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ABSTRACT. We study alocal asymptotics of the (generalized) Faber polynomi-
als at the boundary of the associated domain, under certain mild smoothness
conditions on the weight function and geometric conditions on the bound-
ary. The main result exhibits how this asymptotics depends on the corners at
the boundary. Its proof is based on the continuity properties of the Visser-
Ostrowski quotient at the corners.

1. INTRODUCTION AND MAIN RESULT

Let T' be a simple bounded Jordan curve with the interior G and the exterior
Q. Clearly, GG and Q2 are Jordan domains and oo € 2. By the Riemann mapping
theorem, there exists a canonical conformal mapping ® : @ — D' .= {w : |w| > 1}
normalized by the conditions ®(c0) = co and Zlirgo ®(z)/z > 0. Tt is well known

that @ can be extended as a homeomorphism to the boundary T' (cf. [11, p. 24]),
so that we have @ : Q@ — D/, Let ¥ := ®~! be the inverse conformal mapping
VD — Q.

Faber polynomials were introduced by Faber [5] in connection with a general-
ization of the Taylor series for an analytic function in . One of the equivalent
definitions of the Faber polynomials { F}, ()}, deg F\, = n, is the following Lau-
rent expansion (cf. [13] or [8])

(11) =Y Sl T ful> 1,

n=0

where the function on the left-hand side of (1.1) is called the generating function.
Faber polynomials have found numerous applications in approximation theory (see,
e.g., [8] and [13]) and in function theory (see references in [2]).

Let g(z) be an analytic function in €. Then, following [6], we define the gener-
alized Faber polynomials {Qn(2)}o%,y, deg Qn = n, as follows:

z€G, |w|>1

g(¥ (W) ¥ (w) = Qul2)
(1.2) W = HZ::O YT
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Clearly, if ¢(z) = 1, z € Q, then Q,(z) = F,(z) for any n = 0,1,2,.... The
generalized Faber polynomials are of great importance in the study of asymptotics
of various extremal polynomials, such as orthogonal polynomials (cf. [17, 13, 14, 15]
and [18]) and Chebyshev polynomials (cf. [7, 18]). The asymptotic properties of
the generalized Faber polynomials themselves are crucial in the above studies. In
addition to the already mentioned surveys on Faber polynomials, we refer to the
monograph [16] exclusively devoted to this subject, which contains many other
references.

An equivalent way to define Faber polynomials is to consider the polynomial
part of the Laurent expansion of ®7(z) near z = oo, i.e.,

(1.3) D" (2) = Fr(2) + En(z),
where
1
(1.4) FEn(2) =0 (—) , as z — oo.
z
Correspondingly, we have for the generalized Faber polynomials that
(1.5) 9(2)®"(2) = Qn(2) + Hn(2),
where
1
(1.6) Hn(z):O<—) ,  asz— oo
z

(see [2, 8] and [13], for example). A standard approach to the asymptotic represen-
tations of the (generalized) Faber polynomials is to show in (1.3) or (1.5) that

(1.7) FEn(z) =o0(1) or Ho(2) = o(1), asn — oo,

for z € Q. Furthermore, one can even strengthen this to include the boundary T,
under certain smoothness assumptions on T' and the values of g(z) on T', which is
usually more difficult to accomplish. The asymptotic relation then takes the form

(1.8) Qn(z) = g(2)®"(z) + o(1), asn— oo,

where z € Q (cf. [17, 18] and [16]). We study a local version of the asymptotics
for the generalized Faber polynomials on the boundary of €2, i.e., for z € I'. This
allows us to considerably relax conditions imposed on T' and ¢(z). In particular,
we treat non-smooth cases of the function ¢g(z) and the boundary T, exhibiting the
dependence of the asymptotics on the geometry of T', e.g., on the corners at the
boundary.

For a continuous function f on a compact set K C C, we define 1ts modulus of

continuity w(f, §) by (cf. [10, p. 43] and [11, p. 46]):
(1.9) w(f,8) =sup{|f(z1) — f(z2)|: |21 — 22| <8 and 21,22 € K}.

It is not difficult to see that w(f,§), & € [0, diam(K)], has the following properties
(see [10, p. 43]):

(1) w(f,8) is positive and increasing;

(i) lim (/. 8) = 0

(iii) if K is convex, then w(f,é) is subadditive, i.e.,

w(fa 61 +62) S w(fa 61) +w(fa 62)
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Any function w(é), & € [0,], satisfying (i)-(iii), is called a modulus of continuity.
Typical examples of moduli of continuity are w(§) = 6, 0 < s < 1, and w(é) =
(—logé)~*, ¢ > 0. A modulus of continuity is said to satisfy the Alper condition if

X

‘ 1
(1.10) / 2 10g L g < o0,
0 X

for some € > 0.

A Jordan curve T is said to be of class C¢ if it has a parametrization 7 : [0, 27) —
T' that is differentiable, with 7/(z) # 0 for any « € [0, 27) and with 7/(z) satisfying
a continuity condition

(1.11) |7 (z1) — 7' (22)] < w(|z1 — 22|), x1,22 €0,27),

where w 1s a modulus of continuity. A Jordan arc is of class ¢ if it 18 a subarc of
a Jordan curve of class C%.

