
EQUIDISTRIBUTION OF POINTS VIA ENERGY

IGOR E. PRITSKER

Abstract. We study the asymptotic equidistribution of points with discrete energy close
to Robin’s constant of a compact set in the plane. Our main tools are the energy estimates
from potential theory. We also consider the quantitative aspects of this equidistribution.
Applications include estimates of growth for the Fekete and Leja polynomials associated
with large classes of compact sets, convergence rates of the discrete energy approximations
to Robin’s constant, and problems on the means of zeros of polynomials with integer coef-
ficients.

1. Asymptotic equidistribution of discrete sets

Let E be a compact set in the complex plane C. Given a set of points Zn = {zk,n}nk=1 ⊂
C, n ≥ 2, the associated Vandermonde determinant is

V (Zn) :=
∏

1≤j<k≤n

(zj,n − zk,n).

Let the n-th diameter of E be defined by

δn(E) := max
Zn⊂E

|V (Zn)|
2

n(n−1) .

A set of points Fn is called the n-th Fekete points of E if it achieves the above maximum.
The classical result of Fekete [15] states that δn(E), n ≥ 2, form a decreasing sequence that
converges to a limit called the transfinite diameter δ(E). Szegő [40] found that δ(E) is equal
to the logarithmic capacity cap(E) from potential theory, which is defined as follows. For a
Borel measure µ with compact support, define its energy by [43, p. 54]

I[µ] :=

∫∫
log

1

|z − t|
dµ(t)dµ(z).

Consider the problem of finding the minimum energy

VE := inf
µ∈M(E)

I[µ],

where M(E) is the space of all positive unit Borel measures supported on E. The capacity
of E is given by

cap(E) := e−VE .

If Robin’s constant VE is finite (i.e. cap(E) 6= 0), then the infimum is attained by the equilib-
rium measure µE ∈M(E) [43, p. 55], which is a unique probability measure expressing the
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steady state distribution of charge on the conductor E. For detailed expositions of potential
theory, we refer the reader to the books of Ransford [30], Tsuji [43], and Landkof [25].

Consider the counting measure τ(Zn) for the set Zn = {zk,n}nk=1, given by

τ(Zn) :=
1

n

n∑
k=1

δzk,n
,

where δzk,n
is the unit point mass at zk,n ∈ Zn. It is clear that I[τ(Zn)] = ∞, but we can

define the discrete energy of τ(Zn) (or of the set Zn) by setting

Î[τ(Zn)] := − log |V (Zn)|
2

n(n−1) =
2

n(n− 1)

∑
1≤j<k≤n

log
1

|zj,n − zk,n|
.

Note that the discrete energy Î[τ(Zn)] is finite if and only if all points of Zn are distinct.
The Fekete-Szegő results may be restated as

lim
n→∞

inf
Zn⊂E

Î[τ(Zn)] = lim
n→∞

Î[τ(Fn)] = lim
n→∞

(− log δn(E)) = VE = I[µE],

which simply indicates that the discrete approximations of the minimum energy converge to
Robin’s constant, see [30, p. 153]. It is also well known that the counting measures τ(Fn)

converge to µE in the weak-* topology (written τ(Fn)
∗→ µE) as n → ∞, provided that

cap(E) > 0 [4, p. 226]. Such equidistribution property is shared by many sequences of
discrete sets whose energies converge to Robin’s constant, see Andrievskii and Blatt [4] for
history and references. Our new equidistribution result is as follows.

For an arbitrary compact set E ⊂ C, let ΩE be the unbounded connected component of
C \E. If cap(E) > 0 then the Green function gE(z,∞) for ΩE with pole at ∞ [43, p. 14] is
well defined. We use the quantity

mE(Zn) :=
1

n

∑
zk,n∈ΩE

gE(zk,n,∞)

to measure how close Zn is to E. If Zn ∩ ΩE = ∅ then we set mE(Zn) = 0 by definition.

Theorem 1.1. Let E ⊂ C be compact, cap(E) > 0. If the sets Zn = {zk,n}nk=1 ⊂ C, n ≥ 2,
satisfy

lim
n→∞

Î[τ(Zn)] = VE(1.1)

and

lim
n→∞

mE(Zn) = 0,(1.2)

then 
(i) τ(Zn)

∗→ µE as n→∞,

(ii) lim
R→∞

lim
n→∞

1

n

∑
|zk,n|≥R

log |zk,n| = 0.
(1.3)

Conversely, (1.2) holds for any sequence of the sets Zn = {zk,n}nk=1 ⊂ C, n ∈ N, satisfying
(1.3).
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When Zn ⊂ E, we clearly have that mE(Zn) = 0 for all n ≥ 2, and (1.1) implies the well

known fact that τ(Zn)
∗→ µE as n→∞. A new feature of the above result is that Zn is not

required to be a subset of E. Introduction of mE(Zn) is inspired by the generalized Mahler
measure that was used in [29] to study the asymptotic zero distribution for polynomials with
integer coefficients. Theorem 1.1 is a generalization of Theorem 2.1 from [29]. The majority
of equidistribution results in analysis are stated in terms of zeros of polynomials, with the
assumptions expressed via the supremum norms ‖Pn‖E := supz∈E |Pn(z)| of polynomials, see
[4]. We recall one of the most frequently used results of this kind, due to Blatt, Saff and
Simkani [7].
Theorem BSS. Let E ⊂ C be a compact set, cap(E) > 0, and set E∗ := supp(µE). If the
sets Zn = {zk,n}nk=1 ⊂ C, n ≥ 2, and the corresponding polynomials Pn(z) :=

∏n
k=1(z− zk,n)

satisfy

lim
n→∞

‖Pn‖1/n
E∗ = cap(E)(1.4)

and

lim
n→∞

τn(A) = 0,(1.5)

where τn := τ(Zn) and A is any closed set in the bounded components of C \ E∗, then

τn
∗→ µE as n→∞.(1.6)

We note that (1.4) implies (1.2) because

mE(Zn) ≤ 1

n

n∑
k=1

gE(zk,n,∞) =

∫
gE(z,∞) dτn(z)

=

∫ (∫
log |z − t| dµE(t)− log cap(E)

)
dτn(z)

=

∫ ∫
log |z − t| dτn(z) dµE(t)− log cap(E)

=

∫
log |Pn(t)|1/n dµE(t)− log cap(E) ≤ log ‖Pn‖1/n

E∗ − log cap(E),

where we used the standard representation of gE(z,∞) given in (3.2). Thus using mE(Zn)
instead of ‖Pn‖E∗ (or ‖Pn‖E) gives stronger results, in general. However, conditions (1.5)
and (1.1) are substantially different, so that Theorem 1.1 and Theorem BSS complement
each other.

The following fact about the supremum norms of polynomials is of independent interest.

