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Abstract

We study convergence and asymptotic zero distribution of sequences
of rational functions with fixed location of poles that approximate an
analytic function in a multiply connected domain. Although the study
of zero distributions of polynomials has a long history, analogous results
for truncations of Laurent series have been obtained only recently by A.
Edrei (1982). We obtain extensions of Edrei’s results for more general se-
quences of Laurent-type rational functions. It turns out that the limiting
measure describing zero distributions is a linear convex combination of
the harmonic measures at the poles of rational functions, which arises as
the solution to a minimum weighted energy problem for a special weight.
Applications of these results include the asymptotic zero distribution of
the best approximants to analytic functions in multiply connected do-
mains, Faber-Laurent polynomials, Laurent-Padé approximants, trigono-
metric polynomials, etc.

1 Introduction.

The limiting behavior of zeros of sequences of polynomials is a classical subject
that continues to receive much attention (see, e.g. [7, 16, 11]) because of its
applications in function theory, numerical analysis and approximation theory.
Two of the fundamental results of the subject are the theorems of Jentzsch [9]
and Szegé [17] on the zero distribution of partial sums of a power series. It is
rather surprising that although the study of zero distributions of power series
sections has a long history, analogous results for truncations of Laurent series
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has been investigated only relatively recently by Edrei [5] who, in particular,
proved the following.

Theorem A. Let A = {z : 7 < |z| < R} be the exact annulus of convergence

for the Laurent series
(o]

flz) = Z apz®,

k=—o0

where 0 < r < 1 < R < oo, Let Ay = {my}52, and As = {n;}32, be two
sequences of positive integers tending to oo, such that

lim |a_py,, |/ =r (1.1)
and )

lim |a,, |/ = =. 1.2

i Jen [ = 5 (12)

Consider all the zeros of the truncation

nq

Thym,(2) = Z apz*

k=—m;

that lie in the angle 01 < argz < f3 (61 < a2 < 014 27). Then, asi — oo, there
are b

1 =0,

(1402t

of these zeros that have modulus < 1 and

Ay — 01
27

(1+o(1) 20,
of them that have modulus > 1.

Moreover, for any given € > 0, there are oulside the annulus Re™¢ < |z] <
Re® at most o(n;) zeros of Ty, m,(2) of modulus > 1 and there are at most o(m;)
zeros of modulus < 1 outside re™ < |z| < re.

This theorem is completely analogous to Szegé’s results for power series
[17]. It says that all but a negligible proportion of the zeros of the T, m,(2)’s
accumulate on the circles |z| = r and |z| = R, and that the arguments of these
zeros that are close to one of the circles; are equidistributed in the sense of Weyl.

In this paper we present various generalizations of Edrei’s result to the zero
distribution of certain sequences of rational functions having fixed location of
poles and converging locally uniformly in finitely-connected domains to an ana-
lytic function f(# 0). As applications we describe the limiting zero distribution
of Laurent-type approximants. The main tools of our investigation are the theo-
ries of weighted potentials and weighted polynomial zero distributions developed

in [15] and [11].
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The paper is organized as follows. In Section 2 we state and discuss our
main results. Section 3 is devoted to applications such as zero distributions of
trigonometric approximants and Laurent-Padé approximants. In Section 4 we
discuss the theory associated with a weighted potential problem and, finally, in
Section 5 we make use of this theory in order to prove the theorems of Sections 2

and 3.

2 Main results.

Let K be a bounded continuum (not a single point) whose complement consists
of a finite number of domains. We denote by C the extended complex plane,
by {Gi}L, the set of bounded components of C \ K and by Q the unbounded
component. (It is clear that the G and Q are simply connected domains and
that C \ K = (UL, G;) U Q.) Finally, for each [ = 1,2,...,n we associate an
arbitrary but fixed point a; € G.

By the Riemann mapping theorem there exists a unique conformal mapping
¢r : Gy — D of GG onto the open unit disk D, normalized by the conditions
é$1(a;) = 0 and qb;(al) > 0. The quantity R; := 1/¢(a;) is called the interior
conformal radius of G with respect to a;. Similarly, there exists a conformal
mapping ® : @ — D’ of the unbounded component Q onto the exterior of the
unit circle D' = {z : |z| > 1} normalized by ®(c0) = oo and lim, . ®(2)/z =
1/C, where C' := cap K is the logarithmic capacity (transfinite diameter) of K
(cf. [19]).

We shall keep the same notation ¢;(z) for the extension of the conformal
mapping ¢; : G; — D onto the boundary 0G; in the sense of Carathéodory’s
theory of prime ends [6]. Thus, for each [ = 1,2,...,n, the mapping ¢; is defined
on the closure Gy, i.e. ¢; : G; — D. Similarly, for the exterior mapping we take
®:Q— D

For our study of limiting distributions we shall utilize the measures

He(B) = w(oo, B, Q) (2.1)

and

w(B) =w(a, B,Gy), l=1,...,n, (2.2)

for any Borel set B C C, where w(oo, B, £2) is the harmonic measure of the set B
at the point oo with respect to 2, and w(a;, B, GG7) is the harmonic measure of B
at the point a; with respect to the domain Gy (cf. [13, 19]). We remark that p. is
the same as the equilibrium measure for K in the sense of logarithmic potential
theory. Another convenient way to describe the above harmonic measures is to
interpret them as preimages of the normalized arclength measure on the unit
circle {z : |z| = 1} under the corresponding conformal mappings. That is,

w(co, B,Q) = m(®(B N 9Q)) (2.3)
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and

w(al,B,Gl) = m(qf)l(B N 6G1)), l=1,...,n, (24)

where dm = df/27 on {z : |z| = 1}.
We recall that p, and p;, I = 1,...,n, are compactly supported unit Borel
measures, i.e.

