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Abstract: It is shown here that a 1989 conjecture of Rigler, Trimble, and Varga in the
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terexamples are explicitly derived here. What is intriguing is that these counterexamples
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1. Introduction.

There have been a number of recent papers, by Beauzamy and Enflo [2], Beauzamy [3],

Rigler, Trimble, and Varga [6], and Varga [7], which are connected with polynomials and

the classical Jensen inequality. To describe these results, let p,,(z) = Z a]zj be a complex
7=0

polynomial (#0), let d be a real number in the interval (0,1), and let k& be a nonnegative

integer. Then (cf. [2, 3]), pnm(2) is said to have concentration d at degree k if

k
(1.1) Y | >d) 7 ayl.
J=0 J

=0

The first result established in this area was

THEOREM A. (Beauzamy and Enflo [2], Beauzamy [3]). Given any real number d in

(0,1) and given any nonnegative integer k, let the real number CN'CM, depending only on d and
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k, be defined by

N 2d
(1.2) Cap:= sup |tlog Ft1
1<t<oo t+1
(t—1) (—) 1
t—1
Then, for any polynomial p,,(z) = a;2°(#£0) which satisfies (1.1),
7=0

1 27 m -
(1.3) o /0 log [p(¢)| d0 — log (ZI%I) > Cip

J=0

The important feature of Theorem A is that the lower bound, CN'CM of (1.3), is independent

of the degree of the polynomial p(z). For our purposes here, we define the functional

1

(1.4) J(pm) == oy /027T log ‘pm (ew) ‘ df — log (é |aj|)

for any polynomial p,,(z) = Zajzj(;t()). Then, the best lower bound in (1.3), where

0<d<1landkisa nonnegativ?e integer, is given by
(1.5) Cax = 1inf{J(p) : p(z) is any polynomial (£0)which satisfies (1.1)}.

While neither the “best” constant Cyy of (1.5), nor its associated extremal functions, are
known in general, there is a special set of polynomials for which the associated constant of
(1.5), and its extremal functions, are explicitly known from Theorem 2 of [6]. To describe
these results, it is well known that any real polynomial, all of whose zeros lie in Re z < 0,
are called Hurwitz polynomials (cf. Marden [5, p. 181]), and we define H as the set of all

such Hurwitz polynomials. Then, we set

(1.6) CZI-,[k :=1inf {J(p) : p(2)(#0) is in ‘H and satisfies (1.1)}.
Obviously,
(1.7) C:l-,[k > Cyy for all 0 < d < 1 and all nonnegative integers k.

It is shown in [6, Lemma 3] that, for any d € (0,1) and for any positive integer k, there is a

unique positive integer n (dependent on d and k) which satisfies

(1.8) 2n§k:()<d<2n+lﬁj(n_l)

=1
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and, with this definition of n, the number p, defined by
n—1
(1.9) p = (%) —1

k b
7=0

J

satisfies 1 < p < oo. Then, the main result of [6, Theorem 2] is that the constant CZI-,[k of

(1.6) is explicitly given by

1.1 o= S — .

( 0) Cd,k 0g ((P + 1)2n—1)

Moreover, any p(z) € H, which satisfies (1.1), is an extremal element, i.e., J(p) = ka, if
and only if

(1.11) plz) = (p+2)(1+2)"",

where n and p satisfy (1.8) and (1.9), respectively.
It is important to remark that this result of (1.10) is valid, more generally, for real entire
functions, of exponential order zero (cf. Boas [4, p. 29]), of the form
o0 o0 1
fz)=1] (1—3), where Y — < oo, and Re z; < 0,
=1 Z] =1 |Z]|
j j
for all j > 1. These extensions can be found in [6].
Because repeated attempts at obtaining estimates of Cyx, which were smaller than Czlfk,

had failed, the following conjecture of [6] was made in 1989:
(1.12)  Conjecture [6] : CZI-,[k = Cqk, for any d € (0,1) and any positive integer k.

The main point of this paper is to show that the Conjecture of (1.12) is in general false, and

explicit examples will be included.

2. Equivalent Conditions for the Conjecture of (1.12).

In this section, we derive an equivalent condition for the truth of the Conjecture of (1.12).
The development here makes use of the results of Varga [7].

