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Abstract. In this paper, we introduce and study several norms which are constructed in
order to satisfy an extremal property with respect to the Mahler measure. These norms are
a natural generalization of the metric Mahler measure introduced by Dubickas and Smyth.
We show that bounding these norms on a certain subspace implies Lehmer’s conjecture
and in at least one case that the converse is true as well. We evaluate these norms on a
class of algebraic numbers that include Pisot and Salem numbers, and for surds. We prove
that the infimum in the construction is achieved in a certain finite dimensional space for
all algebraic numbers in one case, and for surds in general, a finiteness result analogous
to that of Samuels and Jankauskas for the t-metric Mahler measures.

1. Introduction

1.1. Background. Let K be a number field with set of places MK . For each v ∈MK lying
over a rational prime p, let ‖ · ‖v be the absolute value on K extending the usual p-adic
absolute value on Q if v is finite or the usual archimedean absolute value if v is infinite.
Then for α ∈ K×, the absolute logarithmic Weil height h is given by

h(α) =
∑
v∈MK

[Kv : Qv]

[K : Q]
log+ ‖α‖v

where log+ t = max{log t, 0}. As the right hand side above does not depend on the choice

of field K containing α, h is a well-defined function mapping Q× → [0,∞) which vanishes

precisely on the roots of unity Tor(Q×). Related to the Weil height is the logarithmic
Mahler measure, given by

m(α) = (degα) · h(α),

where degα = [Q(α) : Q]. Perhaps the most important open question regarding the Mahler
measure is Lehmer’s conjecture that there exists an absolute constant c such that

(1.1) m(α) ≥ c > 0 for all α ∈ Q× \ Tor(Q×).

The question of the existence of algebraic numbers with small Mahler measure was first
posed in 1933 by D.H. Lehmer [8]. The current best known lower bound, due to Dobrowolski
[4], is of the form

m(α)�
(

log log degα

log degα

)3

for all α ∈ Q× \ Tor(Q×)

where the implied constant is absolute.
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The Weil height h naturally satisfies the conditions of being a metric on the space

G = Q×/Tor(Q×)

of algebraic numbers modulo torsion, and in fact, viewing G as a vector space over Q written
multiplicatively (see the paper of Allcock and Vaaler [1]), it is easy to see that h is a vector
space norm. The study of the Mahler measure on the vector space of algebraic numbers
modulo torsion presents several difficulties absent for the Weil height, first of which is that

while m also vanishes precisely on Tor(Q×), unlike h, it is not well-defined on the quotient
space modulo torsion. To get around that difficulty, Dubickas and Smyth [6] first introduced
the metric Mahler measure, which gave a well-defined metric on G satisfying the additional
property of being the largest metric which descends from a function bounded above by the

Mahler measure on Q×. Later, the first author and Samuels [10, 12] defined the ultrametric
Mahler measure which satisfies the strong triangle inequality and gives a projective height
on G. It is easy to see that the metric and ultrametric Mahler measures each induce the
discrete topology on G if and only if Lehmer’s conjecture is true.

In this paper we will introduce vector space norms on G which satisfy an analogous
extremal property with respect to the Mahler measure as the metric Mahler measure does.
Before presenting our constructions, let us fix our notation. We denote the Lp Weil heights
for 1 ≤ p <∞ by

hp(α) =

( ∑
v∈MK

[Kv : Qv]

[K : Q]
· |log ‖α‖v|p

)1/p

for α ∈ K×,

noting that the classical Weil height satisfies 2h = h1 (see [1]) and is well-defined, indepen-
dent of choice of K. For p =∞, we let

h∞(α) = sup
v∈MK

|log ‖α‖v| for α ∈ K×,

noting that this height serves as a generalization of the (logarithmic) house of an algebraic
integer (see Section 1.3 below for more details). Analogously, we have the Lp Mahler
measure defined on Q to be mp(α) = (degα) · hp(α), where m1 = 2m is twice the usual
Mahler measure.

For an algebraic number α ∈ Q×, we let α ∈ G denote its equivalence class modulo
torsion. Let d : G → N be given by

d(α) = min
ζ∈Tor(Q×)

deg ζα,

where ζα ranges over all representatives of the equivalence class α. The minimal logarithmic
Mahler measure is defined to be the function m : G → [0,∞) given by1

m(α) = d(α)h(α).

