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Abstract. We study the asymptotic structure of polynomials with integer coef-
ficients and smallest uniform norms on an interval of the real line. Introducing
methods of the weighted potential theory into this problem, we improve the bounds

for the multiplicities of some factors of the integer Chebyshev polynomials.

1. Introduction

Let P, (C) and P,(Z) be the sets of algebraic polynomials of degree at most
n, respectively with complex and with integer coefficients. Define the uniform

norm on the interval [a,b] C R by

/]

fap] 7= 102X |f(z)].

It is very well known that the Chebyshev polynomial
T, (z) := 2" cos(n arccos )

is a monic polynomial of degree n, which minimizes the uniform norm on

[—1,1] in the class of all monic polynomials from P, (C) (see [2], [12] and
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[15]). The case of an arbitrary interval [a,b] C R can be reduced to that of
[—1, 1] by a change of variable. Thus we immediately obtain that

= () (5522

is a monic polynomial with the smallest uniform norm on [a,b] among all

monic polynomials from P,(C). Clearly,

[n]

b n
[a,b] = 2 < 1 a) s n € N, (11)

and the Chebyshev constant for [a,b] is given by

b—a
YR

Chebyshev polynomials and Chebyshev constant represent very classical top-

— T In _
cheb(a,b]) = Jim a5 = (12

ics in analysis. These ideas have applications in many areas of mathematics,
see [2], [12] and [15]. We remark that the Chebyshev constant of a compact
set in C is equal to its transfinite diameter and to its logarithmic capacity
(cf. [18, pp. 71-75] for the general definitions and a discussion).

A corresponding minimization problem in the class of polynomials with
integer coefficients P, (Z) also has a long and interesting history, surveyed in
[14, Ch. 10] and [3]. An integer Chebyshev polynomial g, € P, (Z) is defined

in this case as follows:
= inf 1.
||Qn||[a,b] Uanlan(Z) ||pn||[a,b]a ( 3)

where the inf in (1.3) is taken over all polynomials from P, (Z), which are
not identically zero. Further, one can define the integer Chebyshev constant

(integer transfinite diameter) for [a, b] similarly to (1.2)

inch([a,b]) = Jim_[lgu]liLf (1.4)



CHEBYSHEV POLYNOMIALS WITH INTEGER COEFFICIENTS 3

It is not difficult to see that the above limit exists (cf. [14, Ch. 10] or [3]).
Observe from (1.1) and (1.3) that if b —a > 4 then ¢,(z) =1 for any n € N
and inch([a,b]) = 1. However, if b — a < 4 then

b—a
4

= cheb([a, b]) < inch([a, b]). (1.5)

On the other hand, the results of Hilbert [10] and Fekete [5] imply that

b—a

inch([a, b)) < 1

(1.6)

(see [3]). The exact value of the integer Chebyshev constant and an explicit
(or even asymptotic) form of the integer Chebyshev polynomials is not known
for any [a, b] with b—a < 4. Perhaps the most studied case, due to the interest
in the distribution of prime numbers, is the case of [0, 1] (cf. [14, Ch. 10], [3]
and [4]). The best known bounds for inch([0, 1]) are as follows:

0.42072638 < inch([0,1]) < 0.42347945. (1.7)

The lower bound in (1.7) is obtained with the help of the Gorshkov-Wirsing
polynomials (see [14, Ch. 10]). It was believed to be the precise value of
inch([0,1]), but Borwein and Erdélyi [3] recently showed that there must be
a strict inequality on the left of (1.7). The upper bound can be found from the
very definition of the integer Chebyshev constant in (1.3)-(1.4), using various
optimization techniques. Although this is by no means straightforward, both
theoretically and practically, this nevertheless becomes more accessible for
computations with growing power of modern computers. Thus, the upper
bound in (1.7) has recently been improved several times (cf. [3], [6], [7] and
[9]). The value in (1.7) is taken from [9], and to our knowledge is the best

computed upper bound.
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2. Asymptotic structure of the integer Cheby-

shev polynomials

We are interested in the asymptotic structure of the polynomials Q,, € P, (Z)
satisfying

1@nlloay =  inf )||Pn||[0,1}a n € N. (2.1)

Osépnlem(z

This problem was originally proposed by A. O. Gelfond (cf. [1]). It is known
that the polynomials @), satisfying (2.1) have factors that tend to repeat and
to increase in power as n — oo (see [14, Ch. 10] and [3] for a discussion). In
particular, Aparicio (cf. Theorem 3 in [1]) showed that if {Q,}32, C Pn(Z)
satisfy (2.1), then

Qn(z) = (z(1 — z))leml(2z — Dleenl (522 — 52 4 D)I"IR, (), asn — oo,

(2.2)
where
ar > 0.1456, s > 0.0166 and  ag > 0.0037, (2.3)
and R, € P,(Z), n € N. Borwein and Erdélyi proved that
a1 > 0.26 (2.4)

in (2.2) (see Theorem 3.1 of [3]). Flammang, Rhin and Smyth [8] recently

generalized the ideas of [3] and obtained the following lower bounds
a; > 0.264151, ap > 0.021963 and a3 > 0.005285. (2.5)

They also considered six additional factors of @, () and studied other inter-
vals (cf. [8] for the details).