Theorem 1.2. Let E ⊂ C be a regular compact set. Suppose that the sets Zn = {zk,n}nk=1 ⊂
C, n ≥ 2, satisfy (1.1). We have that

lim
n→∞

‖Pn‖1/n
E = cap(E)(1.7)

for the polynomials Pn(z) =
∏n

k=1(z − zk,n) is equivalent to (1.2) or (1.3).

Regularity is understood here in the sense of the Dirichlet problem for ΩE, which means
that the limiting boundary values of gE(z,∞) in ΩE are all zero, see [43, p. 82]. Regularity
of E also implies that cap(E) > 0. We recall that any monic polynomial Pn of degree n
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satisfies ‖Pn‖E ≥ (cap(E))n, see [4, p. 16]. Thus (1.7) (and (1.4)) means that Pn have
asymptotically minimal supremum norms on E.

Our results have clear analogues in Rn, n > 2, where one should use the theory of New-
tonian potentials and the associated Green functions. Such extensions are also valid for the
majority of quantitative estimates stated in the next section.

2. Rate of convergence and discrepancy in equidistribution

This section is devoted to the quantitative estimates of how close τ(Zn) is to the equi-
librium measure µE, which are often called discrepancy estimates. Consider a class of con-
tinuous test functions φ : R2 → R with compact support in the plane R2 = C. Recall that

τ(Zn)
∗→ µE as n→∞ means

lim
n→∞

1

n

n∑
k=1

φ(zk,n) = lim
n→∞

∫
φ dτ(Zn) =

∫
φ dµE.

Let
ωφ(r) := sup

|z−ζ|≤r
|φ(z)− φ(ζ)|

be the modulus of continuity of φ in C. We also require that the functions φ have finite
Dirichlet integral

D[φ] :=

∫∫
R2

(
φ2
x + φ2

y

)
dxdy,

where it is assumed that the partial derivatives φx and φy exist a.e. on R2 in the sense of
the area measure. Define the distance from a point z ∈ C to a compact set E by

dE(z) := min
t∈E
|z − t|.

Theorem 2.1. Let E ⊂ C be an arbitrary compact set of positive capacity, and let φ : C→ R
be a continuous function with compact support such that D[φ] < ∞. If Zn = {zk,n}nk=1 ⊂
C, n ≥ 2, then we have for any r > 0 that∣∣∣∣∣ 1n

n∑
k=1

φ(zk,n)−
∫
φ dµE

∣∣∣∣∣ ≤ ωφ(r) +

√
D[φ]

2π

√
I,(2.1)

where

I = 2mE(Zn) +
n− 1

n
Î[τ(Zn)]− VE −

log r

n
+ 2 max

dE(z)≤2r
gE(z,∞).(2.2)

The classical discrepancy results for the unit circle and the segment [−1, 1] are due to Erdős
and Turán, cf. [11] and [12]. They were developed by Ganelius [17], Amoroso and Mignotte
[1], and many others, see [4] for more history and references. Further generalizations and
improvements are due to Blatt [5], Totik [41], Blatt and Mhaskar [6], Andrievskii and Blatt
[2]-[3], and others. The ideas of applying energy estimates originated in part in the work
of Kleiner [22], and were subsequently used by Sjögren [36]-[37] and Huesing [19], see [4,
Ch. 5]. Favre and Rivera-Letelier [13] proved a result for the unit circle in number theoretic
terms, related to Theorem 2.1. A predecessor of Theorem 2.1 may be found in Theorem 4.3
of [29], where we studied the asymptotic distribution of algebraic numbers, and answered
some questions of Schur [34]. Perhaps the most interesting new feature of Theorem 2.1 is its
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generality. All previous discrepancy results imposed strict geometric conditions on the set
E. A typical application of our result is given by a sequence of sets Zn satisfying (1.1) and
(1.2). We choose r = rn → 0 as n→∞, so that the right hand side of (2.1) tends to 0 with
a certain rate under the mere assumption that the Green function gE(z,∞) is continuous at
the boundary points of ΩE (i.e. E is regular). For the effective estimates, one would usually
take rn = c/na, with a, c > 0, and consider sets with uniformly Hölder continuous Green
functions. We state the condition of Hölder continuity for gE(z,∞) in the following form:

gE(z,∞) ≤ C(E)(dE(z))s, z ∈ ΩE,(2.3)

where C(E) > 0 and 0 < s ≤ 1. It holds for all uniformly perfect sets, various Cantor-type
sets, and many other compact sets, see Carleson and Totik [9, pp. 562–563] and Totik [42]
for the discussion and further references. Uniformly perfect sets form the widest known
class given by a natural geometric condition, for which (2.3) is valid. A compact set E is
called uniformly perfect if there exist constants c, d > 0 such that for any z ∈ E and any
r ∈ (0, d) there is ζ ∈ E satisfying cr < |z − ζ| < r. Several interesting characterizations
and many applications of uniformly perfect sets are discussed in the survey by Sugawa [38],
where the reader may also find history and numerous additional references. Uniformly per-
fect sets trivially include compact sets consisting of finitely many non-degenerate connected
components.

We consider an application to the “near-Fekete” points, i.e., to the sets Zn ⊂ E whose
discrete energies are close to VE.

Theorem 2.2. Let E ⊂ C be a compact set, cap(E) > 0, such that the Hölder condition
(2.3) holds for gE(z,∞). Suppose that Zn = {zk,n}nk=1 ⊂ E, n ≥ 2, satisfy

Î[τ(Zn)]− VE ≤ C1
log n

n
, n ≥ 2,(2.4)

where C1 > 0 is independent of Zn, and consider Ωn := {z ∈ ΩE : gE(z,∞) > 1/n}. Then
we have for the polynomials Pn(z) :=

∏n
k=1(z − zk,n) that∣∣∣∣ 1n log |Pn(z)|+ VE − gE(z,∞)

∣∣∣∣ ≤ C2
log n√
n
, z ∈ Ωn, n ≥ 2,(2.5)

where C2 > 0 is independent of z and Zn. Furthermore,

log ‖Pn‖E + nVE ≤ C2

√
n log n+ 1, n ≥ 2,(2.6)

and

−C3
log n√
n
≤ Î[τ(Zn)]− VE, n ≥ 2,(2.7)

with C3 > 0 being independent of Zn.

