary 1. We present an alternative proof of this corollary, independent
of Theorem 1, that gives a description of all polynomials achieving equality. Con-
sider any Pn(z) = an ∏

n
k=1(z− zk) ∈ Cn[z], an 6= 0, and note that the inequality of

Corollary 1 is equivalent to the following

log
‖P′n‖H0

‖Pn‖H0
=

1
2π

∫ 2π

0
log
|P′n(eiθ )|
|Pn(eiθ )|

dθ ≤ logn.

On the other hand, we have that

1
2π

∫ 2π

0
log
∣∣∣∣P′n(eiθ )

Pn(eiθ )

∣∣∣∣ dθ =
1

2π

∫ 2π

0
log

∣∣∣∣∣ n

∑
k=1

1
eiθ − zk

∣∣∣∣∣ dθ .

Denote the above expression by u(z1, . . . ,zn), and observe that it is a continuous
function of the roots zk ∈C. Moreover, u is subharmonic in each zk ∈D,k = 1, . . . ,n,
by Theorem 2.4.8 of [19, p. 38]. It is also subharmonic in each variable in Ω := {z∈
C : |z| > 1}. Applying the maximum principle for u with respect to every variable
zk in the domains D and Ω , we obtain that the largest value of u is attained for a
polynomial Qn(z) = bnzn + . . . with all roots wk,k = 1, . . . ,n, located on the unit
circumference. But we can explicitly find that ‖Qn‖H0 = |bn| for such an extremal
polynomial. Since all zeros of Q′n are contained in the closed unit disk by the Gauss-
Lukas Theorem, we also find that ‖Q′n‖H0 = n|bn|. Thus the largest value of u is logn
for all n-tuples of points {zk}n

k=1, i.e., for all polynomials Pn. Furthermore, the same
argument gives that ‖Pn‖H0 = |an| and ‖P′n‖H0 = n|an| for any polynomial Pn with
all zeros in the closed unit disk, so that equality holds in Corollary 1 as claimed. If
Pn has a zero in Ω , then we have a strict inequality. Indeed, assume to the contrary
that zn ∈Ω and u(z1. . . . ,zn) = logn. Since u is subharmonic and achieves maximum
in Ω , it must be constant with respect to zn ∈Ω . Letting zn→∞ (and keeping other
roots fixed), we now have that

logn = lim
zn→∞

u(z1, . . . ,zn) =
1

2π

∫ 2π

0
log

∣∣∣∣∣n−1

∑
k=1

1
eiθ − zk

∣∣∣∣∣ dθ

=
1

2π

∫ 2π

0
log

∣∣∣∣∣R′n−1(e
iθ )

Rn−1(eiθ )

∣∣∣∣∣ dθ ,

where Rn−1(z) = ∏
n−1
k=1(z− zk) is of degree n− 1. This is in contradiction with the

already proved inequality

log
‖R′n−1‖H0

‖Rn−1‖H0
=

1
2π

∫ 2π

0
log

∣∣∣∣∣R′n−1(e
iθ )

Rn−1(eiθ )

∣∣∣∣∣ dθ ≤ log(n−1).

ut
Proof of Corollary 5. Inequality (4) is obtained from (3) by using the polynomial
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Λn(z) = nz(1+ z)n−1 =
n

∑
k=0

k
(

n
k

)
zk.

Indeed, given any polynomial Pn(z) = ∑
n
k=0 akzk ∈Cn[z], we obtain from the defini-

tion of the Schur-Szegő composition in (1) that

ΛPn(z) =
n

∑
k=0

kakzk = zP′n(z).