We use the methods of the weighted potential theory, developed during
the last two decades, to study the integer Chebyshev problem and to improve
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the bounds for a; and as. A complete account on the weighted potential

theory is contained in [16].
Theorem 2.1. Let {Q,}°2, be a sequence of polynomials with integer coef-

ficients satisfying (2.1). Then (2.2) holds with

0.2961 < ay <0.3634  and 0.0952 < oy < 0.1767. (2.6)

Furthermore, the pair (a1, ) must belong to the region G pictured below in
Figure 1, which is determined by (3.25), (3.26) and (3.28).
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0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

Figure 1: Region G for a; and as.

Note that (2.6) also gives the upper bounds for a; and ay. Moreover,
we believe that the methods introduced here can produce bounds for a3 and
for the multiplicities of other factors of the integer Chebyshev polynomials
(see [3], [8] and [9] for lists of such factors). The proof of Theorem 2.1 is

presented in Section 3, after the development of necessary techniques.
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3. Weighted polynomials and weighted po-

tentials

Using the idea of symmetry and the change of variable x(1 — x) — x, one

can see that

(inch([0,1]))? = inch([0, 1/4)). (3.1)

Furthermore, we have by Lemmas 1-2 of [9] that

Qo (7) = g (x(1 = 7)) (32)
and
Qorr1(x) = (1 = 22) g (z(1 — ), (3.3)
where
B [lgel33 = ineh(0,1/4]). (3.4)

Hence we can study the sequences {¢,}5°, C P,(Z) satisfying (3.4) in-
stead of considering the original sequence {Q,}52, satisfying (2.1), which is
more convenient for technical reasons. Note that the factors z(1 — ) and
(1—2z)? for Qq(z) are transformed into the factors x and (1 —4x) for g (z),

under the change of variable x(1 — ) — x. On writing

an() = O (1= 42)2 O ) (), nEN,  (35)

where 7,k (n)—ko(n)(0) 7 0 and 7y, g, (n)—ko(n)(1/4) # 0, we can assume that
the following limits exist:
k k
lim k() =:u and lim ka(n) =v (3.6)

n—oo 7 n—oo
(passing to subsequences, if necessary). It follows that in the study of the

n-th root behavior of (3.5) one may equivalently consider
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v )n*kl(n)*’@(n)

(27 (1 = dz) ™o P ki (m)—ka(my(2), T €1[0,1/4],  (3.7)

as n — oo, where (3.7) is the so-called weighted polynomial with varying

weight (w(z))" ¥ =#2(") and where

w(z) === (1 —4z) ™=, z€[0,1/4] (3.8)
(see [16]). Clearly, the uniform norms of both (3.5) and (3.7) on [0,1/4]

cannot be attained at the endpoints. Furthermore, if u > 0 and v > 0 then
these uniform norms “live” on an interval [a,b] C (0,1/4). This type of
problem for the Jacobi weights (see Example IV.1.17 in [16, p. 206]) has first
been considered in [13], [11] and [17], where the sharp values for a and b were
found. We follow the modern and general approach to the problem via the
weighted potential theory, described in [16].

For [a,b] C R, let Q := C\[a,b] and let go(z,p) be the Green function
of Q with pole at p € Q (cf. [18, p. 14]). Consider the following natural

extension for w(x) of (3.8):

w(z) := || =71 — 42| ==, z € C, (3.9)

where u > 0, v >0and u+v < 1.

Lemma 3.1. Suppose that P, € P,(C) and w is defined by (3.9). Then
there exists an interval [a,b] C [0,1/4] with

a:=w? =0 =VA+1)/8 and b:= (u® —v* + VA +1)/8, (3.10)

where A = (1 — (u+v)?)(1— (u—2v)?), and a continuous in C and harmonic

in C\[a, b] function

hz) = (ga(z,00) —u(log|z| + ga(z,0))
— v(logldz — 1| + ga(2,1/4)))/(1 — u — v), (3.11)
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such that

Pa(2)] < [[0" Palljage™®,  z€C. (3.12)

Moreover,

[w" Py (2)]

o,1/4) = [|w" Palfa,0)- (3.13)

