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ABSTRACT. Given a triple (G, W,~) of an open bounded set G in the complex plane, a weight function
W (z) which is analytic and different from zero in G, and a number v with 0 < v < 1, we consider the
problem of locally uniform rational approximation of any function f(z), which is analytic in G, by weighted
rational functions {W™ " (2) Ry, n, (2)} oy, Where Ry, n.(2) = P, (2)/Qn:(2) with deg P, < m; and
deg @, < n; for all ¢ > 0 and where m; +n; — 00 as i — o such that lim m;/[m; + n;] = . Our main

result is a necessary and sufficient condition for such an approximation to be valid. Applications of the result
to various classical weights are also included.

1 Introduction and General Results.

In this paper, we shall develop the ideas of [11] and apply them to the study of the approximation of analytic
functions in an open set G by weighted rationals W™t (z) R, »(2). Specifically, we examine triples of the
form

(1.1) (G, W,7)

where

i) G is an open bounded set in the complex plane €, which can
be represented as a finite or countable union of disjoint simply

connected domains, i.e., G = U Gy (where 1 <o < o0),
(=1
i)  W(z), the weight function, is analytic in G with W (z) # 0 for
any z € G, and
\ 7i7) -y satisfies 0 <y < 1.

We say that the triple (G, W, ) has the rational approximation property if,

( for any f(z) which is analytic in G and for any compact

subset E of G, there exists a sequence of rational func-
tions { R, n: (2)}520, where Ry, n,;(2) = P, (2)/Qn;(2), with
deg P, < m; and deg@,, < n; for all ¢ > 0, and where

(1.3) % (m; + n;) = 0o as i — o0, such that
s
) I _
Z) zlglo m; + n; R
and
ii)  lim ||f = W™t R e =0,
\ i—00

where all norms throughout this paper are the uniform (Chebyshev) norms on the indicated sets.
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Given a triple (G, W, ), as in (1.1) which satisfies the conditions of (1.2), we state below our main result,
Theorem 1.1, which gives a characterization, in terms of potential theory, for the triple (G, W,~) to have
the rational approximation property. Also, let M(E) be the set of all positive unit Borel measures on €
which are supported on a compact set E, i.e., for any u € M(E), we have u(C) = 1 and supppu C E. Also,
0G denotes the boundary of the set G, and the logarithmic potential of an arbitrary compactly supported
signed measure p is defined (see Tsuji [18, p. 53]) by

(1.4) Ut (z) :== /log du(t).

|2 — ]

Theorem 1.1 A triple (G, W,~), satisfying (1.2), has the rational approzimation property (1.3) if and only
if there exist a signed measure

(1.5) WG, W, ) =y (G, W,y) = (1= y)u (G, W,7),
with ut (G, W,7),u™ (G, W,v) € M(0G), and a constant F(G,W,~) such that

(1.6) UHEWI) (2) —log |W (2)| = F(G,W,v), for any z € G.

Below, we state some consequences of Theorem 1.1, while in Section 2, we state applications of Theorem
1.1 in a number of specific cases. The proofs of all results in Sections 1 and 2 are given, respectively, in
Sections 3 and 4.

Remark 1.2 Results on weighted rational approximation of analytic functions in open sets with multiply
connected components (as opposed, in (1.2i), to unions of simply connected domains) will be considered
elsewhere.

Remark 1.3 The condition in (1.2ii) that W (z) # 0 for all z € G cannot be dropped, for if W (zy) = 0 for
some zg € Gy, where G = |J]_, Gy, then the necessarily null sequence {W™ " (20) Ry, n; (20) } o, trivially
fails to converge to any f(z), analytic in G, with f(zo) # 0; whence, the rational approximation property
fails.

Corollary 1.4 A triple (G, W,~), satisfying (1.2), has the rational approximation property (1.3) if and only
if (1.3) holds for f(z) = 1, i.e., if and only if this single function is locally uniformly approximable on compact
subsets of G by a corresponding sequence of the weighted rational functions.

Remark 1.5 The function f(z) = 1 in Corollary 1.4 can be replaced by any function which is analytic in
G and not equal identically to 0 in G.

Corollary 1.6 Given a triple (G, W,~), which satisfies (1.2) with o finite, assume that there exist a constant
F and a signed measure p with

(1.7 supp p C 0G and p@) =2y -1,
such that
(1.8) U¥(z) —log|W(z)|=F, foranyz € G.

Then, the triple (G,W,~) has the rational approzimation property (1.3) if and only if the signed measure u
can be decomposed as

(1.9) p=ypt =1 =y,

with pt, = € M(0G).
Furthermore, let a Jordan decomposition of the signed measure u, satisfying (1.7) and (1.8), be given by



(1.10) p=1t—17,

where 7T and T~ are positive measures with

(1.11) supp 71, supp 7~ C G and  p(supp 7T Nsupp 77) = 0.
Then, the triple (G, W,~) has the rational approzimation property (1.3) if and only if

(1.12) 77(C) < 7.
If (1.9) or (1.12) holds true for a signed measure p satisfying (1.7) and (1.8), then

(1.13) WG, W,y)=p and F(G,W,y)=F.

The study of weighted rational approximation has recently been introduced in papers by Borwein and
Chen [1], Borwein, Rakhmanov and Saff [2], and Rakhmanov, Saff, and Simeonov [12]. The last two papers
deal with weighted rational approximation only on the real line. Certain special cases of the triples (G, W,7),
in the notation of (1.1), were considered in the complex plane in [1], but that research did not attack the
general question of necessary and sufficient conditions for (G,W,~) to have the rational approximation
property of (1.3), as in Theorem 1.1.

2 Applications.

Finding the signed measure u(G,W,~) of Theorem 1.1, or verifying its existence, is a nontrivial problem
in general. Since U*(W:7)(z) is harmonic in €\ supp u(G,W,~) and, since it can be shown from (1.6), if
log |W (z)| is continuous on G and if G is a finite union of Gy, = 1,2, ..., fy, that U*EW")(2) is equal
to log |W (2)| + F(G, W,~) on supp u(G, W,~) C dG, then UMWY (z) can be found as the solution of the
corresponding Dirichlet problems. The signed measure u(G, W,~) can be recovered from its potential, using
the Fourier method described in Section IV.2 of Saff and Totik [13].

However, we next consider a different method, dealing with specific weight functions, which allows us to
deduce “explicit” expressions for the signed measure u(G,W,~) of Theorem 1.1. For simplicity, we assume
throughout this section that G is given as in (1.2i), but with o finite. We denote the unbounded component
of C\G by Q. Let v+ and v~ be two positive Borel measures on €, with compact supports satisfying

(2.1) suppv™ C C\G and suppr~ C C\G,
such that
(2.2) v (@) =v(C) =1.