Furthermore, it is immediate that ‖Λn‖H0 = n, so that (4) follows.
The uniqueness part for 0 < p < ∞ is a consequence of Theorem 5 from [1], be-

cause the coefficients of Λn(z) =∑
n
k=0 λkzk satisfy λn = n> λ0 = 0, and the function

φ(u) = up clearly satisfies that uφ ′(u) is strictly increasing. The case of p = ∞ is
classical. Uniqueness is also explicitly discussed in Theorem 6 of [10]. ut

Proof of Theorem 3. Let f be analytic in D, with the derivative f ′ in the Hardy
space H1, and apply the Fejér-Riesz inequality, see [7, p. 46]. For any r ∈ [0,1] and
θ ∈ [0,2π), we obtain that

| f (reiθ )− f (0)|=
∣∣∣∣∫ r

0
f ′(teiθ )eiθ dt

∣∣∣∣≤ ∫ r

0
| f ′(teiθ )|dt

≤
∫ 1

−1
| f ′(teiθ )|dt ≤ 1

2

∫ 2π

0
| f ′(ei(θ+φ))|dφ = π‖ f ′‖H1 .

It follows that
‖ f − f (0)‖H∞ ≤ π‖ f ′‖H1 ,

which contains (5) as P′n ∈ H1 for any polynomial Pn ∈ Cn[z].
We now prove that the constant π in the above inequality and in (5) is sharp.

Consider the conformal mapping ψ of the unit disk D onto the rectangle R :=
(−ε,1)× (−ε,ε), ε > 0, that satisfies ψ(0) = 0 and ψ ′(0) > 0. It is easy to see
that ‖ψ−ψ(0)‖H∞ = ‖ψ‖H∞ =

√
1+ ε2. Moreover, the perimeter of R is expressed

as

2+6ε =
∫ 2π

0
|ψ ′(eiθ )|dθ = 2π‖ψ ′‖H1 .

Hence we have that

lim
ε→0

‖ψ−ψ(0)‖H∞

π‖ψ ′‖H1
= lim

ε→0

√
1+ ε2

1+3ε
= 1,

which shows asymptotic sharpness for f = ψ as ε → 0. On the other hand, polyno-
mials are dense in H1, and there is a sequence of polynomials Qn ∈ Cn[z] such that
‖ψ ′−Q′n‖H1 → 0 as n→ ∞. The Fejér-Riesz inequality again gives

‖ψ−Qn− (ψ(0)−Qn(0))‖H∞ ≤ π‖ψ ′−Q′n‖H1 → 0 as n→ ∞.
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Thus limn→∞ ‖Q′n‖H1 = ‖ψ ′‖H1 and limn→∞ ‖Qn−Qn(0)‖H∞ = ‖ψ−ψ(0)‖H∞ , so
that (5) is asymptotically sharp for Qn as n→ ∞.

We obtain (6) from (5) with the help of the Nikolskii-type inequality [18, p. 463]:

‖P′n‖H1 ≤ ((n−1)dp/2e+1)1/p−1 ‖P′n‖H p = n1/p−1‖P′n‖H p , 0 < p < 1,

where d·e is the standard ceiling function. ut

Proof of Corollary 6. Let Λn(z) = zn, so that for any monic polynomial Pn ∈ Cn[z]
we have the Schur-Szegő composition ΛPn(z) = zn. Since ‖Λn‖H0 = 1, (7) follows
from (3).

The uniqueness part for 0 < p < ∞ follows from Theorem 5 of [1], because the
coefficients of Λn satisfy λn = 1 > λ0 = 0, and the function φ(u) = up satisfies that
uφ ′(u) is strictly increasing. If p = ∞ then uniqueness of the extremal polynomial
in (7) is the content of Tonelli’s theorem [23, p. 72]. ut

Proof of Corollary 7. For Λn(z) = (Rz+1)n =∑
n
k=0
(k

n

)
Rkzk and Pn(z) =∑

n
k=0 akzk ∈

Cn[z], we have that

ΛPn(z) =
n

∑
k=0

akRkzk = Pn(Rz).