Proof. 1t follows from Theorem II1.2.1 of [16] that

|P.(2)| < ||w"P,]|s, exp(n(F, — U""(2))), =z¢€ C, (3.14)

where p,, is a positive unit Borel measure with the support S, C [0,1/4],
which is the solution of the weighted energy problem for the weight w of (3.9)
on [0,1/4], considered in Section I.1 of [16]. Here, U**(z) is the logarithmic
potential of pi,,

v (2) := [ log - L ia0) (3.15)

and F, is the modified Robin constant for w. Note that the weight w of (3.9)
is just a special case of the Jacobi weights of Example IV.1.17 in [16]. Thus

our problem on the interval [0, 1/4] is easily reduced to that on the interval
[—1, 1] considered there, with the help of the change of variable z — (z+1)/8.
We obtain from Example IV.1.17 of [16] that S,, = [a, b], with a and b given
by (3.10) (see (1.27) and (1.28) in [16, p. 207]). Equation (3.13) now follows
from Corollary II1.2.6 of [16]. Also, Theorem 1.1.3 of [16] yields that

F, —U"(2) = —logw(z), (3.16)

for quasi every z € [a,b] (i.e., with the exception of a set of zero capacity).

Hence F,, — U"*(z) — h(z) is a harmonic function in €2 such that

Fy—U"(2) —h(z) =0
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for quasi every z € [a,b] = 0Q by (3.11), (3.9), (3.16) and the basic properties
of Green functions (see [18, p. 14]). Using the uniqueness theorem for the
solution of the Dirichlet problem in Q (cf. Theorem III.28 and its Corollary
in [18]), we conclude that

F, —=U"(z)=h(z), ze€C.
Thus (3.12) follows from (3.14). [

Proof of Theorem 2.1. Suppose that {g,}°2, is a sequence of polynomials
with integer coefficients, satisfying (3.2)-(3.4). We also assume that (3.5)-
(3.6) hold for this sequence, as before. It follows from (3.6) that

_ k) ko)
lim |z|»=Fit=F0) |1 — 4z|n=Fim=F0) = w(z), (3.17)
n—oo

where w(z) is given by (3.9) and where the above convergence is uniform on
compact subsets of C. Since r,_g, (n)—ks(n)(0) 7# 0 by (3.5), we obtain from
(3.12) that

—_
IA

|70k (n)—ka(n) (0)]

n—ki(n)—ka(n) n—ki(n)—k2(n))h(0)

IN

| w P ka(n) ks (m) | 1a.t1€"

< ||wn—k1(n)—k2(n) (n—k1(n)—k2(n))h(0)

Tn_k;l (n)—k)z(n) || [071/4}6

Extracting the n-th root in the above inequality, passing to the limit as
n — oo and, using (3.4)-(3.6) and (3.17), we arrive at

1 < inch([0,1/4])et—u=h0O) (3.18)

A similar argument applied in the case z = 1/4 gives that

1 n—ki(n)—ka(n) 1
(3) < s (5)

and that
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44071 < ineh([0,1/4]) et TR/ (3.19)

The Green functions in the definition of h(z) in (3.11) can be found
explicitly, by using the conformal mappings of €2 onto the exterior of the unit
disk D" := {w : |w| > 1}. Indeed, introducing these conformal mappings by

Do (2) = 2z—a—b—|—b2_ Elz—a)(z—b)7 — (3.20)

27— bt —a' 24 /(z7 = b)) (27t —a)
Dy(2) == bl\/— = , 2€Q, (3.21)

202 —1/4)7' = (b—-1/4)7" - (a —1/4)7!

@1/4(2) =

2J/((z = 1/4)7" = (a = 1/4) ) ((z = 1/4)" = (b — 1/4)7)

0,(3.22
(b—1/4) 1~ (a—1/4) 1 » 2e0E2)
we observe that
Po(00) =00, Po(0) =00 and Py/4(1/4) = o0. (3.23)
Hence
ga(z,00) =log|Ps(2),  gal(z,0) = log|®o(2)|
and  go(z,1/4) =log|®1/4(2)], =z €, (3.24)

by Theorem 1.17 of [18, p. 18]. Taking (3.24) into account, we rewrite (3.18)

as

1< ineh(0, 1/4)[@0)] (L |200(2)l) (B0 (325)
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and (3.19) as

< i (014 1)1 /) T 12 = 1/
(3.26)
Thus u € [0,1] and v € [0, 1] must satisfy the inequalities (3.25) and (3.26).
Applying (3.1) and the upper bound of (1.7) in (3.25)-(3.26), we obtain the
region H of Figure 2 below and the following bounds for v and v:

0.5923 <u <0.7268 and 0.0952 < v < 0.1767. (3.27)

0.5 0.55 0.6 0.65 0.7 0.75 0.8

Figure 2: Region H for u and v.

Using (3.2) - (3.4), we conclude that (2.2) holds with

a; =u/2 and ay=wv, (3.28)
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so that Theorem 2.1 follows from the results for v and v. [ |

Remark. As a consequence of the above proof and (3.13), we have that

inch([0,1/4]) = inch([A, B]),

where

A:= inf a(u,v)~0.089 and B:= sup b(u,v) = 0.247,
(u,'u)EH (u,v)GH

with a(u,v) and b(u,v) as in (3.10).
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