Let H* () be the Hardy space of bounded analytic functions in € (cf. [3, p.
167]).

Theorem 1.1. Let T be a rectifiable Jordan curve and let g(z) € H® (). For
zg € T, assume that T' has an exterior angle of opening am at 29,0 < a < 2,
formed by C¥ ares, where w(x) satisfies the Alper condition (1.10). Suppose that
the boundary values of g(z) satisfy a Dini condition at zg:

(1.12) l9(2) —g(z0)| < Allz = 20l), [z — 20| <6, z€T,
with 8 > 0 and a modulus of continuity A(x) such that
5
A
(1.13) / Ay < .
0 X

Then, the generalized Faber polynomaials satisfy
(1.14) Qn(z0) = ag(z0)®" (z0) + o(1), asn — co.

It is often sufficient for applications to consider w(z) = #” and A(z) = 27, with
0<py< 1

Remark 1.2. The above theorem corrects an erroneous statement in [16, p. 102-
103] that the asymptotic relation (1.8) remains the same for the case of angles at
the boundary. If @ = 1, then we obtain the familiar asymptotics (1.8) from (1.14).

Remark 1.3. Tt is possible to estimate the rate at which o(1) approaches zero, as
n — oo, by imposing additional restrictions on I' and ¢(z).

Remark 1.4. Assuming that G is convex and a7 is the largest exterior angle at
the boundary T', it was shown in [12] (see Satz 3 and its proof) that, for the case

9(z) =1,

(1.15) max |Fp(z)] — @, as n— .
2€G

Moreover, the proof indicates that
(1.16) |Fp(z0)] — o, as n — oo.

However, Theorem 1.1 gives more precise information about boundary asymptotics
of Faber polynomials under more general conditions.
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2. VISSER-OSTROWSKI QUOTIENT IN CONFORMAL MAPPING
Let wy := ®(zp), where zy € T'. Define

w — Wy

(2.1) h(w) == m

v (w), |w|>1.

We remark that A(w) is the well known Visser-Ostrowski quotient, which has been
studied in many papers (see [11] and [9] for surveys). However, those researches
were mainly devoted to the questions of the existence and the value of nontangential
limit of h(w), as w — wqy. We are interested in the continuity properties of h(w)
near wy.

Theorem 2.1. Let I' be a Jordan curve and let zg € T'. Assume that I' has an
exterior angle of opening aw at 20,0 < o < 2, formed by C¥ arcs, where w(x)
satisfies the Alper condition (1.10). Then h(w) is continuous at wy = e¥° := ®(zp),
with

(2.2) h(wp) == lim h(ew) = .

T 656,

Furthermore, there exists ¢ > 0 such that

€ | h(efPoty)y —

Proof. Observe that w(x) satisfies a Dini condition by (1.10):

/Oéﬂdx<oo.

X

Thus, the assumptions of Theorem 2.1 imply that we have a Dini-smooth corner
at zg, using the terminology of [11, p. 52]. An application of Theorem 3.9 of [11]
immediately gives that the functions

Vo) = W) V()

(w — wy)® (w — wg)2—1!

(2.4)

are continuous and different from zero in U, where U 1= {|w — wo| < §} N D', for
some & > 0. Consequently, A(w) is also continuous and different from zero in U,
but this is not sufficient for our purposes. We shall follow the proof of Theorem 3.9
of [11] to extract the order of continuity of h(w) near wy from that argument.
First, we apply the transformation z — (2 — 2z0)'/® to W(U) and straighten the
angle at zp. Tt is shown in the proof of Theorem 3.9 of [11] (see p. 53) that the arcs
C#*, forming the am angle at z, are mapped onto one Dini-smooth arc containing
point 0, which is a part of the boundary of a Dini-smooth domain H contained in
the image of W(U) under the transformation z — (2 — 2p)*/®. Furthermore, it is
also shown that if 71 (z), 0 < @ < by, are the parametrizations of C#* such that

71 (0) = 2z and 74 (x) # 0, then the corresponding arc of 0H can be parametrized
by

va (t) = (T(cet®) — 20)/%, 0 <t < by,
where ex = 1/|74.(0)], and

w(vy, 1) < Mw(rh, cxt®),
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with M > 0. Using the assumptions (1.11)-(1.10), we obtain from the above in-
equality that

w@, 1) =0 (w(t)), ast—0.
Hence a parametrization of 1 in the whole, denoted by v(t), t € [0,27), can be
chosen to satisfy

(2.5) wv'; 1) =0 (w(t*)), ast—0.

Let ¢ be a conformal mapping of the unit disk D := {w : |w| < 1} onto H, such
that (1) = 0. Since U C D, there exists a conformal mapping ¢ of D into D',
with ¢(1) = wg, which satisfies

U(s) = (¥(e(s) = ¥(wo)/, seD.
Note that ¢(s) is conformal in a neighborhood of s = 1 by reflection principle. With
the notation w = ¢(s), we obtain

(o(s)) — ¥(wo) = ¥ (s)
and
_ gL (s (s)
¢'(s) '
It follows that

(2.6) h(g(s)) =« Y'(s), se€D.