(Recall that hp is constant on cosets modulo torsion, so that hp(α) = hp(α) for all α ∈ Q×.)
More generally, we define the minimal logarithmic Lp Mahler measure

mp(α) = d(α)hp(α).

1The usual Mahler measure is not defined on G, thus our use of m for the minimal Mahler measure should
result in no confusion.
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This function is called minimal because it yields, for any element α ∈ G, the minimal

logarithmic Lp Mahler measure amongst all of the representatives in Q× of our α ∈ G ,
that is,

mp(α) = min
ζ∈Tor(Q×)

mp(αζ).

Let us now recall the construction of the metric Mahler measure m̂ : G → [0,∞) of
Dubickas and Smyth [6]. This construction may be applied to any height function as in [7]
and will in general produce metrics defined on G modulo its zero set. The (logarithmic)
metric Mahler measure is defined by

m̂(α) = inf
α=α1···αn

n∑
i=1

m(αi),

where the infimum is taken over all possible ways of writing any representative of α as a
product of other algebraic numbers. This construction is extremal in the sense that any
other function g : G → [0,∞) satisfying

(1) g(α) ≤ m(α) for all α ∈ G, and
(2) g(αβ−1) ≤ g(α) + g(β) for all α,β ∈ G, (Triangle Inequality)

is then smaller than m̂, that is, g(α) ≤ m̂(α) for all α ∈ G. Equivalently, lifting to Q× in
the natural way, it is easy to see that m̂ satisfies the same extremal property with respect
to the logarithmic Mahler measure. This extremal property is characteristic of the metric
construction for height functions [6, 7, 10].

1.2. Main results. The space G has a vector space structure over Q (written multiplica-
tively), so we might ask if there exists a vector space norm satisfying the same extremal
property with respect to the Mahler measure. We define the extremal norm m̃p associated
to mp to be:

m̃p(α) = inf
α=α

r1
1 ···α

rn
n

n∑
i=1

|ri|mp(αi),

where the infimum is taken over all ways of writing α as a linear combination of vectors
αi ∈ G with ri ∈ Q. (Observe that mp(α

r) 6= |r|mp(α) for general α ∈ G and r ∈ Q×, so
that in general the metric construction m̂p and the norm construction m̃p will not agree.)
We prove that m̃p is a well-defined vector space norm on G which is extremal amongst all
seminorms with respect to the Mahler measure, in the sense that if g : G → [0,∞) is a
function satisfying

(1) g(α) ≤ mp(α) for all α ∈ G,
(2) g(αβ−1) ≤ g(α) + g(β), and
(3) g(αr) = |r|g(α) for all α ∈ G, r ∈ Q,

then g ≤ m̃p, that is, g(α) ≤ m̃p(α) for all α ∈ G.
Our main result is a finiteness theorem for the extremal norm m̃1 analogous to the main

result of [12] for the infimum of the metric Mahler measure. Let K be a number field and
let

VK = {αr : r ∈ Q and α ∈ K×/Tor(K×)}
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be the vector subspace inside G spanned by elements of K×/Tor(K×). Notice that α ∈ VK
if and only if for any coset representative α ∈ Q× we have αn ∈ K× for some n ∈ N. Let
MK be the set of places of K, and let S ⊂MK be a finite set of places of K, including all
archimedean places. Then for any field extension L/K, define

VL,S = {α ∈ VL : ‖α‖w = 1 for w | v ∈MK \ S}.

Observe that by Dirichlet’s S-unit theorem, VL,S is a finite dimensional vector space. Our
main result is the following:

Theorem 1. Let α ∈ VK , where K is Galois. Then there exists a finite set of rational
primes S, containing the archimedean place, such that

m̃1(α) =
∑
F⊆K

[F : Q] · h1(αF )

where αF ∈ VF,S, α =
∏
F⊆K αF . Furthermore, for each pair of fields E ⊂ F ⊆ K,

h1(αF ) = inf
β∈VE,S

h1(αF /β).

We may interpret the last sentence of Theorem 1 as saying the norm of each αF is equal
to the quotient norm of αF with respect to any subfield.