One of the standard applications for arrays of equidistributed points is to interpolation of
analytic functions. Thus (2.5) and (2.6) are used in the effective estimates of convergence
rates for Lagrange interpolation polynomials via Hermite interpolation formula, see Gaier
[16, Ch. 2] and Walsh [44, Ch. 4]. The Fekete points Fn = {ζk,n}nk=1 represent very
convenient nodes for interpolation, and one can easily verify that Theorem 2.2 applies in
this case. However, they are difficult to find explicitly and even numerically, as all points of
Fn change with n. Another choice of interpolation nodes frequently used in practice is given
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by Leja points. They hold advantage of being defined as a sequence. If E ⊂ C is a compact
set of positive capacity, then the Leja points {ξk}∞k=0 are defined recursively in the following
way. We choose ξ0 ∈ E as an arbitrary point. When {ξk}nk=0 are selected, we choose the
next point ξn+1 ∈ E as a point satisfying

n∏
k=0

|ξn+1 − ξk| = max
z∈E

n∏
k=0

|z − ξk|.

It is known that Leja points are equidistributed in E, cf. [8]. However, the properties of
Leja points are not studied as well as those of Fekete points. Thus Theorem 2.2 provides
new information about Leja points and corresponding polynomials for quite general sets.

Corollary 2.3. Theorem 2.2 holds for Fekete and Leja points.

Surveys of results on Fekete points and Fekete polynomials may be found in Korevaar
[23], Andrievskii and Blatt [4] and Korevaar and Monterie [24]. We note that the estimates
of Theorem 2.2 can be improved for the Fekete points and Fekete polynomials of a set E
satisfying more restrictive smoothness conditions. Results on Leja points and interpolation
may be found in Bloom, Bos, Christensen and Levenberg [8], while Götz [18] considered
questions of discrepancy in their distribution.

We now state a consequence of Theorem 2.1 for the Lipschitz continuous functions φ.

Theorem 2.4. Let E ⊂ C be a compact set, cap(E) > 0, with Green function satisfying
the Hölder condition (2.3). Suppose that φ : C→ R is a Lipschitz continuous function with
compact support. If Zn = {zk,n}nk=1 ⊂ C, n ≥ 2, satisfy (2.4), then∣∣∣∣∣ 1n

n∑
k=1

φ(zk,n)−
∫
φ dµE

∣∣∣∣∣ ≤ C4

√
max

(
log n

n
,mE(Zn)

)
, n ≥ 2,(2.8)

where C4 > 0 does not depend on Zn.

As an application, we give an estimate of how close are the complex moments of the discrete
measures τ(Zn) to the moments of µE. Similar result for the real moments

∫
|z|m dµ(z) may

also be easily deduced from Theorem 2.4.

Corollary 2.5. Let E ⊂ C be a compact set, cap(E) > 0, with Green function satisfying
(2.3). If Zn = {zk,n}nk=1 ⊂ E, n ≥ 2, satisfy (2.4), then for each m ∈ N we have∣∣∣∣∣ 1n

n∑
k=1

zmk,n −
∫
zm dµE(z)

∣∣∣∣∣ ≤ C5

√
log n

n
, n ≥ 2,(2.9)

where C5 > 0 does not depend on Zn (but depends on m and E).

Several applications of this kind to Schur’s problems on means of algebraic numbers [34]
were given in [28] and [29]. We would like to highlight an interesting fact that Schur’s paper
[34] prompted Fekete to introduce his transfinite diameter in [15]. While the work of Fekete
[15] is well known in analysis, and is clearly considered a cornerstone of the area dealt with
in this paper, the fundamental nature of Schur’s work [34] has become somewhat obscured
with time. In fact, Schur’s ideas contained in [34] started several important areas of research
in analysis and number theory.
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We state below a generalization of Theorems 3.1 and 3.4 from [29] to much more general
sets.

Theorem 2.6. Let E ⊂ C be a compact set, cap(E) = 1, with Green function satisfying
(2.3). Suppose that φ : C → R is a Lipschitz continuous function with compact support. If
Pn(z) = an

∏n
k=1(z− zk,n), an 6= 0, is a polynomial with integer coefficients and simple zeros

Zn = {zk,n}nk=1 ⊂ C, n ≥ 2, then∣∣∣∣∣ 1n
n∑
k=1

φ(zk,n)−
∫
φ dµE

∣∣∣∣∣ ≤ C6

√
max

(
log(n|an|)

n
,mE(Zn)

)
, n ≥ 2,(2.10)

where C6 > 0 does not depend on Pn.

Let Zs
n(E,M) be a class of polynomials Pn(z) = anz

n + . . . with integer coefficients and
simple zeros in a set E ⊂ C, satisfying 0 < |an| ≤ M for a fixed number M > 0. Schur [34,
§4-8] studied the limit behavior of the arithmetic means An of zeros for polynomials from
Zs
n(E,M) as n→∞. For E = D the closed unit disk, Schur proved that

lim sup
n→∞

|An| ≤ 1−
√
e/2 < 0.1757.

We showed [28] that limn→∞An = 0 for any sequence of polynomials from Schur’s classes
Zs
n(D,M), n ∈ N, as a consequence of the asymptotic equidistribution of zeros near the

unit circle. We also gave estimates of the convergence rates for An. The following result
generalizes Corollary 1.6 from [28], as well as Corollary 3.5 from [29], to centrally symmetric
compact sets of capacity 1.

Corollary 2.7. Let E ⊂ C be a compact set, cap(E) = 1, symmetric with respect to the
origin, with gE(z,∞) satisfying (2.3). If Pn(z) = an

∏n
k=1(z − zk,n) ∈ Zs

n(E,M) then∣∣∣∣∣ 1n
n∑
k=1

zk,n

∣∣∣∣∣ ≤ C7

√
log n

n
, n ≥ max(M, 2).(2.11)

where C7 > 0 does not depend on Pn.

Note that (2.5), (2.6), (2.9) and (2.11) are sharp up to certain logarithmic factors, even
for polynomials with integer coefficients and E = D the closed unit disk.

Example 2.8. Let pm be the mth prime number in the increasing ordering of primes. Define
the monic polynomials

Pn(z) :=
k∏

m=1

zpm − 1

z − 1
, k ∈ N,

and note that each Pn has simple zeros Zn = {zj,n}nj=1 at the roots of unity, and integer

coefficients. Hence the discriminant ∆(Pn) = (V (Zn))2 is a non-zero integer, see [26, p. 24].

We conclude that |∆(Pn)| ≥ 1 and Î[τ(Zn)] = − log |∆(Pn)|
1

n(n−1) ≤ 0 = VD, so that (2.4) is
satisfied. Using number theoretic arguments, we show in the proof that the degree of Pn is

n =
k∑

m=1

pm − k =
k2 log k

2
+ o(k2 log k) as k →∞,
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and that

‖Pn‖D = Pn(1) =
k∏

m=1

pm ≥ ec1
√
n logn, n ≥ 2,

with a constant c1 > 0. Therefore, the upper bound in (2.6) is of correct order of magnitude
up to the factor

√
log n. The same conclusion is true for (2.5) by the Maximum Principle.