For real numbers a > 0 and 3 > 0, assume that the weight function W (z), satisfying
(2.3) log [W(2)| = — (aU”+ (z) — BU”” (z)) = _U"(z), z€G,

with v := av™ — Bv™~ being a signed measure, is analytic in G. Then, we state, as an application of Theorem
1.1, our next result as

Theorem 2.1 Given any pair of real numbers o > 0 and 8 > 0, given an open bounded set G = |J;_, Gy, as

in (1.21) with o finite, and given the weight function W (z) of (2.3), then the triple (G, W, ) has the rational
approzimation property (1.3) if and only if the signed measure

(2.4) pi= 2y -1+ a—-Bw(co,, Q) —ad™ + B0~



can be decomposed as

(2.5) p=ypt =1 =y,

where u,u~ € M(0G). Here, w(oo,-, Q) is the harmonic measure at oo with respect to (2, and vt oand 0~
are, respectively, the balayages of vt and v~ from C\G to G.
Furthermore, if p of (2.4) satisfies (2.5), then (see Theorem 1.1)

(2.6) (G, W,7y) = p.

We point out that the harmonic measure w(oo, -, ) (defined in Nevanlinna [8] or Tsuji [18]) is the same
as the equilibrium distribution measure for G, in the sense of classical logarithmic potential theory [18]. For
the notion of balayage of a measure, we refer the reader to Chapter IV of Landkof [6] or Section I1.4 of Saff
and Totik [13].

In the following series of subsections, we consider various classical weight functions and we find their
corresponding signed measures, associated with the weighted rational approximation problem in G, as given
in Theorem 1.1.

2.1 Incomplete Rationals.

With INy and IN denoting respectively the sets of nonnegative and positive integers, the incomplete polyno-
mials of Lorentz [7] are a sequence of polynomials of the form

(2.7) [mOP, ()}, degPygy < (i), (m(i),n(i) € No),

=0
. . m(i)
where it is assumed that lim -
1—00 TL(’L)

the approximation of functions by incomplete polynomials is closely connected to that of the approximation
of functions by the weighted polynomials

=: a, where a > 0 is a real number. The question of the possibility of

(2.8) {z°"P,(2)}2 deg P, < n.

n=0"

The approximation question for the incomplete polynomials of (2.7) was completely settled, by Saff and
Varga [14] and by v. Golitschek [4], for the real interval [0, 1] (see Totik [17] and Saff and Totik [13] for the
associated history and later developments), and by the authors [11] in the complex plane. We consider now
the analogous problem for incomplete rational functions in the complex plane. A special case of incomplete
rational approximation in the complex plane was studied by Borwein and Chen in [1]. The latest such
developments, on the real line, are in Borwein, Rakhmanov and Saff [2] and Rakhmanov, Saff and Simeonov
[12].

Since the weight W (z) := 2% in (2.8) is multiple-valued in € if o ¢ IN, we then restrict ourselves to the
slit domain Sy :=C\(—o00, 0] and the single-valued branch of W(z) in S; satisfying W (1) = 1. Thus,

(2.9) W(z) :=2% z¢€ 5 :=C\(—0,0],

where o > 0 is a real number.

Theorem 2.2 Given an open set G, as in (1.2i) with o finite, such that G C Sy, and given the weight
function W (z) of (2.9), then the triple (G, z%,v) has the rational approzimation property (1.3) if and only if
the signed measure

(210) b= (2’7_ 1+a)w(oo>';ﬂ) —aw(O,-,Q)
can be decomposed as
p=pt = (L =y)p,



where pt,p~ € M(OG). Here, w(oo,-,Q) and w(0,-,Q) are the harmonic measures with respect to the
unbounded component Q of C\G, respectively, at z = 0o and at z = 0.

In special cases where the geometric shape of G is given explicitly, it is possible to determine the explicit
form of the signed measure in (2.10). As a simple example, we consider below the special case of a disk and

y=1/2.

Corollary 2.3 Given the disk D,(a) := {z €C : |z — a| < r}, where a € (0,+0c0) and where D,(a) C S} =
C\(—00,0], i.e., r < a, and given the weight function of (2.9), then the triple (D,(a),z%,1/2) has the rational
approzimation property (1.3) if and only if

a, a € (0,1/2],

(2.11) r < Tmax(a, ) = { asin =, a € (1/2,+00).

Furthermore, if (2.11) is satisfied, then the associated signed measure u(D,(a), z%,1/2) (see Theorem 1.1)
is given by

(2.12) dp(Dy(a), 2%,1/2) = —— (1 - %) ds,

2nr

where ds is the arclength measure on the circle |z —a| = r.

Remark 2.4 More generally, it is possible to show that the triple (D,(a), 2%, ), as in Corollary 2.3 but
with any v € [0,1], has the approximation property (1.3) if and only if

— | aup , a+vy>1,

where ug € (0,1] is the largest solution of the equation

1-2y—(2y—1+2a)u?
2u(2y -1+ «)

}+2aarccos @y—1120)v1 — =97
2y/a(2y -1+ a) ’

(2v—-1) arccos[
in the interval (0, 1].

2.2 Exponential Weight.
Consider the weight function

(2.13) Wi(z):=e7*, =ze€C.

This section is devoted to the study of weighted rational approximation, with respect to the exponential
weight of (2.13), in disks centered at the origin and in certain domains, arising in connection with Padé
approximations of the exponential function. Our next result treats the case of disks.

Theorem 2.5 Given D,(0) := {z € C : |z| < r} and given the weight W (z) of (2.13), then the triple
(D, (0),e~%,7y) has the rational approzimation property (1.3) if and only if

(2.14) 7 <rmax(7), 0<y <1,

3 ,+oo> , of the following equation:

(2.15) r2—<7—%>2—<7—%>arccos<7;%>:%(1—7).

where rmax (Y) is the unique positive solution, for r in the interval H’y —




Moreover, if (2.14) holds, then the associated signed measure u(D,(0),e™%,7) is given by

(2.16) du(D,(0),e %, y)=(2y—1—-2r 0050)5—0,
™

where df is the angular measure on |z| = r and where z = re®?.

1 1 1
In particular, rmax(1) = 3 (see also Theorem 3.8 of [10]), Tmax <§> = % and rmax (0) = 3

1
We remark that the solution, rmax(y) of (2.15), can be verified to be symmetric about v = 30 s a

function of v in the interval [0, 1].