lpell =l =1, 1=1,...,n,

and supp pu. = 092, supp pr = 0G; [13].
The main goal of this paper is to study the limiting zero distribution of
sequences of rational functions that are identified by a multi-index

N = (k,my,ma,...,my) and have the form:
k ) n mi )
Ry(z) =Y 7 +3 Y sz —a)™. (2.5)
j=0 =1 j=1

In other words, Ry (z) is a Laurent-type rational function whose poles are located
at the fixed points ¢ € G, [ = 1,...,n, and at co € . If tfcv and sf?fml, l =
1,...,n, are nonzero, then the total number of poles of Ry(z) in the extended
complex plane C is equal to

IN|=k+> m, (2.6)
=1

which is the norm of the multi-index N. We also note that, in this case,

oo PN()
Rn(z) = Mo G —ayt (2.7)

where Pn(z) is a monic polynomial of degree |N| whose zeros coincide with

those of Ry(z). Next we introduce the normalized counting measure in the
zeros of Ry (z):

VN = ﬁ Z (Szj, (28)
PN(ZJ'):O

where 6, 1s the unit point mass at z and where all zeros are counted according
to their multiplicities.

The results of this paper on zero distributions are all stated in terms of
the weak® convergence of measures. We say that a sequence of Borel measures
{pn 52, converges to the measure p, as n — oo, in the weak™ topology if

Jim [ dun = [ sy

for any continuous function f on C having compact support.
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Throughout the paper we assume that k = k(¢), my = my(d),..., my, =
mp (i), N = N (%), for some increasing sequence A of integers ¢, and that k(i) —
oo, mi(i) — oo, {=1,...,n,a8 i — oo, i€ A. Furthermore, we assume that
the following limits exist:

im0 = i
IN[—oo [N] iz [N(9)]

=a I=1,...,n. (2.9)

This normalization means that we deal with so-called “ray sequences” of rational
functions. Clearly,

ap >0, I=1,...,n,
lim |N ZO‘”
1EA

and .
Z (e%) S 1.
=1

Before stating our results in their full generality, it is convenient to consider
the special case where K is the closure of an annular region A bounded by two
Jordan curves, with one curve interior to the other, so that C\ K has only one
bounded component which we denote by ;. Assume that a; = 0 € GG and
consider the weak™ limit of the normalized counting measures vy, ;) in the zeros
of Laurent-type rational functions of the form

k,m km _—j
R (2 Zt A4 s (2.10)
ji=1

where k = k(i), m = m(i). Also, in accordance with (2.9), we assume the
existence of the limit

: m(i)
RTINS }311 k() +m(G) (2.11)

and that k(i) — oo, m(i) — oo.
The following theorem is a special case of Theorem 2.2 below.

Theorem 2.1. Suppose that the sequence { Ry, m)( z) biea defined by (2.10) con-
verges locally uniformly in a bounded annular region A to an analytic function
that is not identically zero. Assume further that (2.11) holds and that

Uk ]
lim ‘tﬁ ’”‘ = (2.12)

t€EA
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lim |55 [V = Ry, (2.13)
e
where C := cap A and Ry is the inner conformal radius of G1 with respect to
the origin. Then
V(k,m) S = (1= a)pie 4+ apy, asi— oo, i €A, (2.14)

where, from (2.1), (2.2),

fe = w(o0, -, Q) and p =w(0,-,Gy).

We remark that the limit measure p,, defined in (2.14) is, in fact, the equi-
librium measure for a weighted potential problem corresponding to a special
weight w (see Section 4).

The ”not identically zero function” assumption is essential in Theorem 2.1.
To show this, we consider the sequence

n 1
Ry =2" — gn n=12 ...

convergent to f = 0 locally uniformly in 4 := {z : 1/2 < |z| < 1} as n —
oo. This sequence satisfies conditions (2.12) and (2.13) as well as (2.11) with
a = 1/2. However, R, ,) has all zeros on {z : |z] = 1/+/2}. In contrast,
if we consider the modified sequence {R(y, n)+ 1}52;, then all the conditions
of Theorem 2.1 hold and this sequence of rationals has one half of its zeros
accumulating on |z| = 1 and the other half of its zeros accumulating on |z| = 1/2
in agreement with Theorem 2.1.

Some examples of Laurent-type rational approximants satisfying the condi-
tions of Theorem 2.1 are given in Section 3. We also mention that it is possible
to prove a result on the zero distribution of the partial sums of Faber-Laurent
series to a function analytic in a doubly connected domain [18] via an application
of Theorem 2.1. For the details see [14].

As an immediate corollary of Theorem 2.1 we obtain Edrei’s result of The-
orem A. Indeed, if A = {z : 0 < r < |z] < R < oo} is the exact annulus of
convergence for the Laurent series

then the truncations
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converge locally uniformly in A to f(z) £ 0, as i — co. Also, we assume without
loss of generality that the limit

m;

a = lim
i—oo N + 1My
exists (otherwise we can apply our results to a subsequence, for which this limit
does exist). Then conditions (2.12) and (2.13) of Theorem 2.1 are satisfied in
view of (1.1) and (1.2). Thus, Theorem 2.1 gives

UN — (1 —a)pe + ap (2.15)
in the weak* sense as |[N| = n; + m; — oo, or as ¢ — oo. Since in this
case fte coincides with the normalized arclength measure on {z : |z| = R}
and py coincides with the normalized arclength measure on {z : |z| = r}, the

result (2.15) gives in a more compact manner (using weak® convergence) the
conclusions of Theorem A.
Theorem 2.1 is a special case of the following more general result.

