Weighted Approximation on Compact Sets

Igor E. Pritsker

Abstract. For a compact set £ with connected complement in the com-
plex plane, we consider a problem of the uniform approximation on F by
the weighted polynomials W™ (z)P,(z), where W(z) is a continuous non-
vanishing weight function on F, analytic in the interior of E. Let A(FE, W)
be the set of functions uniformly approximable on E by such weighted
polynomials. If £ has empty interior, then A(E,W) is completely char-
acterized by a zero set Zy C F, where all functions from A(E, W) must
vanish. This generalizes recent results of Totik and Kuijlaars for the real
line case. However, if F is a closure of Jordan domain, the description
of A(FE,W) also involves an inner function. In both cases, we exhibit the
role of the support of a certain extremal measure, which is the solution
of a weighted logarithmic energy problem, played in the descriptions of
A(E,W).

§1. Introduction

Let E be a compact set in the complex plane C with the connected
complement C\E. We denote the uniform algebra of functions which are
continuous on E and analytic in the interior of E by A(E) (see, e.g., [4, p.
25]). Clearly, the corresponding uniform norm for any f € A(FE) is defined by

(1) |l += max | ()]

Consider a weight function W € A(FE) such that W(z) # 0 for any z € E,
and define the weighted polynomials W™ (z)P,(z), where P,(z) is an algebraic
polynomial in z with complex coefficients, deg P,, < n. We are interested in
a description of the function set A(E, W), consisting of the uniform limits on
E of sequences of the weighted polynomials {W"(2)P,(2)}52,, as n — oo. It
is well known that if W(z) = 1 on E then A(E,1) = A(E) by Mergelyan’s
theorem [4, p. 48]. In general, we have that A(E, W) C A(E).

Our problem originated in the work of Lorentz [10] on incomplete poly-
nomials on the real line. Surveys of results in this area, dealing with weighted
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approximation on the real line, can be found in [16] and [14, Ch. VI|. The
most recent developments are in [6]-[8].

The questions of density of the weighted polynomials in the set of analytic
functions in a domain have been considered in [3], [11] and [12]. In particu-
lar, [12] contains a necessary and sufficient condition such that any function
analytic in a bounded open set is uniformly approximable by the weighted
polynomials W"(z)P,(z) on compact subsets. However, the description of
A(E, W) seems to be much more complicated, in that no general necessary
and sufficient condition is known (in terms of the weight W(z)), even for the
real interval case, i.e., for E = [a,b] C R.

We shall approach the above mentioned problems on A(E, W), using ideas
of the theories of uniform algebras and of weighted potentials.

§2. A(E,W) as a Closed Ideal and Weighted Potentials

Proposition 2.1. A(E, W), endowed with norm (1.1), is a closed function
algebra (not necessarily containing constants and separating points).

We have already remarked that A(E,W) C A(FE). To make this inclu-
sion more precise, let us introduce the algebra [W(z),zW(z)] generated by
the two functions W(z) and zW(z), which is the uniform closure of all poly-
nomials in W(z) and zW(z) (with constant terms included) on E. Clearly,
[W(z),z2W(z)] C A(E). Since any weighted polynomial W"(z)P,(z) is an
element of [W(z),zW(z)], then A(E,W) C [W(z),zW(z)]. Thus, we arrive
at the following

Proposition 2.2. A(E.W) C [W(z),zW(z)] C A(E).
Proposition 2.3. A(E,W) is a closed ideal of [W(z), zW(z)].

It turns out that in many cases [W(z), zW(z)] = A(E), so that A(E, W)
becomes a closed ideal of A(E) by Proposition 2.3.

Proposition 2.4. [W(z),zW(z)] = A(E) it 1/W(z) € [W(z),zW(z)].

Unfortunately, we do not know any effectively verifiable necessary and
sufficient condition on the weight W(z), so that the equality [W(z), zW(z)] =
A(E) is valid. Nevertheless, a number of sufficient conditions can be given,

guaranteeing that the two algebras [W(z), zW(z)] and A(E) coincide.