Next, we again consider the weight function W (z) := e~* of (2.13), but we now consider the triple
(G4, e %, v), where G, a generalized Szegd domain, is defined below. To begin, first assume that 0 < vy < 1.
Then following [15], the two conjugate complex numbers, defined by

(2.17) zit := exp {% iarccos(2y — 1)},

have modulus unity, and we consider the complex plane € slit along the two rays

(2.18) ]Rv::{ZE(D:z:zi'—kiv'orz:z;—inoranyTZO}.

This is shown below in Figure 1. (For readers who are familiar with [15], the quantity ¢ := lim " iy that
t—00 My

1
paper and v of (1.3i) are related through v = T) Next, the function
o

Figure 2.1: The set C\RR,.

(2.19) G4(2) == V/1+22 =222y - 1)

has zf{ and 27 as branch points, which are the finite extremities of R,. On taking the principal branch for
the square root, i.e., on setting §,(0) = 1 and extending g, analytically on the doubly slit domain C\IR,,
then g, is analytic and single-valued on C\IR,. It can also be verified that 1+ z + g,(z) does not vanish on

C\R,.



Next, we define the functions (14 2 + §-(2))?” and (1 — z + §,(2))>' =) so that their values at z = 0 are
respectively, 227 and 22('=7) with remaining values determined by analytic continuation. These functions
are also analytic and single-valued on C\IR,,. With these definitions, we then set

4 (1—7> zed1(%)

2.20 wy(2) = v
(2.20) O = TP G

0<vy<1),

and it follows that w- () is also analytic and single-valued on C\IR,. For the omitted cases y = 0 and v =1,
it can be verified that wy(z) = lim1 wy(z) and wo(z) = lin% w~ (2) satisty
y— v

wi(z) = ze!™*  for Re z < 1, and
(2.21)
wo(z) = ze!**  for Re z > —1.

(Again, for those familiar with [15], the function w,(z) of (2.20) is exactly the function w,(z) in [15, eq.
(2.3)])

It is known (see [15, Lemma 4.1]) that w.(z) is univalent in |z| < 1, for any v with 0 < 4 <1, and this
allows us to define the domain

(2.22) Gy :={2€C:|wy(z)] <1land |z| <1}, for any 0 <~y < 1.

Its boundary, 0G~, is a well-defined Jordan curve which lies interior to the unit disk, except for its points

z,“y—L of (2.17). This is shown in Figure 2. We call G, an extended Szegd domain, as the special case v = 1

corresponds to a domain originally treated by Szegé in [16] in 1924.

Figure 2.2: The set G.

We now have all the necessary definitions for the statement of our next result.

Theorem 2.6 For any v with 0 <y <1, let G, be the domain of (2.22), and let W (z) = e * be the weight
function of (2.13). Then, the triple (G,e *,v) has the rational approzimation property (1.3).



To conclude this section, we note that, except for the final result of Theorem 2.6, all preceding results
stated in Sections 1 and 2 are of the “if and only if” type, i.e., these results are by definition sharp. The
result of Theorem 2.6, however, leaves open the possibility that for a given v with 0 < < 1, there could be
a larger domain H, with G, C H, such that the triple (H, e ?,~) has the rational approximation property
(1.3), but we strongly doubt this.

Also of general interest is the extension of the results of this paper to triples (G, W,~) of (1.1), where
one has the sharpened rational approximation property, that is, for any f(z), analytic in G and continuous
in G, there is a sequence of rational functions { Ry, n; }32, satisfying (1.3i), such that

lm || f = W™+ Ry, .|z =0.

i—00

For the essentially polynomial case of v = 0 and W (z) := e™#, this is treated in part in [10, Theorem 3.2].
Some general results in weighted polynomial approximation on compact sets are obtained in [9]. To our
knowledge, general results on the sharpened rational approximation property have not as yet been treated
in the literature.

3 Proofs of Results of Section 1.

Proof of Theorem 1.1. Assuming that a signed measure p(G,W,vy) exists and satisfies the conditions (1.5)
and (1.6) of Theorem 1.1, we first prove that the triple (G, W,~) has the rational approximation property
(1.3). To show this, we consider the following three cases:

Case v = 1. The hypothesis (1.5) with v = 1 implies that u(G, W, 1) = p* (G, W, 1) € M(9G). As (1.6)
is also valid by hypothesis, applying Theorem 1.1 of [11] gives that the pair (G, W) has the polynomial
approximation property, i.e., for any f(z), which is analytic in G, and for any compact subset E of G,
there exists a sequence of polynomials {P,,(2)}>_,, with deg P, < m for all m > 0, such that

(3.1) Tim_|[f = W™ Ppll5 =0.

On simply setting n, := 0 and @, (2) := 1, the sequence of rational functions { Ry, .. (2) 1= Pn(2)/Qn,. (2) =
P (2)}5o_, clearly satisfies (1.31) with v = 1, and (3.1) shows that (1.3ii) is also valid, i.e., the triple (G, W, 1)
has the rational approximation property.

Case v = 0. Let f(z) be any function analytic in G. If f(z) =0 in G, it suffices to define the sequence
{Ro,n(2) :== Po(2)/Qn(2)}22,, where Py(z) =0, i.e., deg Py = 0, and for each n > 0, deg @, < n. Clearly,
(1.3i) is satisfied with v = 0, and (1.3ii) is trivially satisfied for any compact subset E of G. If f(z) # 0 in
G, then for any given compact subset E of G, f(z) has only a finite number of zeros, say {z;(E)}j-,, in E,
where m = m(FE) is a fized nonnegative integer depending on E. Then, we can write

m

(3.2) f(2) = g(2)W™(2)Pr(2), with P(2) == [[ (z = 2e(E)),
k=1

where ¢(z) is analytic and nonzero in E. Consequently, 1/g(z) is also analytic in E.
In this case ¥ = 0, hypothesis (1.5) implies that u(G, W,0) = —u~ (G, W, 0), where = (G, W,0) € M(0G),
and similarly, hypothesis (1.6) implies, with the definition of (1.4), that

(3.3) U (EW0) () —log = —F(G,W,0), forany z € G.