Theorem 2.2. Let K be the closure of a multiply connected Jordan domain,
ie. 00 and OGy, | = 1,...,n, are Jordan curves without common points.
Suppose that the sequence {Ry(z)} iea (cf. (2.5)) converges locally uniformly in
the interior K° of K to f(2)(# 0) and (2.9) holds.
If
(i) lim [t/ |'/* = 1
0 =

t— 00

1EA
and

(ii) lim s, Y™ =R, 1=1,...n,

T—

t€EA

then the normalized zero counting measures vy for Ry satisfy

cen * . . .
(iil) vN = phy in the weak® sense as i — oo, i € A, where

fy = (1 — Zal) e + Zaml. (2.16)
=1 =1

Conversely, suppose that oy > 0, Il =1,... n, with 27:1 ar 7 1. If each a
has some neighborhood free of zeros of {Rn(2)}iea, then (iil) implies (i) and
(ii).

Our next result 1s a “one-sided” version of Theorem 2.2. To state it we
recall that the logarithmic potential of a compactly supported Borel measure y

is defined by
1
Uk(z) == /log—du(t).

|z =1
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Suppose that (G is an open bounded set and supp u C (G. Then a measure j
supported on 9G is called the balayage of p to the boundary of G if ||a]] = |||,
the potential U# is bounded on 9G and

Ul(z) =U"(z) qe. ondG

(see Chapter TV of [10]). By q.e. (quasi-everywhere) we mean that the above
equality holds for all z € G with the possible exception of a set of zero loga-
rithmic capacity.

Theorem 2.3 If in Theorem 2.2 we assume that condition (i) holds (but not
necessarily (i1)), then for any weak™ limit v of the measures vy, as i — 00,4 € A,
we have

UV(z) =UF(z), 2z¢G:=UL,G; (2.17)

and
V|C\§ = Huw |C\5: (1—2(11) e, (2.18)
=1

where p1y is given by (2.16). Furthermore,
UN = flw, asi— 00, i €A, (2.19)

where v denotes the measure obtained by balayage of the part of vy supported
in G := UL Gy to 0G = UL, 8G,. (Here the part of vy supported outside of G
is kept fized).

Remark 2.4. Theorem 1 in [5] follows from Theorem 2.2 applied to the partial
sums of Laurent series.

Remark 2.5. In Theorem 2.3 we actually require only that k(i) — oo as
i — 00,1 € A, so that my(¥), { = 1,...,n, may be bounded. Thus, if we
consider a sequence of polynomials {Pn(z)} that converges locally uniformly
in K° to a nonzero analytic function such that (i) is satisfied, then we have
a;=0,1=1,...,n, and vy(B) — 0, as i — oo, for any compact B C C\ Q.
The last statement follows from Hurwitz’s theorem and the maximum modulus
principle, according to which {Py(2)} converges locally uniformly in C \ Q.
Thus, we obtain from (2.19) of Theorem 2.3 that

* . .
UN — peast— 00, 1€ A.

It follows that in this case Theorem 2.3 reduces to certain results of Blatt, Saff
and Simkani [2] on the zero distribution of polynomials.

It is of some interest to consider the analog of Theorem 2.2 for a set K
with empty interior. In this case the condition of convergence for the sequence
of rational functions can be replaced by a weaker one. Namely, we have the
following.
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Theorem 2.6. Let K be an arbitrary bounded continuum (not a single point)
with empty interior and suppose that C \ K consists of a finite number of com-
ponents 0, G, ..., Gy. Assume that for the rational functions Ry of (2.5) we
have (2.9) and

lim (| Ryl = 1. (2.20)
TEA

Then conditions (1) and (ii) of Theorem 2.2 imply (iii).
By the norm in (2.20) we mean the uniform norm, i.e.,

I/l := sup [£(2)]
2eK

The last theorem can be applied, for example, in case when K is a single
Jordan curve. This provides an extension of Edrei’s result for Laurent series to
the situation when the annulus of convergence A degenerates to the unit circle,
ie. with X =T = {z: |z| = 1}. We present this result in Theorem 3.1.

We remark that it is possible to further relax the geometric conditions im-
posed on the set K in the theorems of this section. For example, one could
allow every component of C \ K to be a finitely connected domain, where we
assume, as before, that the number of components is finite. The analogues of
our results in this case are straightforward. Another generalization is to allow
finitely many fixed poles in every component of C \ K instead of just one.

3 Applications

3.1 Zeros of Fourier sections.

Consider the Fourier expansion

oQ oQ

flz) = Z ape*? = Z apz” (3.1)

k=—o0 k=—o0

for a function f € L*(T), where T = {z : |z| = 1}. Equality in (3.1) is with
respect to L? norm.

Theorem 3.1. Let f € L*(T). Suppose that for the representation (3.1), the

functions
(o]

g(z) = Zakzk (3.2)

k=0

(analytic in |z| < 1) and

h(z) = Z apz® (3.3)
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(analytic in |z] > 1) cannot be analytically continued to an open set containing
the unit circle. Then there exist two sequences of positive integers {n; }32, and
{m; }£2, such that for the normalized counting measure vy, 4m, in the zeros of

the truncation .