Proposition 2.5. Each of the following conditions implies that
(=), (=) = A(E) -
(a) The point ( = 0 belongs to the unbounded component of C\W(E);
(b) E is the closure of a Jordan domain or a Jordan arc, and W(z)
1s one-to-one on E;
(c) E is a Jordan arc and W (z) is of bounded variation on E;
(d) E is a Jordan arc and W (z) is locally one-to-one on E;
(e) E = G, where G is a Jordan domain bounded by an analytic curve,

and W'(z) € A(G).
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Assuming that E has positive logarithmic capacity, then

(2.1) 1%@:{”%?Lj;?

is an admassible weight for the wewghted logarithmic energy problem on E con-
sidered in Section I.1 of [14]. This enables us to use certain results of [14],
which we summarize below for the convenience of the reader. Recall that the
logarithmic potential of a compactly supported Borel measure u is given by

1
|z — 1]

(2.2) Uk(z) := /log du(t).

Proposition 2.6. There exists a positive unit Borel measure ,,, with sup-
port Sy := supp 1 C OF, such that for any polynomial P,(z),deg P, < n,
we have

(23)  [WP()Pu(2)| < W7 Palls, exp(n(Fu — U*(2) + log [W(=)]),
where z € E and where F,, is a constant. Furthermore, the inequality
(2.4) Ukw(z) —log |W(z)| > Fu

holds quasi-everywhere on E, and

(2.5) Utw(z) —log |W(z)| £ Fy, for any z € S,.

By saying quasi-everywhere (q.e.), we mean that a property holds every-
where, with the exception of a set of zero logarithmic capacity. The measure
18 the solution of a weighted energy problem, corresponding to the weight
w(z) of (2.1) (see Section 1.1 of [14]). It follows from (2.3) and (2.4) that the
norm of a weighted polynomial W™ P, essentially “lives” on S,,. In particular,

the following is valid (see Corollary I11.2.6 of [14]).

Proposition 2.7. Suppose that for every point zg € E, the set {z : |z — 2| <
6, z € E} has positive capacity for any 6 > 0. Then

(2.6) W™ Pylle = [[W" Py s,

for any polynomial P,,deg P, < n.
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63. Sets with Empty Interior

Let E be a compact set with connected complement and empty interior.
Obviously, A(E) = C(E) in this case. We characterize A(E, W) in terms of a

certain zero set.

Theorem 3.1. Suppose that E has a connected complement and an empty
interior, and that W € C(FE) is a nonvanishing weight on E. Assume that
[W(z),z2W(z)] = C(E). Then, there exists a closed set Zyw C E such that
feAE,W)ifand only if f € C(FE) and f|z, =0.

It is clear that A(E, W) = C(FE) if and only if the set Z is empty. This
is true, for example, for W(z) =1 on E.

Theorem 3.1 generalizes a recent result of Kuijlaars (see Theorem 3 of
[8]), related to polynomial approximation with varying weights on the real line.
However, it has a new part even in the latter case, allowing us to consider the
complex valued weights W(z) on subsets of the real line.

A description of the set Zw in terms of the weight W(z) is unknown in
general. We can only show that Zy must contain the complement of S, (see
Proposition 2.6) in E.

Theorem 3.2. Let E be an arbitrary compact set with the connected com-
plement C\E and let W € A(E) be a nonvanishing weight on E. Suppose
that for every point zg € E, the set {z : |z — 29| < 6, z € E} has positive
logarithmic capacity for any § > 0. Assume further that C\S,, is connected
and [W(z),zW(z)] = C(Sy) on Sy. If f € A(E,W), then f(z) = 0 for any
z € E\Sy. In particular, if E has empty interior, then E\S,, C Zw.

The proof of Theorem 3.2 is based on an idea of Kuijlaars (see Theorem
2 and its proof in [8]).

If E is a compact subset of the real line and the weight W(z) is real
valued, then condition (a) of Proposition 2.5 is clearly satisfied, so that
[W(z),z2W(z)] = C(E). Therefore, the conclusion of Theorem 3.1 is valid,
and coincides with that of Theorem 3 of [8]. Furthermore, if for any point
in F, the intersection of its arbitrary neighborhood with E has positive loga-
rithmic capacity, then E\S,, C Zw. Since [W(z),zW(z)] = C(Sy) on S, by
Proposition 2.5(a), Theorem 3.2 essentially reduces to Theorem 2 of [8] in this
case, which in turn contains an earlier result of Theorem 4.1 of [16].