1
(W (2)]

Because of the form of (3.3), it follows from Theorem 1.1 of [11] that the pair (G,1/W) now has the
polynomial approximation property, and this can be applied to the analytic function 1/¢(z) on E.
Thus, there is a sequence of polynomials {Q,(2)}52, with deg @, <n for all n > 0, such that



(3.4 im |2 - {2

E

Since {Qn(2)/W™(2)}52, tends uniformly to 1/g(z) on E, it follows from Hurwitz’s Theorem that @, (2)
has no zero in E, for, say, all n > Ny. Moreover, it also follows from (3.4) that

(3.5) lim

n—o0

g——| =o.

n

b2

E

Hence, using (3.2), we have

F(2) = W™ (2) P(2)/Qu(2) = W (2) Prn(2) (g(z> - Wn(z)) ,

and as m = m(E) is a fixed integer, (3.5) gives us that

(3.6) lim ||f = W™ P, /Qul|, =0.

n—o0

Thus, (1.31) is satisfied with v = 0 and (3.6) shows that (1.3ii) is also satisfied, i.e., the triple (G, W,0) has
the rational approximation property.

Case 0 < y < 1. Recall from (1.2ii) that G = |J;_, G is a bounded open set where {G,};_, are disjoint
simply connected domains, and consider the Jordan domains G¢; C G¢, j € IN, which exhaust the domain
Gy, for each ¢ with 1 < /¢ < . A convenient way to define the sequence {G ; }]oil is to set

1
(3.7) Go,j = {z EC:|¢g(z)|<1—2—j}, JjeN,
where ¢, : Gy = D = {w € C : |w| < 1} is a canonical conformal map of domain G, onto the open unit disk
D, where 1 < /¢ < o. Thus, each G¢,; is bounded by the analytic Jordan curve

Lyj= {z €C: |pi(z)|=1- %},
which is a level curve of ;. Let E C G be an arbitrary compact set. Because E is compact, it is clear that
E is contained in the finite union of G¢;,¢ =1,2,..., 4, for some ¢y € IN, provided that j is large enough.
Set H; := Uﬁil Gyjand [ := Uﬁ‘):l Tyj. Then, I'; = 0H; and H; C G for all j € IN, and also E C H; for
all sufficiently large j € IN.

Introducing the domain §; := (l_]\ﬁj, j € IN, we observe, from the existence of the Borel measure
u (G, W,v) of (1.5), that the balayage u;r of ut(G,W,~), out of Q; to 9N; = OH,, is such that, for each
j € IN, the following statements are true (see Theorem II.4.4 of [13]):

(3.8) UM (2) = UM CWD () ¢, 2 e H;,
and
(3.9) UM (2) < UMY EWD () ¢, 2 €U,

where u;‘ (€) =1, supp u;-" C 0Hj and ¢; > 0. (We remark that equality in (3.8) holds on 0Q; since each

point of 99; is regular (see [18, Theorem I.11]).) As (1.6) holds by hypothesis for any 2z € G and as H; C G,
then (3.8) and the hypothesis (1.5) give

(3]_[)) ')/U“:—(z) — (]_ — 'y)U“_(G’W’V)(Z) — IOg |W(Z)| = Fj, z e Hj,

where
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(3.11) Fj = F(G,W,7) + v¢j,
for any j € IN.
Fixing a sufficiently large j € IN so that 2 C Hj, consider the function
(3.12) v(z) = U (2) — U EW () 2 €T,
which is subharmonic in ; with v(co) = 0, and satisfies, by (3.9), the inequality

(3.13) v(z) <c¢j, zeC.

Observe that if we had equality in (3.13) for some 2y € §;, then, by the maximum principle for subharmonic
functions and (3.8), this would give
v(z) =¢; >0, z€Qy,

which is in contradiction with the fact that v(co) = 0. Thus, it follows from (3.12) that
U”;r(z) < U”+(G’W’7)(z) +cj, z€Q;.

Multiplying the above inequality by v, adding —(1 — y)U* (W) (z) — log |W (2)| to both sides of it, and
using (1.6) and (3.11), we obtain that

(3.14) 7U“;r (2) — (1 =) U* GV (2) —log W (2)| < Fj, z€GNQ,.

Next, let f(z) by any function analytic in G. To construct a sequence of weighted rational functions
which is uniformly convergent to f(z) on E, we interpolate the analytic function W=+ (2)Q,,(2)f(2)

m+1
by a polynomial P,,(z), where the choice of interpolation points {z,(cmﬂ)} C T'; and the choice of the

polynomial @, (z) are described below.
It follows from Krein-Milman theorem that any measure y € M(B), where B C € is a compact set, is a
weak*-limit of discrete measures

k n
S o, o >0, a2,
i=1 ’ i=1

where {zl(k)}le C B, k € IN (see [21, pp. 362-363]). Since every agk) can be approximated arbitrarily

closely by rational numbers, there exists a sequence of points {C](k) ;?:1 C B, k € IN, which may not all be
distinct, such that

k
1 x
EZ(‘;C;@)—)/L, as k — oo.
j=1
We discretize the measures p~ (G, W,v) and ,u]-+ so that

(3.15) v, =

S|
M=

6t(n) _*) ,ui(Gawy 7)7 as n — 0o,
k

k=1

where {tgcn)}k,l C supp p~ (G, W,v) C 8G for any n € IN, and

m

Z 3, m) 5 ,u;', as m — 00,
k

k=1

(3.16) vho=

3=

where {Z,Em) }kﬂ C supp pj C Tj for any m € IN. Then, we define
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n
(3.17) Qnz) =[] (z - tEj‘)) , neN,
k=1
so that @, (2) is not zero in G for any n, and we define a basic polynomial of Lagrange interpolation

m—+1
(3.18) Wmt1(z) :== H (z - z,(cmﬂ)) , meN.
k=1
Lo
On setting L; := U Ly ;, where each Ly ; C Go\Gyj, ¢ = 1,2,--, 4y, is a rectifiable Jordan curve con-

=1
taining G ; in its interior, the polynomial P,,(z), which interpolates W=("*")(2)Q,,(z)f(2) in the points

{z,(cmﬂ) 4 of Ty, is given by the Hermite interpolation formula (see [20, p. 50]):

W= (2)Qn(2) f(2) = P (2)

(319) —(m+n)
_omn(a) [ WIO@QUOF (D
= Tomi o, (- 2emn) 0 S
Multiplying (3.19) by W™ (2)/Q,(2) gives
men () Em(2)
£2) =W () i
(3.20)
_ Wm+n(z)wm+1(z)/Qn(Z)/ ft)de
2mi (t=2)WmHn(t)wm g1 (1) /Qn(t)’
for z € E. Using (3.15) and (3.17), we have that
(3:21) Jim [Qn(z)]! /" = exp { U (G (z) |

holds locally uniformly in €\0G, and similarly, using (3.16) and (3.18), we have that