Tnymi(2) = > a2t (3.4)

k=—m;

we have
* .
Un,4m, — W as i— 00,

where w is the normalized arclength measure on T, i.e. dw = df/2x.

We give a sketch of proof here. Since both functions g(z) and h(z) have
singularities on T, there exist two subsequences of positive integers {n;}32, and
{m; }£2, such that

Umi =1, (3.5)

lim |a,,|Y" =1 and  lim |a_pn,
71— 00 =00

From the Holder inequality we obtain

1T mille S V2T [T millog < 27V 4 ml| T i [l2, (3.6)
where || T, m.|lco = max, . [T, m,(2)|. It follows that
Bin ([T L0 = T [T [ = 1, (3.7)

because lim;_.oo ||Tn; m, |2 = ||fll2 # 0.

Theorem 3.1 is now a consequence of Theorem 2.6 because the measures g,
and g1 of Theorem 2.6 are given in this case by g, = p1 = w; thus for any
{ni}i2, and {m;}:2,, satisfying (3.5) such that

. my
Iim ——— =«

i—oo g + My ’

we obtain
o =1 —a)pe+ap = (1 —a)w + aw = w.

3.2 Zeros of Laurent - Padé approximants with the fixed
denominator degree

For the function
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analyticin A = {z : v < |z] < R} we consider its additive splitting
f) = A )+ (), zeA, (3.8)
where

Py Nk
f(z)_i—l—;ckz

is analytic in {z : |z| < R} and

-1
FE=gE 3 adt

k=—o0

is analytic in {z : |z| > r}.

Following [8], we introduce Laurent-Padé approximants of order (m,n). It
is enough to consider the case m > n for our purposes. This simplifies the defi-
nition of Laurent-Padé approximant of type (m, n) to the sum of classical Padé
approximants of type (m,n) to f*(z) and f~(z) about 0 and oo respectively.

Let
_ Paal®)

i (2)

be the classical Padé approximant of type (m,n) to the function f*(z) about
0, 1.e.

T (2)

)

We use the notations

() =) i

m
j=0
for the Padé numerator of type (m,n) and

n

o) = S
j=0
for the (normalized) Padé denominator with b;;’y(r?) =1
We consider next the Padé approximant of type (m,n) to f~(z) about oo,

_ paa(1/2)
imn(1/2)

1 ” VAR
- -y = -G [ =
amn<z) }:amm (Z)

j=0

P (%)

where
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1 " VAR
- ) = p—U) [ =
i () >t (2)

with b;@’y(no) = 1. For p;%n(l/z) and q;%n(l/z) we have

7@ () =rn () =0 (57

The Laurent-Padé approximant of type (m, n) to f(z) is then defined by

and

IS

=r z r_ (z)= M
rmyn(z) T ;;,n( )+ m,n( ) Qm,n(z)’

where
P (2) 7= D o (D00 (1/2) 4 1 o (1/2) a5, () (3.9)

is a Laurent polynomial of degree at most m and

Gmn(2) = g 2 (2)am 0 (1/2)

is a Laurent polynomial of degree at most n. We note that

pn(z) = ah M= m =y 0) L
) m,n m,n m,n m,n Zm

or, since b;;’y(r?) = b;@’y(no) =1,
1
P (2) = a5 g (3.10)
) ) Zm

Since the zeros of 7., ,(z) coincide with those of the numerator p,, »(#), as
given by (3.10), it suffices to study the limiting behavior of zeros of this Laurent
polynomial or Laurent-type rational function. Theorem 2.1 gives the necessary
tools for such a study.

Suppose that f(z) has a meromorphic continuation to the annulus A, :=
{z :rp < |z| < Ry} such that this continuation (which we still denote by f(2))
has exactly n poles, counted according to multiplicities, in {z : r, < |z| < r}
and n poles in {z: R < |z| < R,}. Thus, the total number of poles of f(z) in
Ap is 2n, where n is a fixed positive integer. We assume that A, is the largest
annulus with the above properties and that the conditions R, < oo, r;, > 0

hold.

Theorem 3.2. Under the above assumptions on f(z), there exist two subse-
quences Ay and Ay of indices such that the normalized counting measure in zeros
of Laurent-Padé approzimants of type (m,n) to f(z), i.e.

1
Vm:% Z 62’]"

Tm,n(25)=0
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has weak™ limits satisfying

Vil|o (Roray2 = H1 G5 =00, M€ Ay, (3.11)
where Lo
dﬂl = 5% on |Z|:Rna
and
Vil < (Robrays2 T pzasm— o0, m € Ay, (3.12)
where X
dﬂz = §§ on |Z| =r,.

This means that the weak* limit of restrictions of v,,,, m € Ay, on {z: |2| >
(Rn +7n)/2}, as m — oo, coincides with one half of the normalized Lebesgue
measure on |z| = R,. On the other hand, when m — oo, m € As, the weak*
limit of the restrictions of vy, on {z : |z| < (R + r,)/2} is equal to one half of
the normalized Lebesgue measure on |z] = 7,,.

The results of Theorem 3.2 are analogues of results in [4] for the zero distri-
bution of classical Padé approximants with fixed denominator degree.

4 Potential theoretic background

In this section we discuss the theory associated with some weighted potential
problems which plays a crucial role in the derivation of our results. In particular,
we show that the measure p,, defined in (2.16) arises in a natural way as the
extremal measure for a weighted energy problem.