64. Unit Disk and Jordan Domains

The first result of this section is a consequence of the well-known de-
scription of closed ideals of A(D), where D is the unit disk, due to Beurling
(unpublished) and Rudin [13] (see also [5, pp. 82-87] for a discussion). Re-
call that ¢ is an inner function if it is analytic in D, with ||g||5 < 1, and
lg(e'®)| = 1 almost everywhere on the unit circle (cf. [5, p. 62]). By the
factorization theorem, every inner function can be uniquely expressed in the

form

(4.1) g(z) = B(2)S(z), =zé€D,
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where B(z) is a Blaschke product and S(z) is a singular function, i.e.,

(4.2) S(2) = exp (- / ez e m(e)) , -eD,

e —Zz

with v, being a positive measure on the unit circle, singular with respect to

df (see [5, pp. 63-67]).

Theorem 4.1. Let a nonvanishing weight W € A(D) be such that
[(W(z), zW(2)] = A(D). Assume that A(D, W) contains a function not iden-
tically zero.
Then there exist a closed set Hy C 0D of Lebesgue measure zero and
an inner function gw satisfying
(1) every accumulation point of the zeros of its Blaschke product is in
HW7
(ii) the measure vy of its singular function is supported on Hyy;
such that

f € A(D,W) if and only if f = gwh, where h € A(D) and h|p, =o.

The case of a Jordan domain G can be reduced to that of the unit disk, using
a canonical conformal mapping ¢ : G — D and its inverse ¢ := ¢~ 1.
Our next goal is to exhibit the role of the set S, (see Proposition 2.6)

in the case of weighted approximation on Jordan domains. Since W € A(G)
is analytic in G, then S, C G by Theorem IV.1.10(a) of [14] and (2.1).
The following result shows that 5, = G is necessary for nontrivial weighted
approximation on G.

Theorem 4.2. Let G be a Jordan domain and let W € A(G) be a nonvanish-
ing weight. Assume that S,, is a proper subset of 0G and that [W(z), zW(z)]
= C(Syw) on S,,. Then A(G,W) contains the identically zero function only.

§5. Proofs

Proof of Proposition 2.1: We have to show that A(E, W) is closed under
addition, multiplication by constants and by functions of A(E, W), and under
uniform limits. Suppose that W"P, — f € A(E,W) and W"Q,, — ¢ €
A(E, W) uniformly on E, as n — oo. Then W*(P, + Q,) — (f + ¢g), as
n — oo, so that (f +¢) € A(E,W). If & € C then W"aP, — af, as n — oo,
and af € A(E,W). Observe that

1fg =W PaQulle <lfg = fW"Qulle + [fW"Qu —W?"PQullr <

£z llg = W"Qulle + W Qulle [[f = W"Palz — 0,

as n — oo, i.e., fg € A(E,W). Applying the standard diagonalization argu-
ment, we see that A(E, W) is closed in norm (1.1). O
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Proof of Proposition 2.3: Assume that f € A(E, W) and W"P, — f
uniformly on E, as n — oo. Then, for any pair of nonnegative integers k and
( such that k > (¢, we have

1F(2)WF(2)z" = W (2)2" Po(2)|| & <

Hwk(Z)ZZHE |f = W"P,||g =0, asn — oo,

which gives that f(z2)W¥(z)2* € A(E,W). Since A(E,W) is closed under
addition and multiplication by constants (by Proposition 2.1), the product
of f and any polynomial in W(z) and zW(z) belongs to A(E,W). Thus, if
g € [W(z), zW(z)] then fg € A(E, W) follows immediately, because A(E, W)
is closed in the uniform norm on E (cf. Proposition 2.1). The proof is now
complete in view of Propositions 2.1 and 2.2. O

Proof of Proposition 2.4: Obviously, if [W(z),zW(z)] = A(E) then
1V (=) € A(E) = [W(=), s ()]

Assume that 1/W(z) € [W(z),zW(z)]. It follows that z € [W(z),
zW(z)] and, consequently, every polynomial in z is in [W(z), zW(z)]. Since
[W(z),zW(z)] is uniformly closed on E by definition, then A(E) C [W(z),
zW(z)] by Mergelyan’s theorem [4, p. 48]. Thus, Proposition 2.2 implies that
AE) = (=), =W (=)]. O

Proof of Proposition 2.5: First, we remark that W(z) and zW(z) together
separate points of any set FE.

(a) Observe that W(E), the image of E in (-plane under the mapping
¢ = W(z), is compact. By assumption, function 1/( is analytic on the poly-
nomially convex hull of W(E) and can be uniformly approximated there by
polynomials in ¢ (by Mergelyan’s theorem). Returning to z-plane, we obtain
that 1/W(z) is uniformly approximable on E by polynomials in W(z). It
follows that [W(z),zW(z)] = A(E) by Proposition 2.4.