(3.22) Tim [y (2)]'/™ = exp {_qu+ (z)}

holds locally uniformly in C\I';. Next, choose any sequence {(m;,n;)}2, of pairs of nonnegative integers
such that lim (m; +n;) = oo and lim m;/(m; + n;) = v, and let {P,,,(2)/Qn;(2)} ;oo be the associated
i—00

i— 00

rational functions from (3.17) and (3.19). From (3.10)-(3.11), we obtain that

(3.23) lim [V (241 (2) Qg ()| 77 = e

i—00

uniformly on E. Also, by (3.14) and the compactness of L;,

(3.24) min  lm [W™ 7 (2)wp, 11(2)/Qn, (2)]/ 7)) > e~
z€L; i—oo
since fyU”JJ‘r (2) — (1 = y)UH [EWN () —log |W(2)]| is harmonic in G'()Q;. Thus, from (3.20) and on using
(3.23) and (3.24), it follows that
P, 1/(mi+ni)
lim sup Hf — Wit

E

mi+n; 1/(mi+tni)
cimenp V™ s (/i I

i—00 ZHEHLH |sz+nz (Z)Wml+1(2’)/in( )|1/(mz+nl)

<1
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Hence, the sequence {W™it% (2) Py, (2)/Qn,(2)}io, converges (geometrically) to f(z), uniformly on E, and
the sequence of rational functions {R,; n;(2) := Py, (2)/

Qn; (2)}32, satisfies (1.31) and (1.3ii), i.e., (G, W, ) has the rational approximation property. This completes
the first part of the proof of Theorem 1.1.

Now, suppose that a triple (G, W,~), satisfying the conditions of (1.2), has the rational approximation
property (1.3). To show that a signed measure u(G, W, ), satisfying the conditions of Theorem 1.1, exists,
let { P, (2)/Qn;(2)}ic, be a sequence of rational functions such that W™+ (2)P,,.(2)/Qy,;(2) converges
to the particular function f(z) = 1, locally uniformly in G, and such that lim;_, . m;/(m; + n;) = v. We
may assume, without loss of generality, that deg P, = m; and deg@,, = n;. Otherwise, one may define
new sequences of polynomials

P, (2) :== Pp,(2) + am, 2™, i €N,
and
Qni (Z) = Qm (Z) + bniznia i € N,

in such a way that W™it% (2) Py, (2)/Qn, (2) also converges to f(z) = 1, locally uniformly in G, with a,,, # 0
and by, # 0 for any i € IN, by choosing a,,; # 0 and b,, # 0 to be sufficiently small. (This will be used in
(3.29) below.)

Let an,; # 0 be the leading coefficient of Py, (z) and let

(3.25) v, =1 >,

M
Y P, (22)=0

be the normalized zero counting measure for Py, (z), where ¢, is a unit point mass at z;. We count all zeros
of Pp,(z) in (3.25), according to their multiplicities, so that
(3.26) vh @) =1, ieN,

i.e., these measures are unit positive Borel measures. Analogously, we take b,, # 0 as the leading coefficient
of Qn,(z) and define

_ 1
(3.27) Vng = Z Ozp»
in— (Zk)zo
so that
(3.28) Vp, @) =1, ieNN.

Hence, as W™t (2)Py,.(2)/Qn; (2) — 1 locally uniformly in G, then taking logarithms and using the
definitions of (1.4), (3.25), and (3.27), we have

m; vt N v,
1 m;| — ———U"mi(2) + U™i(z) — log |by;
m; + n; oglam, m; + n; () m; + n; () m; + n; 08 bn
(3.29)
1 ane s P (2) .
+log |W (2)| = log |[WW™Mitni ()22 5 0, as i — oo,
g|W(z)l = = ~log ( )Qm(z)

locally uniformly in G. L
If 7} denotes the balayage of v, out of the open set C\G to G (note that the part of v}, supported on

G is kept fixed), then

+

(3.30) U'mi(z) = Ui (2) + €m,, 2 € G,
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where cp,, > 0, supp 2, C G and 7}, (C) = v}, () =1 (see Theorem I1.4.7 of [13]). Similarly, we have, for
the balayage of v,,, from C\G to G, that

(3.31) Uni(2) = Ui (2) + dy,, 2 €@,

where d,,, > 0, supp 7, C G and 0, (C) = v, (C) = 1.
By Helley’s Theorem (Theorem 0.1.2 of [13]), we have that the sequences {#;};, } ~ and {#;;} > contain
weak™ convergent subsequences, so that

(3.32) 19+j—*>u+ and l?;ji{u_, asj — o0, jeJCN,

where put and g~ are positive Borel measures with gt (C) = p~ (€) = 1. One can immediately see, from the
locally uniform convergence in G of W™t (2)P,, . (2)/Qn;(2) to unity, that

(3.33) suppput™ C G and suppu” C OG.

Furthermore, by (3.32),

(3.34) lim U™ (z) =U* (2) and lim U™ (2) = U* (2), z€Q.
JjeJ JjET

It follows from (3.29), (3.30) and (3.31) that

m; Mmj

n; o
— 1o . o= Umi —2 U™
m; +n; g|am]|+mj+njcm] m; +n; J(Z)+mj_+_nj i(2)
(3.35)
n; 1 . .
———d,, — ———log|by.| +1log|W(z)| = 0, asj— 00,j € J,
by Ty 108 [bns |+ log [W(2)] Jj— 00,
for any z € G. Consequently,
——log|a .|+Lc L B ‘—#logw 1, g€ J
mj + n; " my4ng ™ my+ny 7 my+on; mb ’

converges, as j — 00, to a finite limit by (3.34). On defining

m; n;
J J
Cm;

1
F:= lim <710g|amj| + —2—
AN +n; mj + n;

‘10g|bn].|> ,

S mj+n; Y my 4o,
we obtain from (3.34) and (3.35) that
AU (2) = (1 = )U* (2) —log|W(z)| = F, z€G.
Finally, from the above equation and (3.33), we see that (1.6) of Theorem 1.1 is satisfied with
G W,y) = = (A=),
and with
F(G,W,~) :=F,

which completes the proof of Theorem 1.1. O

Proof of Corollary 1.4 and Remark 1.5. If the rational approximation property (1.3) holds, then f(z) =1
is, in particular, locally uniformly approximable by weighted rational functions in G. On the other hand,
the second part of proof of Theorem 1.1 shows that if f(z) = 1 can be locally uniformly approximated by
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weighted rationals, then there exists a measure u(G,W,~) satisfying the conditions of Theorem 1.1. But
this immediately implies the rational approximation property (1.3).