Let K C C be an arbitrary compact set of positive capacity. For a Borel
measure v with compact support S, C C\ K such that ||v|| = a, 0 < a < 1, we
consider weight function

U”(z)’ c /C,
w@y:{g z¢£ (4.1)

where U” is the logarithmic potential of v. Note, that w(z) is continuous as a
function defined on K and

w(z)=e %) ek, (4.2)

where

Q(z):==-U"(z), zeKk. (4.3)

Let M(K) denote the class of all Borel measures p with total mass [|p|| = 1
supported on K, and consider the following weighted energy problem:
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“For the weighted energy integral

1
() 2= [ tor s dn()antt), (4.4)

find

Vw = inf I, 4.5
L) (45)

and identify the extremal measure p, € M(K) for which the inf in (4.5) is
attained.”

We note that w(z) is a continuous admissible weight on K in the sense of
[12]. The following is known (cf. Theorem 3.1 of [12] and Sections I.1, 1.4, 1.5
of [15]):

Theorem 4.1. For w as defined in (4.1):
(a) Vi is finite;
(b) 3 @ unique element p,, € M(K) such that
L (pw) = Vay

and the logarithmic energy of p, is finite, i.e.

1
-0 < // log = t|dﬂw(2)dﬂw(t) < o0;

(¢) UP(2)+ Q(2) > Fy, for qe. z €K, where

Ukw(z) ::/log dpty (1)

|z =1

and

Fui= Vo / Qt)dp (1);

(d) UF(2) + Q(2) = Fu, forq.e.z €supp jtu.

In fact, it is proved in [15] that properties (¢) and (d) characterize the ex-
tremal measure: If a compactly supported measure o € M(K) has finite loga-
rithmic energy and

U?(z)+Q(z) = F q.e.onsuppo, (4.6)

UP(z)+Q(z) > F qe.onk, (4.7)

then ¢ = py and F' = Fy,. Using this result we can explicitly find the extremal
measure for the weight w(z) given by (4.1).
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Theorem 4.2. Let K C C be an arbitrary compact set of positive capacity and
let v be a Borel measure with compact support S, C C\ K such that ||v|| =
a, 0 < a < 1. Then the solution of the weighted energy problem for w(z) as
defined by (4.1), is given by

o = (1= a)yux + 1, (4.8)

where py s the classical equilibrium distribution for K and v is the balayage of
vio K.
Furthermore,

Fo=01-a) logé + /ﬂgg(t, o0)du(t), (4.9)

where C' := capKk and ga(t,00) is the Green function of the unbounded compo-
nent Q of C\ K with pole at co.

Remark. For the notions of the equilibrium distribution, balayage and Green
function see Chapter IT and IV of [10].

Proof. Recall, that for the weight w(z) given by (4.1)
Q(z)=-U"(2), z€eK.

Section TV.1 of [10] yields the existence of the balayage & which is the unique

measure with supp v C 9K and ||7|| = ||v|| = «, such that
UP(2) = U"(2) + /gg(t, oo)dy(t) for qe. z € K, (4.10)
and
U?(2) <UY(2) + /gg(t,oo)dy(t) VzeC. (4.11)

Since UY(z) is uniformly bounded on supp o C 9K, the last inequality implies
by integration with respect to © that v has finite logarithmic energy. This means
that p := (1 — o)pux + v also has finite logarithmic energy. Next, we recall from
Frostman’s theorem ([19], Section TIT.3),

1
UkE(z) = log c deon K.
Then, it follows from (4.10) that q.e. on K

UH(2)+Q(z) = (1=a)U"(2)+U"(z) = U"(z)

(1-«) logé + / ga(t, 00)dv(t).
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It is clear that supp p C 9K C K and ||p]] = (1 —a)||jpc]| + (|7 = 1 —a+a = 1.
Thus, by (4.6) and (4.7), s must be the weighted equilibrium distribution with

Fo=(01- oz)logé —|—/gg(t, o0)du(t),

e [l = [y |

Let K be a bounded continuum whose complement consists of a finite number
of domains and, with the notation introduced in Section 2, consider the weight
function

n
H |z —a;|7%, z€eKk,
j=1

w(z) =

(4.12)
0, zeC\K,
where, as before, o; > 0, j =1,. ..,n,Zn:aj < 1l,andforeachj=1,2,...,n, a;
is a fixed point in the bounded componje:nlt G of C\K. Then w(z) is continuous
as a function defined on K and
w(z) = e ek, (4.13)
where

Q(z) := Zaj log |z — a;|. (4.14)
j=1

Corollary 4.3. The solution of the mintmal weighted energy problem for

n

w(z) =]l —al™™, zeKk,

=1

1s given by the measure

fy = (1—20[;) ue—i—Zaml. (4.15)
=1 =1
Furthermore,
- 1
Fp=1[1- log —, 4.16
(12 o

where C' s the logarithmic capacity of K.
Proof. For the weight w(z) defined by (4.12) we have that

Q(z) = =U"(2), zeKk,
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for the measure
n
V= § adq,
1=1

where 6; is the Dirac é-measure at the point ¢ and

n
a:=||v|| = Zal.
=1

It is well known (cf. [10], p. 222) that the balayage of the unit point mass é,,
supported in a; to K is just y = w(ay, -, Gy),{ = 1,...,n. Therefore,

n
U= g Qg
=1

and so by Theorem 4.2,

fo = (1 - Zm) fe + ZO"“"
=1 =1

Since in this case, [ ga(t,00)dv(t) = 0 formula (4.9) yields

- 1
F, = (1 — Zal) log Yok
=1
which completes the proof. |

5 Proofs.

5.1 Lemmas.

Before we proceed with the proofs of our main results we need several important
lemmas. The first of these is an analogue of the well-known Bernstein-Walsh
lemma for rational functions Ry (z).