Consider any complex polynomial p,,(z) = i a;2"(#£0). If ay is the first nonzero Taylor
coefficient of p,,(2), if A:={z€C:|z| < 1} ai;lo if Za(pn) denotes the zeros of p,,(z) in A

(where multiple zeros are counted according to their multiplicity), then Jensen’s formula is

(cf. Ahlfors [1, p. 208])

21) o [ 1oglpa ()10 =loglax| + 3 lox [
' 27 Jo " N '

2, €7 (pm) |Z]|
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With the functional J(p) of (1.4), it follows from (2.1) that

lan]

11 |Zj|) > lajl
Pm) i=0

2 €Zn(

(2.2) ﬂm)bg(

It is convenient then to define the associated functional

(2.3) K(pn) = lan] —
( 11 |Zj|) -2 lajl
2;€Za (Pm) j=0

so that from (2.2),

(2.4) J(pm) = log K(pn).

It is evident that minimizing J(p,,) over some set is equivalent to minimizing K (p,,) over
the same set. With Ny and N denoting, respectively, the sets of nonnegative integers and
positive integers, we define the numbers

m

(25 Oulon) = Dol Lo lal (k€ No),

so that é,(pm) =1 for all £ > m. We also define the ratios

(2.6) Li(pm) 7= K(pm)/éx(pm) (k€ No),

where Ly(pm) := 400 if éx(pn) = 0. (From (2.3) and (2.5), we see that K(vpn) = K(pm)
and 6 (vpm) = 6x(pm) for any complex number v = 0, so that

Lie(ypm) = Lr(pm) (v € € with y # 0).

In addition, it also follows from (2.6) that

Li(pm) = Liys(2"pm)  (k,5 € No).

Note that the 8j(pm)’s are nondecreasing in k from (2.5), and similarly, that the Lg(p,,)’s
are nonincreasing in k from (2.6). Thus, because we are interested in minimizing K (p.,)
over all polynomials for which 6y (p.,) > d, we may assume that p,,(z) is a monic polynomial

with p,,(0) # 0, and this allows us to express p,,(z) as

m

(2.7) pu(z) = JI(G + 2).

=1
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where the complex numbers {(;}\_, are ordered by modulus, i.e.,

(2.8) 0 <Gl <Gl < <G| <1< G| < [Gral < - < Gals

here, r is a nonnegative integer satisfying 0 < r < m.

iFrom the constructions in [7], we have the following result.

THEOREM B. ([7]). For any complex monic polynomial p,,(z) = [[(¢; + z), where the
=1

{61y satisfy (2.8), there exists a polynomial p,,(2) := (p+ 2)(1 + 2)"=L (where p is a real

number with p > 1 and where m is a positive integer with m < m), such that

(2.9) Li(pm) 2 Li(pr) (K € No).

In particular, if the numbers {;}"2, do not all lie on some ray from the origin, then
(2.10) Li(pm) > Li(pr) (k€ N), with Lo(py) > Lo(pm) = 1.

Note that the polynomials, of the special form (p + 2)(1 + 2)*~', have already played a
role in both (1.11) and in Theorem B. These are of course Hurwitz polynomials, and it is

convenient to give them the special name of

DEFINITION 1. Any real polynomial of the form (p + 2)(1 + z)"™!, where 1 < p < o0

and where n € N, is called an h*-polynomial.

Some useful properties of A*-polynomials are known from [7, eq. (3.41)]:

0) Lel(p+2)(1+2))
is a strictly increasing function of p on the interval
[1,00), for any k € N,
while Lo ((p + 2)(1 + 2)*71) =1,
(2.11) and similarly,
() 6 ((p+ )1+ 27
is a strictly increasing function of p on the interval
[1,00), for any integer k with 0 < k < n,
while &, ((p+ 2)(1 4+ 2)"1) = 1.
We also note that as Ly, ((p+ 2)(1 +2)"7) = Li((1 + i)(l + 2)" 1), then letting p increase

to o0 in (1 + %)(1 + 2)*!, produces the h*-polynomial (1 4+ 2)*~! whose degree is one
less than that of (p+ 2)(1 + 2)"~'. We call the process of increasing p in the h*-polynomial
(p+2)(1+2)""" as a lifting of the polynomial (p+2z)(1+2)""!, and the process of decreasing
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p as a lowering of the polynomial (p+ 2)(1 + 2)"~! (which may correspondingly increase the
degree of the associated h*-polynomial).