Note that ‖Λn‖H0 = Rn, because the only root of Λn is in D. Thus (8) follows from
(3). The case of equality is again a consequence of Theorem 5 of [1], as λn = Rn >
λ0 = 1. ut

Proof of Theorem 4. We apply Theorem 2 and the definition of the Schur-Szegő
composition to obtain that

‖Pn ∗Qn‖H p =

∥∥∥∥∥ n

∑
k=0

akbkzk

∥∥∥∥∥
H p

≤

∥∥∥∥∥ n

∑
k=0

(
n
k

)
akzk

∥∥∥∥∥
H0

‖Qn‖H p , 0≤ p≤ ∞.

Using Theorem 1 for the first factor on the right (or Theorem 2 again), we have∥∥∥∥∥ n

∑
k=0

(
n
k

)
akzk

∥∥∥∥∥
H0

≤

∥∥∥∥∥ n

∑
k=0

(
n
k

)2

zk

∥∥∥∥∥
H0

∥∥∥∥∥ n

∑
k=0

akzk

∥∥∥∥∥
H0

= ‖Θn‖H0‖Pn‖H0 .

The asymptotic value

lim
n→∞
‖Θn‖1/n

H0 ≈ 3.20991230072 . . .

is found from the product of zeros of Θn outside the unit disk, see [22] for details
and more precise asymptotic results. ut

A proof of Theorem 5 may be found in [18, pp. 554-555].

Proof of Theorem 6. If Pn does not vanish in D, then log |Pn(z)| is harmonic in D.
Hence ‖Pn‖H0 = |a0| and ‖Pn‖A0 = |a0| follow from the contour and the area mean
value theorems respectively. Assume now that Pn has zeros in D. Applying Jensen’s
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formula, we obtain that

log‖Pn‖H0 =
1

2π

∫ 2π

0
log |Pn(eiθ )|dθ = log |an|+ ∑

|z j |≥1
log |z j|.

Furthermore,

log‖Pn‖A0 =
1
π

∫ 1

0

∫ 2π

0
log |Pn(reiθ )|rdrdθ

= 2
∫ 1

0

(
1

2π

∫ 2π

0
log |Pn(reiθ )|dθ

)
rdr

= 2
∫ 1

0

log |an|+ ∑
|z j |≥r

log |z j|+ ∑
|z j |<r

logr

rdr

= log |an|+ ∑
|z j |≥1

log |z j|+
1
2 ∑
|z j |<1

(|z j|2−1).

Hence

‖Pn‖A0 = ‖Pn‖H0 exp

1
2 ∑
|z j |<1

(|z j|2−1)

 .

ut

Proof of Corollary 8. The lower bound for ‖Pn‖A0 follows from (9) because the
smallest value of the sum

∑
|z j |<1

(|z j|2−1)

is equal to −n, which is achieved if and only if all z j = 0. The largest value of this
sum is clearly 0 iff all |z j| ≥ 1, giving us the upper bound. ut

Proof of Theorem 7. Appling (2) to the polynomial Pn(rz), r ∈ [0,1], instead of
Pn(z), we obtain that∫ 2π

0
log |ΛPn(reiθ )|dθ ≤ 2π log‖Λn‖H0 +

∫ 2π

0
log |Pn(reiθ )|dθ .

Next we integrate the above inequality with respect to w(r)r dr from 0 to 1:∫ 2π

0

∫ 1

0
log |ΛPn(reiθ )|w(r)r drdθ ≤ log‖Λn‖H0 2π

∫ 1

0
w(r)r dr

+
∫ 2π

0

∫ 1

0
log |Pn(reiθ )| w(r)r drdθ .

Dividing by bw = 2π
∫ 1

0 w(r)r dr and taking exponential, we prove (10) for p = 0.
Similarly, we obtain from (3) that
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0
|ΛPn(reiθ )|p dθ ≤ ‖Λn‖p

H0

∫ 2π

0
|Pn(reiθ )|p dθ , 0 < p < ∞,

which implies that∫ 2π

0

∫ 1

0
|ΛPn(reiθ )|p w(r)r drdθ ≤ ‖Λn‖p

H0

∫ 2π

0

∫ 1

0
|Pn(reiθ )|p w(r)r drdθ .