Assume that £ is a bounded continuum whose complement consists of a
finite number of domains. Let us denote the bounded components of C\ E by
{él}?zl and the unbounded component by Q. Consider the conformal mappings
o1 G — D =A{w:|w <1}and ® : Q — D = {w : |w| > 1} with
normalizations respectively ¢;(a;) =0, ¢; (a;) > 0, where a; € Gy, [=1,...,n
and ®(o0) = oo, P/ (o0) > 0.

Lemma 5.1. For the rational function Ry(z) defined by (2.5) we have that

[Rx()] < 1R lloa ()] = €0 (1)
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and

Rullss i
|RN(z)|§%, ceCy, l=1,...n, (5.2)

4i2)

where the norms are Chebyshev norms.

Proof. The proof is standard: we consider the function

h(z) = Rn(2)/[®(2)]* and observe that it is analytic everywhere in Q. Thus,
by the maximum modulus principle, we have that

IRN(Z)kI
‘é(z)

<H}?—N
<z

= BN llpg, €
ot

This gives (5.1). R
Similarly, by considering the function h(2) = Ry(2)[¢:(2)]”", which is ana-
lytic in (7, we obtain in the same way that

[Bx(2)] - |6 (2)

my ~ my ~
<[rnd™|,;, = 1RNloq, €6 =1 m,
1

and (5.2) follows. [ |

As a consequence, we have the following:

Lemma 5.2. Let the continuum K satisfy the assumptions of Theorem 2.2,
and assume that the sequence {Rn(2)}ien converges locally uniformly in K° to

F(2)(#£0). Then

Lk _

lim || Ry lln =1 (5.3)
TEA
and
lim (| Byl =1, I=1,...,n. (5.4)

t€EA

Proof. Since K is the closure of a finitely connected Jordan domain K°, an
argument similar to that of [20] (p. 96), shows that for any R > 1 we can find
a continuum £ C K° such that 0Q C Fgr, where Er denotes the continuum
bounded by the level curve |®(z)| = R and E. (It is enough to take E to be a
Jordan curve sufficiently close to 9€2.) Then, by the locally uniform convergence

of Ry(z) to f(z) £ 0 in K°, we have that

1B~ < NI = Bnllg + £z < 20flle

for ¢ sufficiently large. Thus, from (5.1),

RN agyj=r < 2Iflle R,
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and, by the maximum modulus principle, this yields

limsup | Rylyfy < limsup | R} < R.
Hence, on letting R — 1 we get that
limsupHRNHgé]k < 1. (5.5)

11— 00

Similary, by taking £ to be a Jordan curve close to dGy, and using (5.2) we find
that

||RN|||<51(2)|:1/R <2fllg B™, 1=1,...,n.

Hence,
limsup || Ry[lpp" <1, {=1,...,n. (5.6)

11— 00

If we assume that liminf;_ o ||RN||éélk = g < 1, then we can conclude that

there exists a subsequence {Ry }ica/ca uniformly convergent to zero on 9€2. It
then follows from (5.1), with E = 9, that this convergence takes place in the
strip between 9Q and the level curve defined by |®(z)| = R for some R > 1, i.e.
lim Ry (2)|"/* lim || Ry|lsh - R
el el

gk, z € {t:1<[0(1)] < R}.

IN

IN

Thus, we only need to take R such that ¢R < 1. But this implies the existence
of analytic continuation of f(z) through 9, which vanishes identically in the
strip. Thus, f(z) must vanish everywhere, contradicting our assumption that
f(z) # 0. This proves (5.3).

The same argument can be applied in case of 0G;, | = 1,...,n, to prove

that
lim inf || Ry < 1
— 00

is impossible for any [ = 1,..., n, thus yielding (5.4). |

Lemma 5.3. For the leading coefficients of Ry(z) defined by (2.5) we have
that

1
|t ] < EHRNH(’)Q, C = cap K, (5.7)

|0, | < B I RNNloc, (5.8)

Proof. Following the proof of Lemma 5.1, and the maximum modulus principle

we have
| R (2)]

|®(2)[F

<||Rnllaq, z€ 9.
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This gives (5.7), if we pass to the limit as z — oco. Similarly, by passing to the
limit with z — a; In

|BN(2)] - |oi(2)[™ < | Bnlloc,, =z € Gy,

we obtain (5.8). [ |

Corollary 5.4. Let K and {Rn }ica be the same as in Lemma 5.2. Then

1
limsup [t} [V/F < = (5.9)
and
hmsup|5,m |V < Ry 1=1,...n. (5.10)

71— 00

Proof. Inequalities (5.9) and (5.10) follow immediately from (5.3), (5.4), (5.7)
and (5.8). |

Lemma 5.5. With the assumptions of Theorem 2.2, the monic polynomial
Pn(z), in (2.7), is asymptotically extremal on K with respect to the weight w(z)
defined by (4.12), i.e

lim [Jw!N Py || = =P (5.11)
TEA

where Py is given by (4.16) .