Suppose that the strict inequalities of (2.10) hold in Theorem B for all £ € N. Then, on
lifting the A*-polynomial (p + z)(1 + z)™~1, it follows from (2.11(i)) that there is a unique
h*-polynomial }D7m (z), which has the form

(2.12) P (2) = (P +2)(1 + 2)™ 1 (with 1 <p< oo and 1 <m< 1),
such that
(2.13) Li(pm) > L; (}D?m) (j € No), where equality holds for some j > 1.

(Note that lifting any A*-polynomial ¢(z) leaves Lo(¢) = 1 unchanged, so that equality in
(2.13) is sought only for some j > 1.) If, on the other hand, equality already holds in (2.9)
of Theorem B for some k£ € N, we simply set }%m (2) := pm(2).

Then, as in Theorem B, for any p,,(z) = ﬁ(@ + z) where the {CJ}?; satisfy (2.8), we

=1

define the set
a
(2.14) Epn) = {k €N : Li(pn) = Lk(pm)}.
By construction, F(p,,) # 0, and card E(p,,) denotes the number of elements in E(p,,).

This brings us to the following
DEFINITION 2. Given two polynomials ¢(z) and r(z), and given a nonnegative integer

k, we say that

(2.15) r(z) is k-better than q(z) if 6x(r) = 6x(q) and K(q) > K(r),
and
(2.16) r(z) is strictly k-better than ¢(z) if 6x(r) = 0x(q) and K(q) > K(r).

The motivation for Definition 2 is clear: Given a d with 0 < d < 1 and given a k € Ny,

we are ultimately interested in determining the constant I'yj, defined by
Lo :=1inf {K(pm) : ox(pm) > d}.

If d = 6,(r) = 6k(q), and if r(z) is strictly k-better than ¢(z), then K(¢) > K(r), which
certainly implies that r(z) yields a superior upper bound for I'y;, than does ¢(z).
Our main theoretical result is the following theorem, whose proof will be given in Section

5. (We use dq to denote the exact degree of a complex polynomial ¢.)
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m

THEOREM 1. Let p,(z) = [[(Gi+2), where the {¢:}™, satisfy (2.8). If card E(p,,) = oo,

=1
then for each k € Ny, there is an h*-polynomial qi(z), with dqr, < Opy, such that
(2.17) qr(z) is k-better than p,(z).

If card E(pn) # oo, then for each k € E(py), there is a unique h*-polynomial G,(z), with
Gy, < Op,,, such that
(2.18) pm(2) is strictly k-better than ¢p(z).

An important theoretical consequence of Theorem 1, for our purposes here, is

Corollary 2. The Conjecture of (1.12) is false if there is some polynomial p,,(z), satisfying
the hypotheses of Theorem B, for which card E(p,,) # oo.

In the next section, we explicitly give an example of a polynomial p,,(z) for which card

E(pm) # 00, thereby producing a counterexample to the Conjecture of (1.12).

3. A Counterexample via Corollary 2.

To obtain an explicit counterexample to the Conjecture of (1.12), consider the monic poly-

nomial
(3.1) ps(2) = (14+2)*{6 =32+ 2°)} = 6+ 152 + 10z* + 2°,

which is lacunary, as the coefficients of z* and z* are zero. As the zeros of 6 — 3z + 2% are
(3 + Z\/ﬁ) /2, then ps(z) has no zeros in A. Also, it is evident that the zeros of ps(z) do
not all lie on a ray, nor do they all lie in Re z < 0.

It can be verified (using the rotation, reflection, and reduction methods of [7]) that the

h*-polynomial of Theorem B, namely, ps(z), is given by

(3.2)  ps(z) :=(p+ 2)(1 4 2)°, where p:= (12V/6 — 6)/23 satisfies 1 < p < occ.
Thus, as the zeros of ps(z) do not lie on a ray, we have from (2.10) of Theorem B that
(3.3) Li(ps) > Li(ps) (k€ N), while Lo(ps) = 1 = Lo(ps).