Dividing by bw and taking the power 1/p, we now have (10) for p > 0. If p = ∞

then (10) follows from (3) again:

‖ΛPn‖A∞
w = sup

0≤θ<2π

0≤r<1

|ΛPn(reiθ )|w(r)≤ sup
0≤θ<2π

0≤r<1

‖Λn‖H0 max
0≤θ<2π

|Pn(reiθ )|w(r)

= ‖Λn‖H0‖Pn‖A∞
w .

ut

Proof of Theorem 8. Observe that the derivative of Pn can be expressed in the form
of the Schur-Szegő convolution as in the proof of Corollary 5:

zP′n(z) = ΛPn(z) with Λn(z) = nz(1+ z)n−1 =
n

∑
k=0

k
(

n
k

)
zk.

Since ‖Λn‖H0 = n, the inequality of Theorem 8 follows from (10).
Turning to the case of equality in Theorem 8, we first let p > 0. We assume that∫ 2π

0

∫ 1

0
|rP′n(reiθ )|p w(r)r drdθ = np

∫ 2π

0

∫ 1

0
|Pn(reiθ )|p w(r)r drdθ

holds for a polynomial Pn. Note that Corollary 5 applied to the polynomial Pn(rz),r >
0, gives that ∫ 2π

0
|rP′n(reiθ )|p dθ ≤ np

∫ 2π

0
|Pn(reiθ )|p dθ .

Since we have equality for the area integrals over D, we must also have equality
in the latter inequality for almost every r ∈ suppw. But this is only possible when
Pn(z) = czn, c ∈ C, by Corollary 5.

For p = 0, we argue in a similar fashion to show that∫ 2π

0
log |rP′n(reiθ )|dθ = 2π logn+

∫ 2π

0
log |Pn(reiθ )|dθ

holds for almost every r ∈ suppw, provided we have equality in Theorem 8. It fol-
lows that the family of polynomials Qn(z) = Pn(rz) is extremal in Corollary 1 for all
such r. Hence Pn(rz) has all zeros in the closure of D, while Pn(z) has all zeros in
{z ∈C : |z| ≤ r}. Since this holds for a sequence of radii r→ 0 such that r ∈ suppw,
we conclude that all zeros of Pn are at the origin. ut
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Proof of Theorem 9. We start with the case 1 < p≤ 2. Let Pn(z) = ∑
n
k=0 akzk, so that

P′n(z) = ∑
n
k=1 kakzk−1. Applying Theorem 2 of [8, p. 81] (also see (15)), we obtain

that

‖P′n‖Ap ≥

(
n

∑
k=1

kq|ak|q

kq−1

)1/q

=

(
n

∑
k=1

k|ak|q
)1/q

, 1 < p≤ 2, q = p/(p−1).

Using this inequality together with Hölder’s inequality, we estimate

‖Pn−Pn(0)‖A∞ ≤
n

∑
k=1

k1/q|ak|k−1/q ≤

(
n

∑
k=1

k|ak|q
)1/q( n

∑
k=1

k−p/q

)1/p

≤ ‖P′n‖Ap

(
n

∑
k=1

k1−p

)1/p

≤ ‖P′n‖Ap

(
1+

∫ n

1
x1−p

)1/p

.

Evaluating the latter integral, we arrive at (11) and (12). The case p = 1 in (11) is
obtained by letting p→ 1+ .

We now show that the exponent of n in (11) is sharp. Consider the polynomial

Q2n−1(z) =
∫ z

0

(
n

∑
k=1

ktk−1

)2

dt, deg(Q2n−1) = 2n−1.