For p > 1 we are able to show that m̃p attains its infimum on roots of rationals by
computing m̃p(α) = hp(α) directly for such numbers in Proposition 3.7. (See Samuels and
Jankauskas [13] for analogous results on the p-metric construction.2)

In order to prove our main result on the infimum of m̃1, we prove in Section 4.1 several
results related to heights of algebraic numbers modulo multiplicative group actions very
much related to the results of A.C. de la Maza and E. Friedman [11], which we interpret
as results about quotient norms. In particular, for L/K and α ∈ VL,S , we use essentially
the same proof used in [11] to show in Theorem 4, that the infimum infβ∈VK,S h(αβ−1) is

attained in the closure VK,S . In Theorem 5, we show that under certain extra conditions
we may find the infimum infβ∈VK,S h(αβ−1) within VK,S , extending a result of [11]. In
our final result on quotient norms, Theorem 6, we show that for α ∈ VL,S we can find an

element η ∈ VK,S of minimal height which satisfies both

(1) h1(αη−1) = inf
β∈VK,S

h1(αβ−1), and

(2) h1(η) + [L : K]h1(αη−1) = inf
β∈VK,S

(
h1(β) + [L : K]h1(αβ−1)

)
.

We then construct an S-unit projection which allows us to reduce to finite dimensions,
which we believe is new and of interest in itself as it is a nonincreasing map with respect
to the height.

2The p-metric construction studied in [13] is very different from our metric construction f 7→ f̂ . The
p-metric Mahler measure Mp is the infimum over all representations α = α1 · · ·αn of the `p norm of the
vector (m(α1), . . . ,m(αn)). One notable difference between the two constructions is that m̂p satisfies the
triangle inequality m̂p(αβ) ≤ m̂p(α)+m̂p(β), whileMp satisfies a p-metric triangle inequalityMp(αβ)p ≤
Mp(α)p +Mp(β)p. However, when p = 1, they are essentially the same: m̂1(α) =M1(α).
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1.3. Applications to Lehmer’s problem. Given that the norms m̃p are extremal with
respect to the Mahler measure, it is natural to ask what applications these norms have to
the Lehmer problem. Define A ⊂ G to be the set of 1 6= α ∈ G which have a representative
α satisfying the following properties:

(1) α is an algebraic unit.
(2) [Q(αn) : Q] = [Q(α) : Q] for all n ∈ N.
(3) For any proper subfield F of K = Q(α), NormK

F (α) ∈ Tor(F×).

The conditions of the set A are exactly, in the terminology of [9], that α be a unit, repre-
sentable3, and projection irreducible, respectively. Then in [9, Theorem 4] it is proven that
for any 1 ≤ p ≤ ∞ there exists a constant cp such that

(1.2) mp(α) = (degα) · hp(α) ≥ cp > 0 for all α ∈ Q× \ Tor(Q×)

if and only if

(1.3) mp(α) = d(α) · hp(α) ≥ cp > 0 for all α ∈ A.
We note that equation (1.2) is equivalent to the Lehmer conjecture for p = 1 and the
Schinzel-Zassenhaus conjecture for p =∞ [9, Proposition 4.1]. Therefore we formulate the
following conjecture:

Conjecture 1. For each 1 ≤ p ≤ ∞, there exists a constant cp such that

(1.4) m̃p(α) ≥ cp > 0 for all α ∈ A.

Theorem 2. If Conjecture 1 is true, then (1.2) holds.

In particular, for p = 1 (1.4) implies that Lehmer’s conjecture is true, and for p = ∞
equation (1.4) implies that the Schinzel-Zassenhaus conjecture is true.

For p 6= 2, we are unable to prove the converse to Theorem 2. We nevertheless expect
the result is true and make the following conjecture:

Conjecture 2. If (1.2) holds, then Conjecture 1 is true.

However, when p = 2 we are able to prove that:

Theorem 3. There exists a constant c2 such that

m2(α) = (degα) · h2(α) ≥ c2 > 0 for all α ∈ Q× \ Tor(Q×)

if and only if

m̃2(α) ≥ c2 > 0 for all α ∈ A.

Proof. In [9], we construct a norm ‖ · ‖m,2, and prove in [9, Theorem 4] that bounding

‖ ·‖m,2 away from zero on A is equivalent to bounding m2 away from zero on Q× \Tor(Q×).
Further, in [9, Theorem 6 et seq.] we prove that ‖α‖m,2 ≤ m2(α) for all α ∈ G. It follows
by the extremal property for m̃2 that

‖α‖m,2 ≤ m̃2(α) ≤ m2(α)

for all α ∈ G, and the claim now follows. �

3Such numbers are called Lehmer irreducible in earlier drafts.
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The format of this paper is as follows. In Section 2 we prove basic results about degree
functions on G and projections onto subspaces. In Section 3 we construct the extremal
norms m̃p arrived at by the infimum process, prove a very useful alternative formulation of
m̃p in Proposition 3.6, and examine explicit classes of algebraic numbers for which we can
compute the value of the norms (for example, on surds and in the p = 1 case on Salem and
Pisot numbers). Lastly in Section 4 we study m̃1 in particular and prove our main result
that for any given class of an algebraic number the infimum in the construction of m̃1 is
attained in a finite dimensional vector space.