The inequalities of (3.3) can be directly verified in Table 1 below. (All numbers in Tables 1
and 2 have been truncated to six decimal digits.)

On lifting ps(2) of (3.2), a unique h*-polynomial }‘375 (z) can be determined for which

(3.4) Li(ps) > Lj(}D?5) (j =0,1,--+), with equality holding for some j > 1,
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Table 1:
p | Lo(p) | La(p) La(p) Ls(p) La(p) | Li(p),5=5
Ps 1 0.285 714 | 0.193 548 | 0.193 548 | 0.193 548 | 0.187 500
Ps 1 0.200 675 | 0.091 469 | 0.067 194 | 0.063 030 | 0.063 030
}]75 1 0.285 714 | 0.181 818 | 0.166 666 | 0.166 666 | 0.166 666
Table 2:
p | bo(p)=K(p) é1(p) b2(p) é3(p) b4(p) é5(p)
ps | 0.187 500 0.656 250 | 0.968 750 | 0.968 750 | 0.968 750 1
ps | 0.063 030 0.314 091 | 0.689 091 | 0.938 030 1 1
}]75 0.166 666 0.583 333 | 0.916 666 1 1 1
q | 0.203 125 0.656 250 | 0.953 125 1 1 1
5 0.218 750 0.687 500 | 0.968 750 1 1 1

a
and this h*-polynomial Ps (z) is explicitly given by

(3.5)

(]
Ps(2):= (24 2)(1 —I—Z)2 =245z +42% + 25,

The associated values of the L; (}\375)78 are also included in Table 1. We see from Table 1 that
equality holds in (3.4) only for j = 1, so that (cf. (2.14))

(3.6)

E(ps) = {1}, and card F(ps) # c.

This means, from (2.18) of Theorem 1, that there is an ~A*-polynomial ¢(z) for which

(3.7)

and ¢(z) is in fact given by

(3.8)

i) = (5 42) (142 =

61(q) = 61(ps), but K(q) > K(ps),

%{13 1295 + 1922 + 323} .

The associated values of ¢;(-) are included in Table 2, where we see that ps(z) is strictly

I-better than ¢(z), i.e.,

(3.9)

which is an explicit counterexample to the Conjecture of (1.12).

81(3) = 0.656 250 = &;(ps), and K(§) = 0.203 125 > K(ps) = 0.187 500,
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While Theorem 1, in the case that card E(p,,) # oo, gives that each element of E(p,,)
gives rise to a counterexample of the Conjecture in (1.12), it is the case that elements not
in £(p,) may also give rise to such counterexamples. To see this, we have from (3.6) that
2 ¢ E(ps), but on lifting }D?5 (z), to the unique h*-polynomial é(z) so that 52((*]) = 0q(ps), we
obtain in this case that

(3.10) q(2) = (T+2)(1+2)>

we have, from the last line of Table 2, that ps(z) is strictly 2-better than q (2), i.e.,
(3.11) 52(5) = 0.968 750 = 62(ps), and K(&) = 0.218 750 > K(ps) = 0.187 500.

Thus, this also gives a counterexample to the Conjecture of (1.12).

4. Counterexamples via Lacunary Polynomials.

In this section, we obtain an infinity of counterexamples to the Conjecture of (1.12), by

direct calculations with lacunary polynomials. To this end, consider the monic polynomial

(4.1) Fmy2(2) = (14 2)" {Am + B,z + 22} =: mi—:z cm_|_27jzj (m > 3),
j=0
where it follows that
(4.2) o2 =Am (1) 4B (") + () G =01, m+2);
here, as usual, (TZ) :=0 for £ <0 or k> m. From (4.2), we have that
(4.3) Cmi2,m = 0 = €myoms1 if and only if A, = (m;— 1) and B, = —m.
Thus, fixing A, := (mg'l) and B, := —m, then r,,42(z) of (4.1) is a lacunary polynomial.

Also, as the zeros of A,, + B,z + z? are {m + i(m* + Zm)l/z}/Z, then r,,42(2) has no zeros
in A, the zeros do not all lie on a ray, nor do they all lie in Re z < 0.