The second part of Theorem 2 in [8, p. 81] states a reverse inequality to (15) for
p ≥ 2. Although p ∈ (1,2] in our case, we use this fact for 2p ∈ (2,4] and r =
2p/(2p−1) to estimate that

‖Q′2n−1‖
p
Ap =

∥∥∥∥∥∥
(

n

∑
k=0

kzk−1

)2
∥∥∥∥∥∥

p

Ap

=

∥∥∥∥∥ n

∑
k=0

kzk−1

∥∥∥∥∥
2p

A2p

≤

(
n

∑
k=1

kr

kr−1

)2p/r

=

(
n

∑
k=1

k

)2p−1

=

(
n(n+1)

2

)2p−1

.

Hence the right hand side of (11) for Q2n−1 is of the order O(n3). Note that both
Q2n−1 and its derivative have positive coefficients. This immediately implies that

‖Q2n−1‖A∞ = Q2n−1(1) =
∫ 1

0

(
n

∑
k=1

ktk−1

)2

dt.

Given any polynomial Pm(z) = ∑
m
k=0 akzk of degree m with positive coefficients, we

have that ∫ 1

0
Pm(x)dx =

m

∑
k=0

ak

k+1
≥ Pm(1)

m+1
.
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The latter inequality applied to Q′2n−1 gives that

‖Q2n−1‖A∞ =
∫ 1

0

(
n

∑
k=1

ktk−1

)2

dt ≥ 1
2n−1

(
n

∑
k=1

k

)2

=
1

2n−1

(
n

∑
k=1

n(n+1)
2

)2

.

Hence the left hand side of (11) for Q2n−1 grows like n3 as n→ ∞, matching the
right hand side.

Turning to the case p > 2, we apply the area submean inequality for a subhar-
monic function |P′n(z)|p on the disk {t ∈C : |t− z|< 1−|z|} contained in D for any
z ∈ D :

|P′n(z)|p ≤
1

π(1−|z|)2

∫
{|t−z|<1−|z|}

|P′n(t)|p dA(t)≤
‖P′n‖

p
Ap

(1−|z|)2 , z ∈ D.

Hence (13) follows from

|Pn(eiθ )−Pn(0)| ≤
∫ 1

0
|P′n(reiθ )|dr ≤ ‖P′n‖Ap

∫ 1

0
(1− r)−2/p dr =

p
p−2

‖P′n‖Ap .

ut
Proof of Corollary 9. Consider any monic polynomial Pn(z) = zn + . . . and the
multiplier polynomial Λn(z) = zn. Then the Schur-Szegő convolution is given by
ΛPn(z) = zn. Hence (14) follows from (10). Equality holds trivially for Pn(z) = zn,
and we now show that this is the only extremal polynomial. Assume first that p > 0.
Equality in (14) is equivalent to∫ 2π

0

∫ 1

0
|Pn(reiθ )|p w(r)r drdθ =

∫ 2π

0

∫ 1

0
rnp w(r)r drdθ

holding for a monic polynomial Pn. Corollary 6 gives by a scaling change of variable
that

1
2π

∫ 2π

0
|Pn(reiθ )|p dθ ≥ rnp, 0≤ r ≤ 1,

for any monic polynomial Pn ∈Cn[z], with equality only for Pn(z)= zn. Hence equal-
ity in (14) implies that equality must hold in the above inequality for a.e. r ∈ suppw,
which means that Pn(z) = zn by Corollary 6. The case p = 0 is handled similarly. It
is immediate to see that

1
2π

∫ 2π

0
log |Pn(reiθ )|dθ ≥ logrn, 0≤ r ≤ 1,

for any monic polynomial Pn ∈ Cn[z], with equality only if all zeros of Pn(rz) are in
the closed unit disk. Equality in (14) for p = 0 can be written as∫ 2π

0

∫ 1

0
log |Pn(reiθ )|w(r)r drdθ =

∫ 2π

0

∫ 1

0
logrn w(r)r drdθ
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for a monic polynomial Pn, which implies that

1
2π

∫ 2π

0
log |Pn(reiθ )|dθ = logrn

for almost every r ∈ suppw. Thus Pn(rz) has all zeros in the closure of D, and Pn(z)
has all zeros in {z ∈ C : |z| ≤ r} for a sequence of radii r→ 0 such that r ∈ suppw.
It follows that Pn(z) = zn.