The authors would like to acknowledge Jeffrey Vaaler for many helpful conversations in
general, and specifically for his contributions to Lemma 4.3, as well as Clayton Petsche and
Felipe Voloch for helpful remarks regarding this same lemma. We also thank the referee of
this paper for many helpful suggestions.

2. Preliminary Lemmas

2.1. Subspaces associated to number fields. We will now prove some lemmas regarding
the relationship between certain subspaces determined by number fields. LetG = Gal(Q/Q)
and let us define

K = {K/Q : [K : Q] <∞} and KG = {K ∈ K : σK = K ∀σ ∈ G}.

Let us briefly recall the combinatorial properties of the sets K and KG partially ordered by
inclusion. Recall that K and KG are lattices, that is, partially ordered sets for which any
two elements have a unique greatest lower bound, called the meet, and a least upper bound,
called the join. Specifically, for any two fields K,L, the meet K ∧L is given by K ∩L and
the join K ∨ L is given by KL. If K,L are Galois then both the meet (the intersection)
and the join (the compositum) are Galois as well, thus KG is also a lattice. Both lattices
have a minimal element, namely Q, and are locally finite, that is, between any two fixed
elements we have a finite number of intermediate elements.

For each K ∈ K, let

VK = {αr : r ∈ Q and α ∈ K×/Tor(K×)}.

Then VK is the subspace of G spanned by elements of K×/Tor(K×). We call a subspace
of the form VK for K ∈ K a distinguished subspace. Suppose we fix an algebraic number
α ∈ G. Then the set

{K ∈ K : α ∈ VK}
forms a sublattice of K, and by the finiteness properties of K this set must contain a unique
minimal element.

Definition 2.1. For any α ∈ G, the minimal field is defined to be the minimal element of
the set {K ∈ K : α ∈ VK}. We denote the minimal field of α by Kα.

Note that the action of G = Gal(Q/Q) on G is well-defined (see [1]).

Lemma 2.2. For any α ∈ G, we have StabG(α) = Gal(Q/Kα) ≤ G.

Notation 2.3. By StabG(α) we mean the σ ∈ G such that σα = α. As this tacit identifi-
cation is convenient we shall use it throughout with no further comment.
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Proof. Clearly Gal(Q/Kα) ≤ StabG(α), as α` ∈ Kα for some ` ∈ N by definition of VKα .
To see the reverse containment, observe that Kα = Q(α`) for some ` ∈ N. Now, for
σ ∈ StabG(α), we have σα = ζα for ζ ∈ Tor(Q×). Then if σ(α`) 6= α`, there would
exist an m ∈ N such that σ(α`m) = α`m. Thus, σ is contained in a proper supergroup of
Gal(Q/Kα), so there would be a proper subfield of Kα containing α`m, contradicting the
definition of Kα. �

2.2. Representability. Observe that the action of the absolute Galois groupG = Gal(Q/Q)
is well-defined on the vector space of algebraic numbers modulo torsion G, and in fact it is
easy to see that each Galois automorphism gives rise to a distinct isometry of G in the hp
norm (see [9, §2.1] for more details). Let us denote the image of the class α under σ ∈ G by
σα. In order to associate a notion of degree to a subspace in a meaningful fashion so that
we can define our norms associated to the Mahler Measure we define the function δ : G → N
by

(2.1) δ(α) = #{σα : σ ∈ G} = [G : StabG(α)] = [Kα : Q]

to be the size of the orbit of α under the Galois action, with the last equality above following
from Lemma 2.2.