With the choices of (4.3), it is readily verified that
(4.4)  epg2; > 0for g =0,1,---.m — 1L ¢ni2m =0 = ¢ny2mt1 and Cpqomys = L.

Thus, the nonnegativity of these coefficients {cm+27j};”:"62 implies that

m+2 m+2

(4.5) D lemazil = D2 vy = hasa(1) = 277 (m* —m 4 2),

i=0 i=0
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the last equality making use of (4.3). Moreover, using the last three equations of (4.4), we
see that

2m=m?2 —m+4+2) —1
(46) 5m—1(rm—|—2) = ( )

2m=1(m? —m + 2)

Y

and, as 7,42 has no zeros in A, then

- |cm—|—2 0| Am m(m‘l’ 1)
47 [ m - ’ = = .
(£7) Crme2) = 2 (m? —m £ 2) | 2(m® —m 4 2)

Z |Cm+2,j|
7=0

We now show, for each m > 3, that the values of (4.6) and (4.7) give a counterexample
to the Conjecture of (1.12). Specifically, we seek an h*-polynomial, say ¢m(z; pm) = (pm +
2)(1 4 2)™ ' with 1 < p,, < 00, such that

(4.8) Sm—1(Tmt2) = 6m-1(qm)-

It is easily verified that

2m=1(p. +1) —1
2m=1(py + 1)

Pm

(4.9) 6m-1(dn) = = T 1)

, and K(¢m)

and, because the expressions in (4.6) and (4.9) are similar, it follows that (4.8) is satisfied
for

(4.10) Pm i= m? —m + 1.

With the value of p,, in (4.10), we then have

m?—m+41

(4.11) Kln) = 5o 3y

and a short calculation shows that

K(qm) B 20m* —m+1)
K(rmy2)  m(m+1)

(4.12) > 1 if and only if (m — 2)(m — 1) > 0.

As the final condition in (4.12) is satisfied for each m > 3, we have, from (4.8) and (4.12),
that

Fm2(z) is strictly (m — 1) — better than ¢,,,(z),
which gives a counterexample to the Conjecture of (1.12) for each m > 3. Also, we note that
the ratio of the K’s in (4.12) is monotone increasing in m for m > 3, with

(4.13) lim 2 l4n)_

_ = 2.
2 K (o)
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5. Proofs of Theorem 1 and Corollary 2.

For the proofs of these results, we begin with

Lemma 1. Let p,,(z) be as in Theorem B. Then, card E(p,) = oo if and only if m €
E(pr).

Proof. If m € F(pn), then from (2.14), L, (pn) = Ln, (}%m), where, if ¢ denotes the
exact degree of a complex polynomial ¢(z), then Theorem B and the construction above give

that a}D?mS Opm = m. Hence (cf. (2.5) and (2.6)),
o o
Li(pm) = K(pn) = L; (pm) =K (pm) for all j > m,

so that all integers 7 > m are elements of F(p,,), and consequently, card E(p,) = oo. If
m ¢ E(py), it follows from (2.13) and (2.14) that

Li(pn) = K(pn) > L; (gm) =K (}D?m) for all integers j > m,

ie.,j ¢ E(p,)for all j > m. Hence, F(p,,) can have, by definition, only a finite number of
elements, and card E(p,,) # co. B

Lemma 2. Let p,,(z) be as in Theorem B and assume that card E(p,) = oo. Then, for
each j € Ny, there is a unique h*-polynomial q;(z) = (p; + 2)(1 + 2)™ ™' which is j-better
than p,(z). More precisely, if | <j <m and j ¢ E(pm), then q;(2) is strictly j-better than
Pm(2).

Proof. jFrom Lemma 1, card E(p,) = oo implies that m € E(p,,); whence, K(p,) =
K(}D?m). Thus from (2.13) and (2.6),

(]
K(p,, K(p,, , o i
G.0)  Lilp) = 20a) 5 By = BB Ny with K(p) = K(B),
8i(pm) 8;(Pn)
from which it follows that
D .
(5.2) 6j(Pm) = 6i(pm) (7 € No).

If 5j(}D?m) = 6;(pm), €., j € E(pn), then the A*-polynomial }D7m (z) is, by definition, j-better
than p,,(z). If j, with 1 <j < m, is such that j ¢ E(p,,), we similarly deduce that

61(Pu) > 85(pi).