(b) The mapping ¢ = W(z) can be extended to a homeomorphism be-
tween z-plane and (-plane (cf. [9, p. 535]). Since W(z) doesn’t vanish on E,
¢ = 0 belongs to the domain C\W(E) = W(C\E), which contains { = oo.
Hence, (b) follows from (a).

(¢) If E = [0,1] then (c) is a direct consequence of Theorem 2 of [2].
For E being a Jordan arc, we consider a homeomorphic parametrization of E
by 7 :[0,1] — E. Since W o 7(z) is of bounded variation on [0, 1], we have,
as before, that [W o 7(x),7(2)(W o 7)(x)] = C([0,1]). Clearly, 7 induces an
isometric isomorphism between C([0,1]) and C(E). Thus, the result follows
after returning to E with the help of 771,

(d) is implied by Theorem 1 of [1] for E = [0, 1]. The case of a Jordan arc
can be reduced to that of the interval as in the proof of (c).

(e) First, assume that £ = D. Then (e) follows at once from [17, p.
135]. It is well known that the conformal mapping ¢ : G — D extends as
a diffeomorphism between G and D (with nonvanishing derivatives of ¢ and
¢ := ¢~ 1), because G is bounded by an analytic Jordan curve. Using ¢, the
result for E = G is a consequence of [17, p. 135], too. O
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Proof of Proposition 2.6: Since W(z) is a continuous nonvanishing function
on E and w(z) of (2.1) is so too, the existence of p,, and inequalities (2.4)-(2.5)
follow from Theorem I1.1.3 of [14]. Moreover, W(z) is analytic in the interior
of E, which implies that S,, C JF by Theorem IV.1.10(a) of [14] and (2.1).
The inequality (2.3) is a direct consequence of Theorem II1.2.1 of [14]. O

Proof of Theorem 3.1: We have that [W(z), zW(z)] = C(E) by the assump-
tion of the theorem. Thus, A(E, W) is a closed ideal of C(E) (cf. Proposition
2.3), which is known to be described by its zero set (see [15, p. 32]). O

Proof of Theorem 3.2: We essentially follow the proof of Theorem 2 of [§].
Suppose that there exist fo € A(E, W) and zy € E\S, such that fo(z9) # 0
and W"P,, — fo uniformly on E, as n — oo.

It is clear that fyls, € A(Sw,W). Recall that S, C OF by Proposi-
tion 2.6, 1.e., S, has empty interior. Applying Theorem 3.1, with E replaced
by Sw, we obtain that A(S.,W) is described by the zero set Z{j, C S,.
Observe that multiplying A(S,, W) by (z — z0)W(z), we obtain a closed
ideal of [W(z),zW(z)] = C(Sw) (cf. Proposition 2.3), which consists of
all functions, uniformly approximable on S, by the weighted polynomials
W™ (2)Qn(z) such that @Q,(z0) = 0, as n — oo. On the other hand, the zero
set of the ideal (z — z0)W(2)A(Sy, W) coincides with that of A(S,, W). It
follows that (z — zo )W (2)A(Sw, W) = A(Sw, W) (see [15, p. 32]) and that
fols, € (2 — 20)W(2)A(Syw, W).

Thus, there exists a sequence of the weighted polynomials {W"Q, }5%,,
with @Q,(z0) = 0, uniformly convergent to f; on S,, as n — oo. Since
W"™(z)(Pn(z) — Qn(z)) converges to zero uniformly on S, and converges to
fo(z0) # 0 for z = zy € E\Sy, as n — oo, we obtain a direct contradiction
with (2.6) for some sufficiently large n.

Consequently, if f € A(E,W) then f(z) =0 for any z € E\S,. Further-
more, the same is true for any z € E\S,, by the continuity of f(z). O

Proof of Theorem 4.1: Since [W(z), z2W(z)] = A(D) by the assumption
of the theorem, A(D, W) is a closed ideal of A(D) by Proposition 2.3. The

result now follows from the description of nontrivial closed ideals of the disk

algebra (see [13] and [5, pp. 82-87]). O

Proof of Theorem 4.2: Since G is a Jordan domain, the set {z: |z — 2| <
6, z € G} has positive logarithmic capacity for any zo € G and § > 0. It is
clear that 5, is contained in some Jordan arc, as a proper closed subset of
OG, so that C\S,, is connected. Observe that all conditions of Theorem 3.2
are satisfied in this case, which yields that any function f € A(G,W) must

vanish on (G\S,)=G. O
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