Observe that since taking roots or powers does not affect the Q-vector space span, and
in particular the minimal field Kα, the function δ is invariant under nonzero scaling in G,
that is, δ(αr) = δ(α) for all 0 6= r ∈ Q. In order to better understand the relationship

between our elements in G and their representatives in Q×, we need to understand when
an α ∈ VK has a representative α ∈ K× (or is merely a root of an element αn ∈ K× for
some n > 1). Naturally, the choice of coset representative modulo torsion affects this, and
we would like to avoid such considerations. Therefore we define the function d : G → N by

(2.2) d(α) = min{deg ζα : α ∈ Q×, ζ ∈ Tor(Q×)}.
In other words, for a given α ∈ G, which is an equivalence class of an algebraic number
modulo torsion, d(α) gives us the minimum degree amongst all of the coset representatives

in Q× modulo the torsion subgroup.
A number α ∈ G can then be represented by an algebraic number in K×α if and only if

d(α) = δ(α). We therefore make the following definition:

Definition 2.4. We define the set of representable elements of G to be the set

(2.3) R = {α ∈ G : δ(α) = d(α)}.

The set R consists precisely of the α ∈ G that can be represented by some α ∈ Q× of
degree equal to the degree of the minimal field Kα of α.

We recall the terminology from [5] that a number α ∈ Q× is torsion-free if α/σα 6∈
Tor(Q×) for all distinct Galois conjugates σα. Thus, torsion-free numbers give rise to
distinct elements σα ∈ G for each distinct Galois conjugate σα of α in Q.

Lemma 2.5. We have the following:

(1) For each α ∈ G, there is a unique minimal exponent `(α) ∈ N such that α`(α) ∈ R.

(2) For any α ∈ Q×, we have δ(α) | degα.
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(3) α ∈ R if and only if it has a representative in Q× which is torsion-free.

Proof. For α ∈ G, choose a representative α ∈ Q× and let

` = lcm{ord(α/σα) : σ ∈ G and α/σα ∈ Tor(Q×)}

where ord(ζ) denotes the order of an element ζ ∈ Tor(Q×). Then observe that α` is torsion-

free. Now if a number β ∈ Q× is torsion-free, then each distinct conjugate σβ determines
a distinct element in G, so we have

deg β = [G : StabG(β)] = [Kβ : Q] = δ(β).

Thus degα` = δ(α`). This proves existence in the first claim, and the existence of a
minimum value follows since N is discrete. To prove the second claim, observe that Q(α`) ⊂
Q(α), so with the choice of ` as above, we have δ(α) = [Q(α`) : Q] | [Q(α) : Q] = degα for

all α ∈ Q×. The third now follows immediately. �

It is proven in [9] that in fact, the minimal value `(α) satisfies d(α) = `(α)δ(α).

2.3. Projections to distinguished subspaces. Suppose β ∈ VK for a number field K.
In our proof of Theorem 1, it will be necessary to replace an arbitrary representation
β = β1 · · ·βn with another representation β = β′1 · · ·β′n where each β′i belongs to VK and
satisfies δh1(β

′
i) ≤ δh1(βi). To this end, we define an operator that projects an element

α ∈ G onto the subspace VK . Let H = Gal(Q/K) ≤ G, and let σ1, . . . , σk be right coset
representatives from StabH(α) ≤ H, with k = [H : StabH(α)]. Define the map PK on
elements of G via

(2.4) PK(α) =

(
k∏
i=1

σi(α)

)1/k

.

Lemma 2.6. Let α ∈ G. Then:

(1) PK(αr) = PK(α)r.
(2) PK(α) ∈ VK .
(3) PK(α) = α for all α ∈ VK .

Proof. (1) PK(αr) = PK(α)r follows from its definition in terms of the Galois action on G.
(2) By scaling if necessary, we may assume α ∈ R. Choose a torsion-free representative

α ∈ Q×. Then, the result will follow from N
K(α)
K =

∏k
i=1 σi(α), since N

K(α)
K (α) ∈ K×. To

see this, note that for α torsion-free, α/σ(α) is never a nontrivial torsion element, so its

orbit in Q× and its G orbit coincide.
(3) Again, we may assume α ∈ R, so that a torsion-free representative α ∈ K×. Then

N
K(α)
K = αk, and PK(α) = α follows. �

Proposition 2.7. Let K be a number field. Then PK is a projection onto VK of norm 1
with respect to the Lp norms for 1 ≤ p ≤ ∞.
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Proof. By Lemma 2.6, it follows that P 2
K = PK is a projection onto VK . Then for 1 ≤ p ≤

∞,

hp(PKα) = hp (σ1(α) · · ·σk(α))1/k ≤ 1

k

k∑
i=1

hp(σiα) =
1

k

k∑
i=1

hp(α) = hp(α),

since the Weil p-height is invariant under the Galois action. This proves PK has operator
norm ‖PK‖ ≤ 1, and since VQ is fixed for every PK , we get ‖PK‖ = 1. �

As a corollary, if we let Gp denote the completion of G under the Weil p-norm hp and
extend PK by continuity, we obtain:

Corollary 2.8. The subspace VK ⊂ Gp is complemented in Gp for all 1 ≤ p ≤ ∞.