Furthermore, since the sum of roots of each (zpm − 1)/(z − 1) is equal to −1, we obtain for
the roots of Pn that ∣∣∣∣∣ 1n

n∑
j=1

zj,n

∣∣∣∣∣ =
k

n
≥ c2√

n log n
,

where c2 > 0. Hence (2.9) and (2.11) are sharp up to the factor log n.

In conclusion, we mention that Schur [34] also considered the limit behavior of the arith-
metic means of zeros for polynomials from Zs

n(E,M) when E = (0,∞) and E = R. The case
E = (0,∞) was developed by Siegel [35] and others, see [29] for history, more references,
and new results.

3. Proofs

We give a brief review of basic facts from potential theory. A complete account may be
found in the books by Ransford [30], Tsuji [43], and Landkof [25]. For a Borel measure µ
with compact support, define its potential [43, p. 53] by

Uµ(z) :=

∫
log

1

|z − t|
dµ(t), z ∈ C.

It is known that Uµ(z) is a superharmonic function in C, which is harmonic outside supp(µ).
If UµE (z) is the equilibrium (conductor) potential for E, then Frostman’s theorem [43, p.
60] gives that

UµE (z) ≤ VE, z ∈ C, and UµE (z) = VE q.e. on E.(3.1)

The second statement means that equality holds quasi everywhere on E, i.e., except for a
subset of zero capacity in E. This may be made even more precise, as UµE (z) = VE for any
z ∈ C \ ΩE. Hence UµE (z) = VE for any z in the interior of E [43, p. 61]. Furthermore,
UµE (z) = VE for z ∈ ∂ΩE if and only if z is a regular point for the Dirichlet problem in ΩE

[43, p. 82]. We mention a well known connection of the equilibrium potential for E with the
Green function gE(z,∞) for ΩE with pole at ∞:

gE(z,∞) = VE − UµE (z), z ∈ C.(3.2)

This gives a standard extension of gE(z,∞) from ΩE to the whole plane C, see [43, p. 82].
Thus gE(z,∞) = 0 for quasi every z ∈ ∂ΩE, and gE(z,∞) = 0 for any z ∈ C \ ΩE, by (3.1)
and (3.2).

Proof of Theorem 1.1. Set τn := τ(Zn) for brevity. We first prove that (1.1) and (1.2) imply
(1.3). Observe that each closed set K ⊂ ΩE contains o(n) points of Zn as n→∞, i.e.

lim
n→∞

τn(K) = 0.(3.3)

8



This fact follows because minz∈K gE(z,∞) > 0 and

0 ≤ τn(K) min
z∈K

gE(z,∞) ≤ 1

n

∑
zk,n∈K

gE(zk,n,∞) ≤ mE(Zn)→ 0 as n→∞.

Thus if R > 0 is sufficiently large, so that E ⊂ DR := {z : |z| < R}, we have o(n) points of
Zn in C \DR. Another consequence of the above inequalities is that

lim
n→∞

1

n

∑
|zk,n|≥R

gE(zk,n,∞) = 0.

Recall that limz→∞(gE(z,∞) − log |z|) = VE, see [43, p. 83]. It follows that for any ε > 0,
there is a sufficiently large R > 0 such that VE − ε < gE(z,∞)− log |z| < VE + ε for |z| ≥ R,
and

o(n)

n
(VE − ε) ≤

1

n

∑
|zk,n|≥R

gE(zk,n,∞)− 1

n

∑
|zk,n|≥R

log |zk,n| ≤
o(n)

n
(VE + ε).

Therefore, (1.3)(ii) is proved by passing to the limit as n→∞.
Consider

τ̂n :=
1

n

∑
|zk,n|<R

δzk,n
.

Since supp(τ̂n) ⊂ DR, n ∈ N, we use Helly’s theorem [32, p. 3] to select a weak-* convergent
subsequence from the sequence τ̂n. Preserving the same notation for this subsequence, we

assume that τ̂n
∗→ τ as n → ∞. It is clear from (3.3) that τn

∗→ τ as n → ∞, and that τ

is a probability measure supported on the compact set Ê := C \ ΩE. Suppose that R > 0 is
large, and order zk,n as follows

|z1,n| ≤ |z2,n| ≤ . . . ≤ |zmn,n| < R ≤ |zmn+1,n| ≤ . . . ≤ |zn,n|.
Then

Î[τn] = Î[τ̂n]− 2

n(n− 1)

∑
1≤j<k

mn<k≤n

log |zj,n − zk,n| ≥ Î[τ̂n]− 2

n

n∑
k=mn+1

log(2|zk,n|)(3.4)

= Î[τ̂n]− 2(n−mn)

n
log 2− 2

n

n∑
k=mn+1

log |zk,n|,

where we used that |zj,n − zk,n| ≤ 2 max(|zj,n|, |zk,n|) = 2|zk,n| for j < k. Note that
limn→∞mn/n = 1 by (3.3). For any ε > 0, we find R > 0 such that

lim sup
n→∞

2

n

n∑
k=mn+1

log |zk,n| = lim sup
n→∞

2

n

∑
|zk,n|≥R

log |zk,n| < ε

by (1.3)(ii). Thus we obtain from (3.4), (1.1) and the above estimate that

lim sup
n→∞

Î[τ̂n] ≤ lim sup
n→∞

Î[τn] + lim sup
n→∞

2

n

n∑
k=mn+1

log |zk,n| < VE + ε.(3.5)

We now follow a standard potential theoretic argument to show that τ = µE. LetKM(z, t) :=
min (− log |z − t|,M) . It is clear that KM(z, t) is a continuous function in z and t on C×C,

9



and that KM(z, t) increases to − log |z − t| as M → ∞. Using the Monotone Convergence
Theorem and the weak-* convergence of τ̂n × τ̂n to τ × τ, we obtain for the energy of τ that

I[τ ] = −
∫∫

log |z − t| dτ(z) dτ(t) = lim
M→∞

(
lim
n→∞

∫∫
KM(z, t) dτ̂n(z) dτ̂n(t)

)
= lim

M→∞

(
lim
n→∞

(
2

n2

∑
1≤j<k≤mn

KM(zj,n, zk,n) +
M

n

))

≤ lim
M→∞

(
lim inf
n→∞

2

n2

∑
1≤j<k≤mn

log
1

|zj,n − zk,n|

)

= lim inf
n→∞

mn(mn − 1)

n2
Î[τ̂n] < VE + ε,

where we applied (3.5) and limn→∞mn/n = 1 in the last estimate. Since ε > 0 is arbitrary, we

conclude that I[τ ] ≤ VE. Recall that supp(τ) ⊂ Ê = C\ΩE, where VÊ = VE and µÊ = µE by

[43, pp. 79-80]. Note also that I[ν] > VÊ for any probability measure ν 6= µÊ, supp(ν) ⊂ Ê,
see [43, pp. 79-80]. Hence τ = µÊ = µE and (1.3)(i) follows.