Concerning Remark 1.5, one can easily see that the second part of proof of Theorem 1.1 holds without
change for any fixed f(z), which is analytic and is not equal identically to 0 in G. O

Proof of Corollary 1.6. Note that if (1.9) holds true for a signed measure u, satisfying (1.7) and (1.8),
then the triple (G, W,~) has the approximation property (1.3) by Theorem 1.1, so that (1.13) is valid.

Suppose now that the triple (G, W, y) has the approximation property (1.3). Then by Theorem 1.1, there
exists a signed measure (G, W,7y) = vy (G, W,v) — (1 — )u~ (G, W,7), with (G, W,7), ™ (G, W,7) €
M(OG), such that

(3.36) UG (2) —log |W (2)| = F(G,W,v), ze€G.
It follows from (1.8) and (3.36) that

(3.37) UMEWD () = UF(2) +¢, z€G,

where ¢ := F(G,W,~) — F is a constant. Since potentials are continuous in the fine topology (see Section .5
of [13]) and since the boundary of each Gy, £ =1,...,0, in the fine topology is the same as the Euclidean
boundary (see Corollary 1.5.6 of [13]), then (3.37) also holds for any z € OG. Thus,

(3.38) u(z) = UMW) =¢, 2€@.

Observe that u(z) is harmonic in the unbounded component of C\G, denoted by Q (including z = co) with
u(o0) =0, and that u(z) = ¢ on 992 C G. Therefore,

(3.39) u(z) =0, z€QUG,

by the minimum-maximum principle for harmonic functions and by the continuity of u(2) in the fine topology.
Applying a similar argument to the bounded components of C\G, we obtain from (3.39) that

(3.40) u(z) = UHGEWN=r(z) =0, zeC,
where
(3.41) (u(GW,7) =) (@) =0.

Integrating (3.40), the logarithmic energy of u(G,W,~) — u satisfies

I(u(G, W) = ) = [ UMD )G, W) = ) (2) =0,
which implies by (3.41) and Theorem 1.16 of [6] that u(G,W,~) — p = 0. Thus,

(3.42) p= (G W,y) =y (G, W,7) = (1 =)~ (G, W,7),
and (1.9) is established.
Assume, in addition to (1.7) and (1.8), that u also satisfies (1.10) and (1.11). Clearly,
(3.43) (@) - 77 () = p) =2y - 1.
We shall show that (1.12) and (1.9) are equivalent. Indeed if (1.9) holds, then

(3.44) (@) = " (supp 71) = p(supp ) <yt (supp ) <,

which gives (1.12). Conversely, if (1.12) is valid, then, for any measure w € M(9G), we have by (1.10) and
(3.43) that
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=(T+(—mT@)w) - (7 + (17 -7 @)w).

Thus, (1.9) holds, for 0 < v < 1, with

ut = % (" +(y-7t@)w) and p = liv (T +0=—y=—7 @)w).
Obviously, if v = 0 then
pt=7r"=0 and pu =71,
and if v = 1 then
pt=1" and pu~ =77 =0.

Hence, we conclude that the rational approximation property (1.3) holds for (G, W,~) if and only if (1.12)
is satisfied. O

4 Proofs of Results of Section 2.

Proof of Theorem 2.1. First, we recall, by the results of Section IV.2 of [6] (see also Theorem I1.4.7 of [13]),
that the following are valid:

(4.1) U (2) =U"" (2) + / galt,c0)dv™(t), z€G,
and
(4.2) U” (2) =U" (2) + / galt,c0)dv™(t), z€G,

where go(t, 00) is the Green function for Q with pole at co. Using (2.3), (4.1), (4.2) and Frostman’s theorem
[18, p. 60], it follows, for the measure u defined in (2.4) and for z € G, that

U (z) —log|W(2)| =

(4.3) (27 — 1+ a— B) U~ (2) —aU” (2) + U (2) —log |W (2)| =

1
(27-1+a-)log— = ~a [ galt.o)i* )+ 5 [ galt,cc)dv (@),
capG
where cap G denotes the logarithmic capacity of G (see [18, p. 55]).

Observe that u, defined by (2.4), satisfies (1.7). Thus, Theorem 2.1 follows from Corollary 1.6 and (4.3).
O

Proof of Theorem 2.2. It is clear that, for W(z) = 2%, we have

(4.4) log |W(2)| = —alog% = —aU%(2), ze@\(~o0,0],

where dp is the unit point mass at z = 0 and «a > 0 is a real number. Since the balayage do of 8y out of Q to
G is given (see [6, p. 222]) by
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(4.5) b0 = w(0,-, ),

then Theorem 2.2 is an immediate consequence of Theorem 2.1 with § = 0. O

Proof of Corollary 2.3. We have already shown in the proofs of Theorems 2.1 and 2.2 that the measure
w of (2.10) satisfies (1.7) and (1.8) of Corollary 1.6, with W (z) = 2®. Note that, for v =1/2, (2.10) reduces
to

(4.6) u = aw(oo, Q) — aw(0,-,N),
which can be explicitly determined for Q =C\D,(a). Indeed, by (4.46) and (4.47) of [11], we have

dw(0,-,Q) a? —r?

& )= gorm Fal=r

and

This gives, for pu in (4.6), that

du @ a? —r?
4. — =—[(1—-—- —al=r.
(47) L= (1o =

Observe that

dp iooy _ Al —iflo\ _
ds(a-i—re )—ds(a-i—re ) =0,
where

T .r
0y := — + arcsin —.
2 a

Also, one can immediately see that

d )
(4.8) d—Z(a +rei®) > 0 for 6 € (6o, 69),
and that
dp i9
(4.9) E( +7re'’) < 0 for 6 € (6y,2m — 6y).

As we next show, (4.8) and (4.9) give the desired Jordan decomposition (1.10) for p of (4.7). Recall that,
for any Borel set B C T,

w(0,B,9) = m (¥(B N o)),

where
df
dm—%on{wEC.|w|—1}
and where
2 —
() = r*+a(z —a)

rz

is the conformal mapping of @ = C\D,(a) onto D' = {w € € : |w| > 1}, with ®(0) = oo (see [8, p. 37]).
Since
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®(a + re'’) = exp (z (I — arcsin C))
2 a

and
®(a + re” %) = exp (z (arcsin I E)) ,
a 2
we obtain from (4.6) that
@) =p ({a+re? :0 € (—6o,60)}) =
a% & (E — arcsinf — (arcsin r_ z)) = 2_a arcsinz
2r 2w \2 a a 2/))  «m a

It is obvious that the inequality,

2a or 1
—arcesin — < —,
m a~ 2
which corresponds to (1.12), is equivalent to (2.11). Thus, Corollary 2.3 follows from Corollary 1.6. O
Proof of Theorem 2.5. It was shown in the proof of Theorem 4.3 of [10] (see also the proof of Theorem
2.7 of [11]) that for the measure

1
(4.10) dupy = 2—(1 —2rcosf)df, |z|=r,
T
we have
1
(4.11) Ut (z) —logle ?| = U (2) + Re z = log o F € D,(0).