Proof. Since K is a continuum and a; ¢ K, { = 1,...,n, there exist two
constants d; and ds such that

di <|lz—ai] <doy, VzeK, l=1,...,n

Consider

" IN|
lim sup [N Py || /1M = Jim sup | (H |2 — |) Pr(z) 1

1—00 =00 =1
i Nl N 1/IN|
] _ _(z—=a)™
— (H|z_a,| ) MW”
=1 k K
. 1/|N
< hmsup[ml/mnﬂ ™ || Rl ']
1— 00

01_21:1 o — e_Fw,
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(For the above we made use of Theorem 2.2 (i), (2.9), (5.3) and (5.4) in order
to deduce that

n
lim ||H(z - al)ﬁ—alnic =1,

t€EA =1
lim [|Ry [/ =1,
1EA
and )
lim ———— = (1" 2= ™)

e |t§€V|1/|N|

By Corollary 4.5 of [12] and Corollary 4.3 we have

lim inf |[w! M Py [N > o= Fo (5.12)
from which the lemma follows immediately. |

Lemma 5.6. Let vy be the measure defined by (2.8). Then, with the assump-
tions of Theorem 2.2 we have that

vN(B) — 0, asi— o0, i€ A, (5.13)
for any closed subset B C (J;—, Gi) U Q.

Proof. If B C £2,, then Lemma 5.6 is implied by Lemma 5.5 and Theorem 2.3(a)
of [11]. In case of B C Gy, 1 <1 < n, the proof of this lemma is similar to the
proof of Lemma 4.1 of [11] or can be directly reduced to it by the transformation

u=1/(z —a). |

5.2 Proofs of Theorems 2.2, 2.3 and 2.6.

Proof of Theorem 2.2. Let o be any weak* limit of vy, i.e. vy — o for
some subsequence A’ C A. By the locally uniform convergence of {Rn(2)}iea
to f(z) # 0 we obtain from the Hurwitz theorem that

o(B) =0 (5.14)

for any closed set B C K°. Then, Lemmab.6 and (5.14) imply that supp ¢ C 9K.
Clearly, 0 € M(K). We know from Corollary 4.3 that suppp,, = 0K. By the
property (d) of Theorem 4.1 and (5.11) we obtain

/log |z —t|dvn(t) — /log |z — t|dpy(t) <en (5.15)
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uniformly on 0K, where ey — 0 as ¢ — oo,i € A. Using the principle of
domination (Theorem I1.3.2 in [15] and Second Maximum Principle in [10], p.
111) we conclude that (5.15) holds for all z € C.

If we let & > 0 and consider vy, the normalized counting measure in zeros
of Py(z) that are closer than é to 9K, then by (5.15)

/log |z — t|ldon(t) — /log |z — t|dpw(t) < en + o(1)

for every z such that dist(z,9K) > 6. But iy 2o, as i — 00,1 € A’ therefore
we have for every z ¢ 0K

—/log |Z—it|da(t)—|—/log |Z—it|dpw(t) <. (5.16)
The function u(z) := UF»(z) — U%(z) is harmonic in C \ K. If we show that
u(z) has a zero in some component of C \ 9K, then u(z) vanishes identically
there by (5.16) and the maximum principle [19].

First, we consider €2, which is the unbounded component of C\ K. It is
not difficult to see that

lim u(z) = lim [ log #d(ﬂw —0o)(t) = 0= u(0).

Z—00 Z—00 |z—t|

Consequently,
w(z) =0 in Q. (5.17)

Using the assumption that the sequence { Ry (z)};ea converges locally uniformly
to f(z) # 0, we can choose a point zy € K such that

lim Ry (z0) = f(z0) # 0.

t— 00

t€EA

This implies the existence of some neighborhood of z; that doesn’t contain zeros
of Ry(z) by the Hurwitz theorem, for ¢ € A large enough. Thus, we have by
the weak® convergence

U%(z0) = lim U"™(z)

ieA!

1
= lim —log
i—oe [N

ieA!

| P (20)]

n
|té\f|1/|N| H |20 — al|—mz/|N|

= lim log =1

vl | Ry (20) /1]

ieA!
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. k’ - my 1
lim | —log |tN|1/k + E — log ————
i—oo (|N| k < [N| 7 |20 — ai

ieA!

(1 - Zal) log + Zal log —— E Cll| (5.18)
Zo —

For the potential of the weighted equilibrium distribution we obtain

Uhtw(z) = (1 — Zal) /log d/ie +Za1/log dul( )
= 1—Zn:ozl logi—l—zn:allog# . (5.19)
=1 ¢ = |20 — ail

Comparing (5.18) and (5.19) we conclude that
Ukw(z) =U°(z), VzeK°. (5.20)

Since both potentials are continuous in the fine topology (see Section V.3 of
[10]) and the boundary of © in the fine topology is the same as the Euclidean
boundary [15], then we obtain by (5.17) that Utw(z) = U%(z), Y z € 9.
Thus, we have

Ure(2)=U%(z), Yz € C\G, (5.21)
where GG = UL, ;. By the unicity theorem [15] we get

Tlan = Hulsq -

Now, we apply the fine topology argument to the domain C \ G to conclude
that o
Ukw(z) =U?%(z) on (C\ G) = UL, 0G].

Since UH»(z) and U7(z) coincide on 9K, which contains the supports of both
measures, we obtain
Ukw(z) =U%(z), VzeC,
by the maximum principle for harmonic functions. Another application of the
unicity theorem yields
T = -

Let us turn to the proof of the converse part in Theorem 2.2. We have that

VN — 0 as i — 00, i € A, where ¢ = pi,,. This implies

U (z)y=U*r(z), V z€C. (5.22)
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By the same argument as in (5.18) we get for zy € K° such that f(zg) # 0,

Ubw(zg) = (1 —Zal) log hm |tN|1/ +Zallogﬁ .