Let us turn to the converse statement (1.3) ⇒ (1.2). As in the first part of the proof, we
note that limz→∞(gE(z,∞) − log |z|) = VE. For any ε > 0, we choose R > 0 so large that
E ⊂ DR and |gE(z,∞)− log |z| − VE| < ε when |z| ≥ R. Thus we have from (1.3)(i) that

1

n

∑
|zk,n|≥R

gE(zk,n,∞) ≤ 1

n

∑
|zk,n|≥R

log |zk,n|+
o(n)

n
(VE + ε).

Increasing R if necessary, we can achieve that

1

n

∑
|zk,n|≥R

log |zk,n| < ε

for large n ∈ N by (1.3)(ii), which implies that

lim sup
n→∞

1

n

∑
|zk,n|≥R

gE(zk,n,∞) ≤ ε.(3.6)

On setting gE(z,∞) = VE−UµE (z), z ∈ C, we continue gE(z,∞) as a subharmonic function
in C. Since gE(z,∞) is now upper semi-continuous in C, we obtain from (1.3)(i) and Theorem
0.1.4 of [32, p. 4] that

lim sup
n→∞

1

n

∑
|zk,n|<R

gE(zk,n,∞) = lim sup
n→∞

∫
DR

gE(z,∞) dτn(z) ≤
∫
DR

gE(z,∞) dµE(z)(3.7)

= VE −
∫
UµE (z) dµE(z) = VE − I[µE] = 0,

where the last equality follows as the energy I[µE] = VE, see [43, p. 55]. Observe from the
definition of mE(Zn) and (3.6)-(3.7) that

0 ≤ lim sup
n→∞

mE(Zn) ≤ lim sup
n→∞

1

n

n∑
k=1

gE(zk,n,∞) ≤ ε.

10



We now let ε→ 0, to obtain that

lim
n→∞

1

n

n∑
k=1

gE(zk,n,∞) = lim
n→∞

mE(Zn) = 0.(3.8)

�

Remark 3.1. Since (1.1) and (1.2) imply (1.3), and (1.3) implies (3.8) by the above proof,
we arrive at

lim
n→∞

1

n

n∑
k=1

gE(zk,n,∞) = 0.

Hence the sets Zn satisfying (1.1) and (1.2) essentially avoid irregular points of E (in the
bulk).

Proof of Theorem 1.2. Using the definition of mE(Zn) and (3.2), we obtain that (1.7) implies
(1.2) because

0 ≤ mE(Zn) ≤ 1

n

n∑
k=1

gE(zk,n,∞) =

∫
gE(z,∞) dτn(z)

=

∫ (∫
log |z − t| dµE(t)− log cap(E)

)
dτn(z)

=

∫ ∫
log |z − t| dτn(z) dµE(t)− log cap(E)

=

∫
log |Pn(t)|1/n dµE(t)− log cap(E) ≤ log ‖Pn‖1/n

E − log cap(E).

Since we assume that (1.1) holds true, (1.2) is equivalent to (1.3) by Theorem 1.1. Thus
it remains to show that (1.3) implies (1.7). For any ε > 0, we find R > 0 such that
E ⊂ DR = {z : |z| < R} and

lim
n→∞

 ∏
|zk,n|≥R

|zk,n|

1/n

< 1 + ε

by (1.3)(ii). Since there are o(n) numbers zk,n outside DR by (1.3)(i), and since ‖z−zk,n‖E ≤
2|zk,n| for |zk,n| ≥ R, we obtain that

lim sup
n→∞

∥∥∥∥∥∥
∏

|zk,n|≥R

(z − zk,n)

∥∥∥∥∥∥
1/n

E

≤ lim sup
n→∞

2o(n)/n

 ∏
|zk,n|≥R

|zk,n|

1/n

≤ 1 + ε.

Let ‖Pn‖E = |Pn(zn)|, zn ∈ E, and assume limn→∞ zn = z0 ∈ E by compactness. Define

τ̂n :=
1

n

∑
|zk,n|<R

δzk,n
,

and note that τ̂n
∗→ µE as n→∞ by (1.3)(i). For the polynomial

P̂n(z) :=
∏

|zk,n|<R

(z − zk,n),

11



we have by the Principle of Descent (Theorem I.6.8 of [32]) that

lim sup
n→∞

|P̂n(zn)|1/n = lim sup
n→∞

exp
(
−U τ̂n(zn)

)
≤ exp (−UµE (z0)) = cap(E),

where the last equality is a consequence of Frostman’s theorem (3.1) and the regularity of
E. It is known that ‖Pn‖E ≥ (cap(E))n, see [4, p. 16]. We use this fact together with the
above estimates to obtain that

cap(E) ≤ lim sup
n→∞

‖Pn‖1/n
E ≤ lim sup

n→∞
|P̂n(zn)|1/n lim sup

n→∞

 ∏
|zk,n|≥R

|zn − zk,n|

1/n

≤ (1 + ε) cap(E).

Letting ε→ 0, we obtain (1.7). �

Proof of Theorem 2.1. Given r > 0, define the measures νrk with dνrk(zk,n+reit) = dt/(2π), t ∈
[0, 2π). Let τn := τ(Zn) and

τ rn :=
1

n

n∑
k=1

νrk,

and estimate∣∣∣∣∫ φ dτn −
∫
φ dτ rn

∣∣∣∣ ≤ 1

n

n∑
k=1

1

2π

∫ 2π

0

∣∣φ(zk,n)− φ(zk,n + reit)
∣∣ dt ≤ ωφ(r).(3.9)

We now assume that E is bounded by finitely many piecewise smooth curves, and remove
this assumption in the end of proof. Let gE(z,∞) = VE − UµE (z), z ∈ C. Since E is
regular [43, p. 104], we have that gE(z,∞) = 0, z ∈ C \ ΩE. Consider the signed measure
σ := τ rn − µE, σ(C) = 0. This measure is recovered from its potential by the formula

dσ = − 1

2π

(
∂Uσ

∂n+

+
∂Uσ

∂n−

)
ds,

where ds is the arclength on supp(σ) = supp(µE) ∪ (∪nk=1{z : |z − zk,n| = r}), and n± are
the inner and the outer normals. The above representation follows from Theorem 1.1 of [27],
see also Example 1.2 there. Let DR := {z : |z| < R} be a disk containing the support of φ.
We use Green’s identity∫∫

G

u∆v dA =

∫
∂G

u
∂v

∂n
ds−

∫∫
G

∇u · ∇v dA

with u = φ and v = Uσ in each connected component G of DR \ supp(σ). Since Uσ is
harmonic in G, we have that ∆Uσ = 0 in G. Adding Green’s identities for all domains G,
we obtain that ∣∣∣∣∫ φ dσ

∣∣∣∣ =
1

2π

∣∣∣∣∫∫
DR

∇φ · ∇Uσ dA

∣∣∣∣ ≤ 1

2π

√
D[φ]

√
D[Uσ],(3.10)

by the Cauchy-Schwarz inequality. It is known that D[Uσ] = 2πI[σ] [25, Thm 1.20], where
I[σ] = −

∫∫
log |z−t| dσ(z) dσ(t) =

∫
Uσ dσ is the energy of σ. We observe that

∫
UµE dµE =

I[µE] = VE, so that

I[σ] =

∫
U τr

n dτ rn − 2

∫
UµE dτ rn + VE.