Then, by the process of lowering, there is a unique 2*-polynomial ¢;(z) = (p; +2)(1+2z)"™ ~*
such that 6;(g;) = 6;(pm ), but in the process of lowering }D?m(z), the monotonicity in (2.11)(ii)
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gives that K(g;) < [&’(}D?m) = K(pn ), so that the h*-polynomial g;(z) is strictly j-better than
Pm(z). H

What is of interest in Lemma 2 is that if card F(p,,) = oo, then for each j € Ny, one can
find an associated h*-polynomial which is at least j-better than p,,(z), which is a global-type
result. As a consequence, we remark that the Conjecture of (1.12) is valid if and only if card
E(pm) = oo for every p,,(2), of the form (2.7), for arbitrary m € N. As we have seen from
Sections 3 and 4, this Conjecture fails in general to be true.

Lemma 3. Let p,,(z) be as in Theorem B, and assume that card E(p,) # oco. Then for
each k € E(py), there is a unique h*-polynomial ri(2) = (pr. + 2)(1 + z)™ ! such that

(5.3) Ok(r) = Ok(pm), but K(ry) > K(pm),

i.€., pm(z) is strictly k-better than the h*-polynomial ri(z).
Proof. Since, by hypothesis, card F(pn) # oo, then m # E(p,,) from Lemma 1; whence,

(5.4) K(pn) > K(Pu).
On the other hand, for any k € FE(p,,), we have

a
(5.5) Li(pm) = Li(Pm),

so that, with (5.4),

(5.6) 5(pn) > 8i(Pr).

Now, on lifting the h*polynomial P, (z) = (p +2)(1 + 2)"~! until equality holds in (5.6),
thereby forming the h*-polynomial ry(z) := (py + 2)(1 + )™ (where dry, < Py < Ipy =
m), we have (cf. (2.11))

(5.7) 8x(r) = Sx(pm), and K(r) > K (Py)-

Suppose, to the contrary of the desired second inequality of (5.3), that
K(ry) < K (pm).

On dividing the above expression by 8(r,) = 8x(pn) (cf. (5.7)), this yields

(5.8) Li(re) < Li(pn) = Li(Py),

the last equality following from (5.5). But, as the lifting of }D?k(z) to rg(z) strictly increases
Li(Py) (ct. (2.11)(i)), then
a
Lk(pm) < Lk(rk),
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which contradicts (5.8). B

It is clear that Lemmas 1-3 give the result of Theorem 1. Finally, to deduce Corollary 2,
it can be verified that each h*-polynomial (p + z)(1 + 2)™™!, where 1 < p < oo and n € N,
gives rise to a unique set of constants (cf. (1.10)) {CCZ,k :;0. Thus, if there is a polynomial
pm(z) for which card FE(pn,) # oo, then from Lemma 3, for each k € E(p.,), pm(2) is strictly
k-better than the h*-polynomial r4(z),. and this implies (cf. (1.10)) that

Clh =log K(r) > log K(pn) = Ca,

proving that the Conjecture of (1.12) is false.

6. Final Remarks.

What is apparent from the previous two sections is that not only do infinitely many coun-
terexamples exist for the Conjecture of (1.12), but also that the improvements in (smaller)
K-values, via non-h*-polynomials are relatively small. For example, for the two counterex-

amples given in Section 3, we see from Table 2 that

K(§) 13 K(q) 7
(9) — =1.083333---, and K((q)) =5= 1.166 666 ...,
Ps

6.1 =
while from (4.13), the associated ratios do not exceed 2. It would be interesting to determine

if these ratios are always bounded at most by 2. It is also worth mentioning that each
counterexample given here, to the Conjecture of (1.12), involved constructing a lacunary
polynomial which was k-better than some ~*-polynomial of the form (p+ z)(1+ 2)™~! with
p > 1, i.e., no counterexamples were found for the special h*-polynomials (1 + z)™,m € N.
We find this very intriguing!

Finally, lacunary polynomials have entered the construction of all our counterexamples,
and it is interesting to speculate if extremal functions (if they exist) associated with the

constants Cyy, are also lacunary.
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