Clearly,

_ )
M= e
is analytic in a neighborhood of s = 1, so that h(1) = 1. In view of this fact, our
problem reduces to the study of
s—1
5 =00
which is the Visser-Ostrowski quotient for the conformal mapping ¥ (s) at s = 1.

Since ¥ maps D onto the domain H with Dini-smooth boundary, we obtain from
Theorem 3.5 of [11] that ¢'(s) has a continuous extension to I, such that

¥(5) = 9 (1)
s—1
It follows immediately from the above and (2.6) that
ha(s) —1 and h(é(s)) —«a, ass—1,s€D,

(2.7) ha(s) := V' (s),

— ' (1)#£0, ass—1, s€D.

proving (2.2). Moreover, since w(v’,t) satisfies the Alper condition by (1.10) and
(2.5), we obtain from [1] that the modulus of continuity of ¢/’ (s) on D satisfies the
Dini condition

(25) [ <o

x
Let

q(s) = % = /0 W' (1+t(s—1))dt, seD.
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Then

IN

lq(s1) — q(s2)] / W' (L+t(s1 = 1)) = ¢'(L+t(s2 — 1)) |dt

|51—52|) Sl,SQED

A

It is now easy to see from (2.7) and the above inequality that
|ha(s1) = ha(s2)| = O (w(¥', |s1 — s2)), 51,52 € D.
Finally, we deduce from (2.6) that
h(6(s)) = h(¢(1))] = O (w(¥',[s = 1)), ass—1, s€D,
so that
[h(w) = h(wo)] = O (wlv,Jw— wol)), as w— wp, we D,

because ¢(s) is conformal in a neighborhood of s = 1. Hence (2.3) follows at once

from (2.8). O

3. PrROOF or THEOREM 1.1

Let wg := ®(zy), where zy € T'. Then one can write

B gl G g W) = Y 2 s

because the function on the left of (3.1) is analytic in D’. Using this series expan-
sion, we obtain the following representation for the generalized Faber polynomials
(cf. [16], we give a simple proof below).

Lemma 3.1. For zy € I', we have

(3.2) Qnlz0) = " (z0) > ar(20) 049

k=0

Proof. From the definition of the generalized Faber polynomials (1.2), one can
immediately see that

w — Wo _ = Qn(ZO)

U (w) — ¥(wo)

- Qn(ZO) - onn—1(20)
0(20) + HZ::l o .
It follows by comparing the above series with (3.1) that
(3.3) ap(zo) = Qol(zo) and ap(z0) = Qn(z0) — WoQn-1(20), n€N.

This gives a recurrence relation for the generalized Faber polynomials:

(3.4) Qo(20) = ao(z0) and Qn(20) = an(20) + P(20)@n-1(20), n €N,
which readily yields (3.2). O
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Observe that the sum on the right of (3.2) is just a partial sum of the series (3.1)
for w = wp = ®(zp). Thus, if (3.1) converges at the boundary point wg = ®(zp),
then we obtain a certain asymptotics of the generalized Faber polynomials at z = zg
from (3.2), because |®(zp)| = 1. The questions to be answered here are about the
conditions to insure convergence of the series in (3.1) and about the value of its
sum at wg = $(zp), i.e., when this series converges to the boundary value of the
function on the left of (3.1) at wy = P(z0).

Proof of Theorem 1.1. Note that W' (w) € H*(D') because T is rectifiable (cf. [11
p. 134]). Since the function h(e®) of (2.1) is continuous at fy = argwy by Theorem
2.1, then h(e'?) € L[0,27). Denoting

w — Wo

(3.5) f(w) =g (¥(w)) T (w) = W(wo) V' (w) =g (¥(w)) h(w), |w]>1,

we conclude that f(e!®) € L'[0,27), as ¢ (\I!(ew)) € L>[0,2m). Tt follows that
f(w) € HY(D') and that the series (3.1) is the Fourier series of the boundary
values f(e'?) for w = e (cf. [3, p. 38]).
Observe that we have by (1.12) and (2.4):
M) = B

|9(T () — g( ()]
MiA(|e?? — e |*) < MaA(|0 — 00]%),

INIA

where @ is close to 8y and My, M2 > 0. Furthermore, using (3.5), Theorem 2.1 and
the last inequality, we conclude that f(e'®) is continuous at § = g, with

(3.6) f(e) = ag (¥(e")) = ag(z0).

Applying Dini’s test for f(e'?) at 6§ = 6y, (see [4, p. 160]), we obtain by (1.13) and
(2.3):

/5 SO 4 FE) o] du
0 2 )
_ /6 |f(ei(€u+y)) _ f(ei90)|dy
- 2|y|
2(90+y) _a|
< Ms / d + M, / ———dy < o0,

where Ms, My > 0. Hence the Fourier series of f(ew) in (3.1) converges to f(e'%0)
at 0 = 0g, 1.e.,

o ak(zo) o k(o)
3.7 1 = = )
Thus, (1.14) follows from (3.2) and (3.7) because |®(z)| = 1. O
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