12



Since gE(z,∞) is harmonic in ΩE, the mean value property gives that

−
∫
UµE dτ rn =

∫
(gE(z,∞)− VE) dτ rn(z)

=
1

n

 ∑
dE(zk,n)≤r

∫
gE(z,∞) dνrk(z) +

∑
dE(zk,n)>r

∫
gE(z,∞) dνrk(z)

− VE
≤ 1

n

 ∑
dE(zk,n)≤r

max
dE(z)≤2r

gE(z,∞) +
∑

dE(zk,n)>r

gE(zk,n,∞)

− VE
≤ max

dE(z)≤2r
gE(z,∞) +mE(Zn)− VE.

Taking into account the representation [32, p. 22]

Uνr
k(z) = − log max(r, |z − zk,n|), z ∈ C,

we further deduce that∫
U τr

n dτ rn =
1

n2

n∑
j,k=1

∫
Uνr

k dνrj ≤
1

n2

(∑
j 6=k

log
1

|zj,n − zk,n|
− n log r

)

=
n− 1

n
Î[τn]− log r

n
,

and combine the energy estimates to obtain

I[σ] ≤ 2mE(Zn) +
n− 1

n
Î[τn]− VE −

log r

n
+ 2 max

dE(z)≤2r
gE(z,∞).

Using (3.9), (3.10) and the above estimate, we proceed to (2.1)-(2.2) via the following∣∣∣∣∫ φ dτn −
∫
φ dµE

∣∣∣∣ ≤ ∣∣∣∣∫ φ dτn −
∫
φ dτ rn

∣∣∣∣+

∣∣∣∣∫ φ dτ rn −
∫
φ dµE

∣∣∣∣
≤ ωφ(r) +

√
D[φ]

√
D[Uσ]

2π
= ωφ(r) +

√
D[φ]

2π

√
I[σ].

Thus we proved the result for sets bounded by finitely many piecewise smooth curves. To
show that (2.1)-(2.2) hold for an arbitrary compact set E of positive capacity, we approximate
E by a decreasing sequence Em, m ∈ N, of compact sets with piecewise smooth boundaries.
Let ε1 = 1 and consider an open cover of E by the disks {D(z, ε1)}z∈E, where D(z, ε1) is
centered at z and has radius ε1. There exists a finite subcover such that E ⊂ ∪N1

k=1D(ck,1, ε1).

Define E1 := ∪N1
k=1D(ck,1, ε1). We construct the sets Em inductively for m ≥ 2. Set εm :=

dist(E, ∂Em−1)/2 > 0. As before, we have a finite subcover such that

E ⊂
Nm⋃
k=1

D(ck,m, εm), m ∈ N,

where ck,m ∈ E, k = 1, . . . , Nm. Let

Em :=
Nm⋃
k=1

D(ck,m, εm), m ∈ N,

13



and note that Em ⊂ Em−1 and εm ≤ εm−1/2, m ≥ 2. Clearly, the boundary of every Em
consists of finitely many piecewise smooth curves, and each curve is composed of finitely many
circular arcs. Thus (2.1)-(2.2) hold for every Em, m ∈ N. Observe that limm→∞ εm = 0, so
that

E =
∞⋂
m=1

Em.

If gEm(z,∞) is the Green function for C \ Em with pole at ∞, then

gEm(z,∞) ≤ gE(z,∞), z ∈ C,

for any m ∈ N, by Corollary 4.4.5 of [30, p. 108]. This gives that

max
dEm (z)≤2r

gEm(z,∞) ≤ max
dEm (z)≤2r

gE(z,∞), m ∈ N.

Since gE(z,∞) is subharmonic in C and harmonic in ΩE, the maximum on the right of the
above inequality is attained on the set {z ∈ C : dEm(z) = 2r} ⊂ ΩE. We have that

lim
m→∞

max
dEm (z)=2r

gE(z,∞) = max
dE(z)=2r

gE(z,∞),

because dEm(z) ≤ dE(z) ≤ dEm(z) + εm, z ∈ C, by the triangle inequality. Thus

lim sup
m→∞

max
dEm (z)≤2r

gEm(z,∞) ≤ max
dE(z)≤2r

gE(z,∞).(3.11)

Furthermore, Theorem 4.4.6 of [30, p. 108] implies that

lim
m→∞

gEm(z,∞) = gE(z,∞), z ∈ ΩE,

so that

lim
m→∞

mEm(Zn) = mE(Zn).(3.12)

Recall that gEm(z,∞) = VEm − UµEm (z), z ∈ C, and the same formula holds with Em
replaced by E. Using Theorem 5.1.3 of [30, p. 128], we obtain that

lim
m→∞

VEm = VE,(3.13)

which gives that

lim
m→∞

UµEm (z) = UµE (z), z ∈ ΩE.

Since supp(µEm) ⊂ ∂ΩEm ⊂ ∂Em, m ∈ N, we can select a subsequence of measures µj :=

µEmj
such that µj

∗→ µ, see [32, p. 3]. It follows that µ is a probability measure supported

on ∂ΩE, as E = ∩∞m=1Em and ΩEm ⊂ ΩEm+1 ⊂ ΩE, m ∈ N. Hence we have by the weak-*
convergence that

lim
j→∞

Uµj (z) = Uµ(z), z ∈ ΩE,

which means that

Uµ(z) = UµE (z), z ∈ ΩE.
14



Since supp(µ) ⊂ ∂ΩE and supp(µE) ⊂ ∂ΩE, Carleson’s Unicity Theorem [32, p. 123] implies
that µ = µE. This argument applies to any subsequence of the sequence µEm , m ∈ N,
therefore we conclude that µEm

∗→ µE as m→∞. Consequently,

lim
m→∞

∫
φ dµEm =

∫
φ dµE.

We now pass to the limit in (2.1) stated for Em, as m → ∞, and use the above equation
together with (3.11), (3.12) and (3.13) to prove that (2.1)-(2.2) also hold for E.