Thus, one can immediately see, for the measure u of (2.16), that

1 2 1 db
i(z) —logle *| =log = + (2v — 2 log ———— —
Ut(2) —logle™*| =log — + (2y )/0 R P
(4.12)

1 1 1
= log; + (27— 2) log; =(2y— l)log;, z € D,(0).

Note that the density function of u, given by

1
(4.13) h(8) :== 2—(27 —1—2rcosf), 6€]0,2mr),

m
satisfies, for r > |2y — 1|/2,
(4.14) h(#) >0, 0p < <2m—6y, and h(d) <0, —6 <8 <,
where

2y -1

(4.15) By := arccos ( ’Y% ) .

Therefore, the Jordan decomposition of y is immediate from (4.14), with

71'—00

2w —6p do
7'+((D):/ (2y — 1 —2rcosf) 2—:(27—1)
m

2r
+ — SiIl 00.
8o ™
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The inequality (1.12) of Corollary 1.6 can be written in this case as
™ — 90

2
2y — 1) + L singy < 7,
™

which simplifies, with the help of (4.15), to

(4.16) 4r2 — (2y — 1)2 — (2 — 1) arccos <%> < (1 —7),

where r > |2y — 1|/2. One can verify directly, on denoting the left side of (4.16) by f,(r), that

4r2 — (2y —1)2 2y —1
fir) = r 7{7 ) >0, forallrE(%ﬂ-oo).

Hence, f,(r) is strictly increasing on (|2y — 1|/2, +00), with

29— 1]\ 0, for 2y-1>0
£ () =

m(l—27), for 2y—-1<0

and

lim f,(r) = +o0.

r—+00
Therefore, the equation (2.15) has the unique solution rmax (), with

|2y -1

Tmax(7) > )

such that (4.16) holds if and only if r € [|2y — 1]/2, rmax(7)]. D
Proof of Theorem 2.6. To begin, for any pair (m,n) of nonnegative integers, the (m,n)-th Padé rational
approximation to e® is the rational function

Ppn(2)

(4.17) Ryn(z) = Omnz)’

where

(4.18) { i) deg Py, <m and deg Q. < n,with Q. »(0) = 1,and
’ i

ii) €" — Rpmn(z) =0(E"") as 2z = 0.

It is well known that, for any pair (m,n) of nonnegative integers, these polynomials are given explicitly (see
[15, p. 242]) by

i (m +n — k)lm!2*
= (m+n)k!(m — k)

and

Qmalz) = 3 Lt Dini2)!

P (m 4+ n)kl(n — k)!

and these polynomials Py, ,,(z) and Q. »(2) are called, respectively, the Padé numerator and Padé denom-
inator of type (m,n) for e*. It is further known (see [15, eq. (4.8)]) that
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(4.19) (m+n)e*Qman(z) = / e t(t+2)™t"dt, for any z €T,
where the path of integration in (4.19) is the horizontal ray —z + p for all x4 > 0, and similarly (see [15, eq.
(4.9)]) that

0
(4.20) (m+1)! (€ Quan(2) = Prn(2)) = / e=H(t + 2)™"dt  for any z €T,

—Zz
where the path of integration in (4.20) is chosen to be the line segment from —z to 0. Thus, on dividing the
above two equations, we have, with (4.17), that

0
e t(t + z)™t"dt
€*Qm,n(2) = Pmyn(2) =1—e *Rpnl(z) = /—z

4.21
2 ¢*Qm.n(2) /e*t(t+z)mt”dt7

for any z € C, provided that the @, »(2) # 0. Replacing z and ¢, respectively, by (m + n)z and (m + n)t in
(4.21) gives

0
/ e~ (Mt 4 )ymindt

(4.22) 1—e MR (m+n)2) = 2% .
/ e (MEE (4 4 Z)ymindt

—z

Let v be a fixed number with 0 < v < 1. As the treatment of the special cases v = 0 and v = 1 is
similar (see the proof of Theorem 1.1), assume that 0 <y < 1, and assume that {(m;,n;)}72, is an infinite
sequence of pairs of nonnegative integers satisfying (1.3i), i.e.,

v = ]lig)lo m, where ]lggo (mj +nj) = +oo0.
;From [19, p. 182], it follows that the rational function R,,; »; ((m; + n;)z) has no zeros and no poles in
the closed set G., of (2.22), for all j sufficiently large. Consequently, from (4.22), the representation

0
/ e~ (Mt (¢ 4 p)migni gt
(423) 1- e_(mj+nj)szj,nj ((mJ + nJ)Z) = 702

/ e (M)t (4 4 2)ymign dy

—z

holds for all z € GG, provided that j is sufficiently large. Noting that the integrands in the two integrals in
(4.23) are the same, we set

m; n;
4.24 h;j(t) = hj(t;2) := —t + | —L— | log(t —L—)logt (>0
(1.24) 0 = hy(t2) = =t (5 ot ) + (72 ot G20,
so that (4.23) can be equivalently expressed, for all j sufficiently large, as
0

/ omi+ni)h(8) gy
(4.25) L—e Mt Ry ((my +ny)2) = 25 ;

/ olmitni)h;() gy

when z € G. Note that if we similarly set
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~

(4.26) ho(t) = hey(t;2) == —t + ylog(t + z) + (1 —~) logt,
it follows from (1.3i) that

(4.27) hj(t; z) — ﬁw(t;z), as j — oo, for any t # —z and t # 0.

The point of the above construction is to prepare for an application of the steepest descent method to the
two integrals in (4.25), as was earlier done in [15]. As

7 1-9) 7 Y (1-7)
T = 14 -7 M) = — —
R, (1) + P + ; and hZ(t) L O

then for z € C\(R, U {0}), the only zeros of Blv can be verified, with the definition of (2.19), to be the two
numbers

. 1 .
(4.28) B(2) = 5 (1= 2 %.65(2),
and it can be further verified that
(4.29) tAj(z) # tA; (2), for any z € C\(R, U {0}),
and that
(4.30) h! (££(2)) # 0, for any 2 € C\(IR, U {0}).