=1 ex

The last equality and (5.19) immediately gives condition (i) of Theorem 2.2.
In order to prove (ii) we use the assumption that every a; € G; has some
zero free neighborhood, so that by the weak™ convergence

Ui (o) = i 1 log 1 i L ty
“(a;) = lim — log ——— =
wx INE T PN (@) INI slm [T la: = a;1™
J#l
. . N il/k my 1
= lim Wlo |t | —|—mlog| N i +logH|al—a]|
i€A YE

Z” 1 3 1

1-— O[]' loga—I—allog 1/ml =+ O[] logm .

j=1 lim |51 my | J#l : !
mp— o0

(5.23)

We observe that the function g(¢) = (¢1(t) — ¢1(ar))/(t — ;) is analytic in G}
and continuous on G;. Also, g(t) # 0, V¢ € G;. This implies that log|g(t)] is
harmonic in G; and continuous on G with

1
log |g(ar)| = log|¢'(ar)| = log 7

Now we calculate

Uke(a;) = 1—2(1] logC—I—Za]/log dﬂ]()

= 1—2(1] log——i—Za]log '—Cll|

J#l
+ ozl/log

¢1(2) — du(ar)
= 1—2(1] log——i—Za]log '—Cll|

Z— ay
J#l

dpu(z)

+  aglog|oi(ar)l. (5.24)
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By (5.22) condition (ii) of Theorem 2.2 now follows from (5.23) and (5.24),
l=1,...,n. |

Proof of Theorem 2.3. The proofs of (2.17) and (2.18) are the same as in the
proof of Theorem 2.2 so we need only to present the proof of (2.19). By (2.17)
and (2.18) we have

UIE(z) = UPIE(2), Y2¢G. (5.25)

Let ¢ be a weak* limit of the balayages of vy|gz to dG. Then, by the lower
envelope theorem [15] we have

JE—

liminf UV (2) = U7(2) (5.26)
ien
and
liminf U"VIE(2) = UV (2), (5.27)
ieA!

where both equalities hold q.e. in C\ G for a subsequence A’ C A. Since

UoNla(z) = UNlE(z), Ve C\ G,
by the definition of balayage, we obtain from (5.26) and (5.27)
U%(z) = U"15(2) q.e.in C\ G.
The last equality together with (5.25) yields
U%(z) = UP*IE(z) qee.in C \ G.

But supp ¢ C dG and supp iy | C dG, therefore both potentials are continuous
in C\ G and .
U°(z) =U"l5(z), VzeC\G.

Consequently, the measures must be identical by the Carleson unicity theorem
(see [3] and [15]):
0= plulz (5.28)

Thus, by (2.18) and (5.28) we have
UN i>V|C\a"|'0':Nw|C\a+Nw|E:Nwa

as i — 00, i € A. |

Proof of Theorem 2.6. This proof follows that of Theorem 2.2 and therefore
1s omitted.
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5.3 Proof of Theorem 3.2.

First, we show that p,, ,(z) converges to some analytic function ¢ locally uni-
formly in A,, with ¢ Z 0. To this end we recall that by the additive splitting
(3.8) the function f*(z) must have a meromorphic continuation with precisely
n poles in {z : R < |z] < Rp} because f~(z) is analytic in {z : |z] > r}.
Similarly, f~(z) has a meromorphic continuation with precisely n poles in
{z1r, < |z| < r}.

Suppose that {z]‘" }f:l are the poles of f*(z) with the corresponding multi-
plicities {l;'}f:l such that

From the classical de Montessus de Ballore’s theorem [1] we have

lim . (2) = f*(2),

m—00

where the convergence is locally uniform in {z : 2| < R} \ {z]'" }f:l , and

im qh o (2) = Qi (2), (5.29)
where
rt lj'
Qt() =11 (1 - —+)
ji=1 J
So,
p:—ln(’z) — fH(2)Qf(2), as m — oo, (5.30)

locally uniformly in {z : |z] < R,}.
Similarly, we have

pn (£) = 0007 () asm—ox, (5:31)

z
locally uniformly in {z : |z| > r,}, and
1 1 i "
- (1 o = _
I (z) — Q) (z) = H (1 . ) , as m — oo, (5.32)
j=1

locally uniformly in C, where {z]_ }f;l are the poles of f~(z) in {z : r, < |2| <
r} with multiplicities {/; }7_; such that

=
le_ =n.
ji=1
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Taking into account (5.29), (5.30), (5.31) and (5.32) we obtain from (3.9)
Pma(2) = (FYQRQL +/7QL Q) (2), asm — o0,
locally uniformly in A,,. But

9(z) = (FFQIQr +17QrQ%) (%)
= QUG (M) +17(2)
= ()R (:)Q5 (%)

for any z € A, . Thus,
Pmon(2) = g(2), asm — oo, (5.33)

locally uniformly in A,,, where ¢g(z) is analytic in A, and doesn’t vanish identi-
cally.

To finish the proof we need to find the m-th root behavior for the leading
coefficients of py, »(z). Applying the result of [4, p.263] to fT(z) and p;l'%n(z)
we obtain that 3 Ay C N such that

1/my 1
= —. 5.34
R, ( )

: +,(mx)
Aimag T

meAy

Then (3.11) follows from (5.33), (5.34) and Theorem 2.3 (cf. (2.18)).
Using the transformation w = 1/z we proceed in the same manner for f~(z)
and p., ,,(2) to deduce that 3 Ay C N such that

1/m
lim a;ﬁ(;’;l)‘ g
mens ’
Another application of Theorem 2.3 (2.18) yields (3.12). |
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