�

Proof of Theorem 2.2. Since Zn ⊂ E and limz→∞(gE(z,∞) − log |z|) = VE, the function
1
n

log |Pn(z)|+VE − gE(z,∞) is harmonic in ΩE (including ∞, where it has value 0). By the
Maximum-Minimum Principle, it is sufficient to prove (2.5) for z ∈ Γn := ∂Ωn = {z ∈ ΩE :
gE(z,∞) = 1/n}, where n ≥ 2. Define the distance between E and Γn by

ρn := dist(E,Γn) = min
t∈E,w∈Γn

|t− w|,

and note that

ρn ≤ |z − t|+ dE(t), t ∈ C, z ∈ Γn,(3.14)

by the triangle inequality. Let diam(E) := maxt,w∈E |t − w| be the diameter of E, and set
R := diam(E) + 1. We apply Theorem 2.1 with the function

φ(t) := min (log(|z − t|+ dE(t))− logR, 0) , t ∈ C, z ∈ Γn.(3.15)

It is clear that supp(φ) ⊂ D(z,R) := {t ∈ C : |t − z| < R}. Furthermore, E ⊂ supp(φ) for
all large n ∈ N, because dE(z)→ 0 for z ∈ Γn as n→∞ by the continuity of g(z,∞) in ΩE.
One readily finds from the triangle inequality that

||z − t1| − |z − t2|| ≤ |t1 − t2| ∀ t1, t2 ∈ C,

and

|dE(t1)− dE(t2)| ≤ |t1 − t2| ∀ t1, t2 ∈ C,
see also Federer [14, p. 434] for more details about the function dE. Hence the function
f(t) := |z − t|+ dE(t), t ∈ C, satisfies the Lipschitz condition

|f(t1)− f(t2)| ≤ 2|t1 − t2| ∀ t1, t2 ∈ C.

Thus the partial derivatives fx and fy exist a.e. with respect to the area measure (and the
linear measure on vertical and horizontal lines), and we obtain that

|fx(t)| ≤ 2 and |fy(t)| ≤ 2 for a.e. t = x+ iy ∈ C.

Hence φx and φy also exist a.e. in the same sense, with

|φx(t)| ≤
2

|z − t|+ dE(t)
≤ 2

ρn

and

|φy(t)| ≤
2

|z − t|+ dE(t)
≤ 2

ρn
15



for a.e. t = x+ iy ∈ C by (3.14). This gives the estimates

|φ(t1)− φ(t2)| ≤ |t1 − t2| sup
C

√
φ2
x + φ2

y ≤
2
√

2

ρn
|t1 − t2|

and

ωφ(r) ≤ 2
√

2

ρn
r.(3.16)

Furthermore, we obtain for the Dirichlet integral

D[φ] =

∫∫
C
(φ2

x + φ2
y) dA ≤

∫∫
D(z,R)

8 dA(t)

(|z − t|+ dE(t))2

≤
∫∫
|z−t|≤ρn

8 dA(t)

(|z − t|+ dE(t))2
+

∫∫
ρn≤|z−t|≤R

8 dA(t)

(|z − t|+ dE(t))2

≤ 8

(
1

ρ2
n

πρ2
n +

∫ 2π

0

∫ R

ρn

r dr

r2
dθ

)
= 8π

(
1 + 2 log

R

ρn

)
by supp(φ) ⊂ D(z,R) and (3.14). If the Green function g(z,∞) satisfies the Hölder condition
(2.3), then ρn ≥ (Cn)−1/s with C = C(E) > 0, and D[φ] = O(log n) as n → ∞. Letting
r = n−1/2−1/s, we obtain that ωφ(r) = O(n−1/2) by (3.16). Since 2r ≤ ρn for large n, we
have that

max
dE(z)≤2r

gE(z,∞) ≤ 1

n
.

Applying the above estimates and (2.4) in (2.1)-(2.2), we arrive at∣∣∣∣∣ 1n
n∑
k=1

φ(zk,n)−
∫
φ dµE

∣∣∣∣∣ ≤ O(n−1/2) +O(
√

log n)

(
O

(
log n

n

)
+

2

n

)1/2

(3.17)

≤ O

(
log n√
n

)
as n→∞,

where we also used that mE(Zn) = 0. Note that all constants in O terms are independent
of the point z ∈ Γn, of the set Zn, as well as of n ≥ 2. It remains to observe that φ(t) =
log |z − t| − logR for t ∈ E, so that

1

n

n∑
k=1

φ(zk,n)−
∫
φ dµE =

1

n
log |Pn(z)| −

∫
log |z − t| dµE(t)

=
1

n
log |Pn(z)|+ VE − gE(z,∞), z ∈ Γn,

by (3.2). Thus (2.5) follows from (3.17) by the Maximum-Minimum Principle. Further, we
obtain from (2.5) for z ∈ Γn that

log ‖Pn‖E ≤ log ‖Pn‖Γn ≤ C2

√
n log n− nVE + 1, n ≥ 2,(3.18)

which proves (2.6).
For the proof of (2.7), we write

P ′n(w) =
1

2πi

∫
|t−w|=ρn

Pn(t) dt

(t− w)2
, w ∈ ∂E.
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Hence

|P ′n(w)| ≤
max|t−w|=ρn |Pn(t)|

ρn
, w ∈ ∂E,

and

‖P ′n‖E ≤ ρ−1
n ‖Pn‖Γn ≤ (Cn)1/s‖Pn‖Γn ,

because ρn ≥ (Cn)−1/s. Note that

exp
(
−n(n− 1)Î[τ(Zn)]

)
=

n∏
k=1

|P ′n(zk,n)| ≤ (Cn)n/s‖Pn‖nΓn
.

Thus (2.7) follows from (3.18) and the above equation.
�

Proof of Corollary 2.3. We first observe that the Fekete points Fn satisfy

Î[τ(Fn)] ≤ VE, n ≥ 2,(3.19)

This fact holds because the discrete energies of Fekete sets increase to VE with n, see [30, p.
153]. Hence (2.4) holds true and Theorem 2.2 applies to Fn.

It turns out that (3.19) is also true for the Leja points Ln = {ξk}n−1
k=0 , n ∈ N. Consider the

corresponding Leja polynomials Ln(z) :=
∏n−1

k=0(z − ξk), n ∈ N, and recall that

‖Ln‖E = |Ln(ξn)| =
n−1∏
k=0

|ξn − ξk|

by definition. Hence we have for the Vandermonde determinant

|V (Ln)| =
∏

0≤j<k≤n−1

|ξj − ξk| =
n−1∏
k=1

|Lk(ξk)| =
n−1∏
k=1

‖Lk(ξk)‖E.

Since ‖Pk‖E ≥ (cap(E))k holds for any monic polynomial Pk, deg(Pk) = k, see [4, p. 16],
we obtain that

|V (Ln)| ≥ (cap(E))n(n−1)/2

and

Î[τ(Ln)] = − log |V (Ln)|
2

n(n−1) ≤ VE.