In a completely analogous fashion, the only zeros of b/ (%), for z € C\(IR, U{0}), are the two distinct numbers
(for all j sufficiently large)

(4.31) £ (2) = % (1—2+g;(2),
where

(4.32) g;(2) == \/1 +22 -2 (%)
and where

(4.33) b (t57(2)) #0.

(The excluded point above, z = 0, is exceptional in that lAL’W (t;0) = 0 holds only for the single point ¢t = 1.
On the other hand, the expression in (4.25) is clearly zero for z = 0 for every j > 0, which is ultimately
what is needed in our quest in Theorem 2.6 to show that f(z) = 1 can be uniformly approximated, on
compact subsets of G, by the weighted rational functions e=(mi*7)*R,,, . ((m; + n;)z).) To summarize,
for 0 < v < 1 and for any z € C\(R, U {0}), t;r(z) and t; (2) are distinct saddle points (of order one) of

hj(t), for all j sufficiently large, and t%(z) are distinct saddle points (of order one) of h(t). (We remark

that the functions g;(z) in (4.32) require analogous cuts IR; in the z-plane, where in (2.18), the numbers z*

T )} for all j sufficiently large.)
Making use of the fact that h;(tji(z)) = 0 and that hf (tf(z)) # 0, for all sufficiently large j, the Taylor

expansion of the function h; about t;t(z) shows that there exist real numbers Gf(z) such that for p real and
small,

of (2.17) are replaced by Z]i := exp{+ ¢ arccos (

(4.34) hy (B + 00 ) = by (1) = 2 |1 (15(20) | +.0 (7).
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as p — 0. Then, this means that there is a local descent path F;-t through each of the points t;t(z) such that
(cf. [15, eq. (4.22)]) with (4.24),

I#(z) : :/Fi e(mi+ni)h;(t) gy

1/2 .
h {1 Lo <7>}
mj + n;

1/2

2

— e(mitny)h;(t5 (2) —
(mj + nj)hj (t7(2))

(4.35)
2w

(mj +nj)hf (85 (2))

—(mjj+n; :.Ez ) J
= e MG [ () 4 2] ™ (8 (2)]"

; 1
xelfs {1+0 <7>}
mj + n;

as j — oo, uniformly on any compact subset of C\(IR., U {0}).

The above expressions give the asymptotic behavior of the local descent path through the two saddle
points t]i(z), and, in the usual fashion, these local descent paths are then continued, beyond the saddle
points t]i(z) (on the suitably doubly-cut domain R;), along descent paths I‘ji, defined (cf. [15, eq. (4.19)])
as points ¢t € € for which

Im h;(t) =Im hj(tji(z)), and
Re hj(t) < Re h;(t7(2)), fort#t7(2).

These descent paths, from (4.24), can have endpoints only at ¢ = 0, ¢ = —z, or t = co. More specifically,
we note that for z small and not zero, it can be verified that a descent path through t]_(z) necessarily has
endpoints ¢ = 0 and ¢t = —z. For the descent path through t;r(z), one endpoint is at t = oo, but the other
endpoint can be either ¢ = 0 or t = —z. To show that both of these cases can occur, consider the following
two cases:

Case 1: z > 0 and z small. The steepest descent path through tj(z) in this case is that interval of the
real axis which extends to the endpoints ¢ = 0 and ¢ = oo, as shown below in Figure 3, where the arrows
indicate the direction of increasing Re h;(t) along these paths.

tj(2) tj(2)
B — L L
-z 0

Figure 4.1: Descent paths for z > 0.

Case 2: z < 0 and small. The steepest descent path through tj(z) is that interval of the real axis which
extends to the endpoints t = —z and ¢t = 0o, as shown below in Figure 4, where the arrows again indicate
the direction of increasing Re h;(t) along these paths.

We note, in Case 1, that on integrating from t = —z to t = oo, as is necessary for the denominator integral
of (4.25), we pass through two saddle points, so that the asymptotic evaluation of this integral involves both
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tj(2) tj(2)

B — L L

Figure 4.2: Descent paths for z < 0.

contributions Iji (z) from (4.35). In this case (and in all cases where the integration path, from ¢ = —z to

t = oo, through tj(z) passes through both saddle points tj[), the expression in (4.25) is of the form (cf.
(4.35))

I (2) I (2)/I](2)
4.36 l—e mitmzp  ((mj +nj)z) = J = J ,
. o ) = ST T R G G @)
while in Case 2 (and all cases where the integration path from ¢t = —z to ¢ = co passes only through t;r (2)),

the expression in (4.25) is of the form

(4.37) 1—e~mitn)zg o (mj +ny)2) = -2

As in [3, eqs. (9.21)-(9.22)], we define the function

() 15 (T

mj +n;

2 )
z4[1— (Lj_nj)
m; +n;

which is analytic and single-valued on C\(IR; U {0}). Analogously,

(4.38) Ni(z) =

for all z € C\(IR; U {0}),

gy(2) +1-2(2y 1)
21— (2y-1)2
is analytic and single-valued on C\(IR, U {0}). With (4.38), the modulus of the ratio I, (z)/Ij(z) can be

expressed, with the definition of the function w;(z) of (2.20) (where - has been replaced by m;/(m; + n;)
for all sufficiently large j), as

(4.39) N,(z) := for all z € C\ (R, U {0}),

(140 ()

- + = | (z)|™i T J J

(4.40) I (DI (2)] = |w; (2)] N (2] ,

as j — oo, uniformly on any compact subset of C\(IR; U {0}). But, 1/N;(z) and 1/N,(z) are both analytic
in |z| < 1 (cf. [3, Lemma 1]) and since 1/N;(z) converges to 1/N,(z) as j — oo, then 1/N;(z) is locally
uniformly bounded in |z| < 1. Thus, consider any compact set E in G.,. As this compact E is contained in
some level curve ', := {z € C : |w,(2)| = p < 1} of G, for p sufficiently close to unity, then on this set,
it is evident that w;(z) — w,(2), as j — oo, where |w,(z)| < u < 1. Recalling that R, »;((m; +nj)z) has
no zeros or poles in G, for any j sufficiently large, then the function 1 — e~ (Mt R, ((m; + n;)2) is
then analytic in E for all j sufficiently large, and its maximum modulus on E, in either Case 1 or Case 2 of
(4.36) or (4.37), is dominated above by p™i*" from (4.40). Thus,

(4.41) lim [|1— e (Mitm)iR,, . ((mj +ny)z) e = 0.

j—oo
But this implies, from Corollary 1.4, that the triple (G,,e *,7) has the approximation property, which
completes the proof of Theorem 2.6. O
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