The values of ‖zn‖Ap given in this corollary are found by a routine computation.
ut
Proof of Corollary 10. Let Λn(z) = (1+Rz)n =∑

n
k=0
(n

k

)
Rkzk. Then ΛPn(z) =Pn(Rz)

and ‖Λn‖H0 = Rn. Hence (10) gives that

‖Pn(Rz)‖Ap ≤ Rn‖Pn‖Ap , 0≤ p < ∞,

for any R≥ 1. Changing variable and passing to the integral over DR, we obtain that

‖Pn(Rz)‖Ap =

(
1

πR2

∫∫
DR

|Pn(z)|p dA(z)
)1/p

, 0≤ p < ∞,

and

‖Pn(Rz)‖A0 = exp
(

1
πR2

∫∫
DR

log |Pn(z)|dA(z)
)
, p = 0.

The case of equality for Pn(z) = zn is verified by the same substitution. ut
Proof of Corollary 11. Let Λn(z) =

(n
k

)
zk, 0 ≤ k ≤ n. Then ΛPn(z) = akzk and

‖Λn‖H0 =
(n

k

)
. It follows from (10) that

|ak|‖zk‖Ap
w
= ‖akzk‖Ap

w
≤
(

n
k

)
‖Pn‖Ap

w
, 0≤ p≤ ∞.

If w≡ 1 then we can use explicit values of ‖zk‖Ap
w

as given in Corollary 9 to obtain
the last two inequalities of Corollary 11. ut
Proof of Theorem 10. We recall the following estimate for a polynomial Pn without
zeros in the disk {z ∈ C : |z|< R}, R≥ 1:

‖P′n‖H p ≤ n
‖z+R‖H p

‖Pn‖H p , 0≤ p≤ ∞.

This extension of Theorem 5 was originally proved by Govil and Rahman [11] for
p ≥ 1, and later by Aziz and Shah [4] for any p > 0. While equality may hold
in Theorem 5 as explained after its statement, the above inequality cannot turn into
equality for any Pn without zeros in the disk {z∈C : |z|<R}, R> 1. The cases p= 0
and p = ∞ follow immediately by taking limits as p→ 0 and p→ ∞. We apply the
stated result to the family of polynomials Pn(rz), r ∈ (0,1]. It is clear that if Pn is
zero-free in D, then Pn(rz) has no zeros in the disk {z ∈ C : |z| < 1/r}, r ∈ (0,1].
Hence
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0
|rP′n(reiθ )|p dθ ≤ np

‖z+1/r‖p
H p

∫ 2π

0
|Pn(reiθ )|p dθ , 0 < p < ∞.

Simplifying, we obtain that

‖rz+1‖p
H p

∫ 2π

0
|P′n(reiθ )|p dθ ≤ np

∫ 2π

0
|Pn(reiθ )|p dθ , 0 < p < ∞.

We now integrate the above inequality with respect to w(r)r dr from 0 to 1:∫ 2π

0

∫ 1

0
|P′n(reiθ )|p ‖rz+1‖p

H p w(r)r drdθ ≤ np
∫ 2π

0

∫ 1

0
|Pn(reiθ )|p w(r)r drdθ .

Thus the first inequality follows for p ∈ (0,∞). It remains to observe that ‖rz+
1‖p

H p ≥ 1 by the submean inequality for the subharmonic function |rz+1|p, so that
the second inequality is a consequence of the first one for p ∈ (0,∞). The endpoints
are handled by the standard limits as p→ 0 and p→ ∞. ut
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