�

Proof of Theorem 2.4. Suppose that supp(φ) ⊂ {z : |z| ≤ R}, and that φ satisfies the
Lipschitz condition |φ(z)−φ(t)| ≤ A|z−t|, z, t ∈ C. It is clear that ωφ(r) ≤ Ar.Also, |φx| ≤ A
and |φy| ≤ A a.e. in C, so that D[φ] ≤ 2πR2A2. If the Green function g(z,∞) satisfies the
Hölder condition (2.3), then ρn = mint∈E,w∈Γn |t − w| ≥ (Cn)−1/s, with C = C(E) > 0 and
0 < s ≤ 1, as in the proof of Theorem 2.2. Letting r = n−2/s, we obtain that ωφ(r) ≤ An−2/s.
Since 2r ≤ ρn for large n, we have that

max
dE(z)≤2r

gE(z,∞) ≤ 1

n
.

Hence (2.8) follows from (2.1)-(2.2) by combining the above estimates with (2.4). �
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Proof of Corollary 2.5. We let φ(z) = <(zm), z ∈ E, and extend this function outside
of E to a Lipschitz continuous function with compact support in C. Then (2.8) holds
true for this choice of φ, with mE(Zn) = 0 as Zn ⊂ E. The same argument applies to
φ(z) = =(zm), z ∈ E, continued appropriately. Combining the estimates obtained from
(2.8), we arrive at (2.9). �

Proof of Theorem 2.6. In the fisrt part, we repeat the proof of Theorem 2.4. Namely, we
assume that supp(φ) ⊂ {z : |z| ≤ R}, and that φ satisfies the Lipschitz condition |φ(z) −
φ(t)| ≤ A|z− t|, z, t ∈ C. It is clear that ωφ(r) ≤ Ar. Also, |φx| ≤ A and |φy| ≤ A a.e. in C,
so that D[φ] ≤ 2πR2A2. If the Green function g(z,∞) satisfies the Hölder condition (2.3),
then ρn ≥ (Cn)−1/s, with C = C(E) > 0 and 0 < s ≤ 1. Letting r = n−2/s, we obtain that
ωφ(r) ≤ An−2/s. Since 2r ≤ ρn for large n, we have that

max
dE(z)≤2r

gE(z,∞) ≤ 1

n
.

Noting that VE = log cap(E) = 0, we seek an upper estimate for Î[τ(Zn)], in order to apply
Theorem 2.1. As Pn has integer coefficients and simple zeros, we obtain that its discriminant
∆(Pn) = a2n−2

n (V (Zn))2 is a non-zero integer [26, p. 24]. Hence |∆(Pn)| ≥ 1 and

Î[τ(Zn)] = − 1

n(n− 1)
log |∆(Pn)|+ 2

n
log |an| ≤

2

n
log |an|.

Combining the above estimates in (2.1)-(2.2), we obtain (2.10). �

Proof of Corollary 2.7. Since the roots Zn = {zk,n}nk=1 of Pn come in complex conjugate
pairs, we have that

1

n

n∑
k=1

zk,n =
1

n

n∑
k=1

<(zk,n).

Hence we consider φ(z) = <(z), z ∈ E, and extend this function outside of E to a Lipschitz
continuous function with compact support in C. Note that mE(Zn) = 0 as Zn ⊂ E. Also,
|an| ≤M . The electrostatic centroid of E lies at the origin because of the set symmetry and
uniqueness of the equilibrium measure µE, i.e.,

∫
z dµE(z) = 0. Thus (2.11) follows from

(2.10) by Theorem 2.6. �

Proof of Example 2.8. We recall some basic facts from prime number theory, which may be
found, for example, in Ingham [20] and Davenport [10]. Let π(x) be the number of primes
not exceeding x. The Prime Number Theorem states that

π(x) =
x

log x
+ o

(
x

log x

)
as x→∞.

It is equivalent to the following asymptotic formulas from prime number theory. If pm is the
mth prime number, then [20, p. 36]

pm = m logm+ o(m logm) as m→∞.(3.20)

For the Chebyshev θ-function, we have [20, p. 13]

θ(x) :=
∑
p≤x

log p = x+ o(x) as x→∞,(3.21)

where the sum extends over all primes p ≤ x.
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An asymptotic of the sum of consecutive primes may be found by using the method
described in Rosser and Schoenfeld [31, pp. 67-68], which was carried out by Salát and
Znám [33]. We use a more precise form of the Prime Number Theorem proved by de la
Vallée Poussin, see [20, p. 65] and [10, p. 113]:

π(x) = li x+O
(
xe−a

√
log x
)

as x→∞,(3.22)

where a > 0 and

lix :=

∫ x

2

dt

log t
.

Better error terms are certainly available now, but this classical result is sufficient for our
purpose. Suppose that f : [0,∞) → R is a continuously differentiable function. Using the
Stieltjes integral and integration by parts, we obtain by following [31, p. 67] that∑

p≤x

f(p) =

∫ x

2

f(t) dπ(t) = f(x)π(x)−
∫ x

2

f ′(t)π(t) dt

=

∫ x

2

f(t) dt

log t
+ f(x)(π(x)− lix)−

∫ x

2

f ′(t)(π(t)− li t) dt.

If we set f(x) = x and use (3.22) in the above formula, it gives that∑
p≤x

p =
x2

2 log x
+ o

(
x2

log x

)
as x→∞.

Taking into account (3.20), we arrive at the asymptotic

n =
k∑

m=1

pm − k =
k2 log k

2
+ o(k2 log k) as k →∞.(3.23)

Combining (3.20), (3.21) and (3.23), we obtain that

log

(
k∏

m=1

pm

)
= θ(pk) ≥ c1

√
n log n, n ≥ 2,

with a constant c1 > 0. This implies our estimate for ‖Pn‖D, because

|Pn(z)| =

∣∣∣∣∣
k∏

m=1

(
pm−1∑
j=0

zj

)∣∣∣∣∣ ≤
k∏

m=1

pm = Pn(1), |z| ≤ 1.

Also, (3.23) immediately gives that

k

n
≥ c2√

n log n
, n ≥ 2,

where c2 > 0. �
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[18] M. Götz, On the distribution of Leja-Górski points, J. Comput. Anal. Appl. 3 (2001), 223–241.
[19] J. Huesing, Estimates for the discrepancy of a signed measure using its energy norm, J. Approx. Theory

109 (2001) 1–29.
[20] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Univ. Press, London, 1932.
[21] R. Jentzsch, Untersuchungen zur Theorie der Folgen analytischer Funktionen, Acta Math. 41 (1917),

219–270.
[22] W. Kleiner, Une condition de Dini-Lipschitz dans la théorie du potentiel, Ann. Polon. Math. 14 (1964),
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[39] G. Szegő, Über die Nullstellen von Polynomen, die in einem Kreis gleichmässig konvergieren, Sitzungs-
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