As G2 = L2(Y, λ) is the L2 space for a certain measure space (Y, λ) constructed explicitly
in [1], and thus a Hilbert space, more is in fact true:

Proposition 2.9. For each K ∈ K, PK is the orthogonal projection onto the subspace
VK ⊂ G2.

Proof. Observe that PK is idempotent and has operator norm ‖PK‖ = 1 with respect to
the L2 norm, and any such projection in a Hilbert space is orthogonal (see [15, Theorem
III.1.3]). �

We now explore the relationship between the Galois group and the projection operators
PK for K ∈ K.

Lemma 2.10. For any field K ⊆ Q and σ ∈ G,

σPK = PσK σ.

Equivalently, PK σ = σPσ−1K .

Proof. We prove the first form, the second obviously being equivalent. Let H = Gal(Q/K),
and note that if τ ∈ H, then στσ−1 ∈ Gal(Q/σK). Then by the definition of PK :

σPKα = σ (σ1α · · ·σkα)1/k

= (σσ1α · · ·σσkα)1/k

=
(
σσ1(σ

−1σ)α · · ·σσk(σ−1σ)α
)1/k

=
(
(σσ1σ

−1)σα · · · (σσkσ−1)σα
)1/k

= PσK(σα). �

We will be particularly interested in the case where the projections PK , PL commute
with each other (and thus PKPL is a projection to the intersection of their ranges). To that
end, let us determine the intersection of two distinguished subspaces:

Lemma 2.11. Let K,L ⊂ Q be extensions of Q of arbitrary degree. Then the intersection
VK ∩ VL = VK∩L.

Proof. Let αm ∈ K and αn ∈ L for some m,n ∈ N. Then αmn ∈ K ∩L, so α ∈ VK∩L. The
reverse inclusion is obvious. �
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Lemma 2.12. Suppose K ∈ K and L ∈ KG. Then PK and PL commute, that is,

PKPL = PK∩L = PLPK .

In particular, the family of operators {PK : K ∈ KG} is commuting.

Proof. It suffices to prove PK(VL) ⊂ VL, as this will imply that PK(VL) ⊂ VK ∩ VL =
VK∩L by the above lemma, and thus that PKPL is itself a projection onto VK∩L, implying
PKPL = PK∩L, and since any orthogonal projection is equal to its adjoint, we find that
PK∩L = PLPK as well. To prove that PK(VL) ⊂ VL, observe that for α ∈ VL,

PK(α) = (σ1α · · ·σkα)1/k

where the σi are right coset representatives of StabH(α) in H = Gal(Q/K). However,
σ(VL) = VL for σ ∈ G since L is Galois, and thus, PK(α) ∈ VL as well. But PK(α) ∈ VK
by construction and the proof is complete. �

From these facts, we derive the following useful lemma:

Lemma 2.13. If K ∈ KG, then δ(PKα) ≤ δ(α) for all α ∈ G.

Proof. Let F = Kα. Since K ∈ KG, we have by Lemma 2.12 that PKα = PK(PFα) =
PK∩Fα. Thus, PKα ∈ VK∩F , and so δ(PKα) ≤ [K ∩ F : Q] ≤ [F : Q] = δ(α). �

3. Extremal metric heights and norms

3.1. Construction. The aim of this section is to construct norms extremal with respect to
the minimal Mahler measure. Let us begin by recalling the metric construction, as applied
in [6]:

Definition 3.1. For f : G → [0,∞), the metric height associated to f is defined to be the

function f̂ : G → [0,∞) given by

f̂(α) = inf
α=α1···αn

n∑
i=1

f(αi),

where the infimum ranges over all possible factorizations α = α1 · · ·αn in G.

Proposition 3.2. Suppose f(α−1) = f(α) for all α ∈ G. Then the function f̂ satisfies:

(1) f̂(α) ≤ f(α) for all α ∈ G.

(2) f̂(α−1) = f̂(α) for all α ∈ G.

(3) f̂(αβ−1) ≤ f̂(α) + f̂(β) for all α,β ∈ G.

(4) The zero set Z(f̂) = {α ∈ G : f̂(α) = 0} is a subgroup of G, and f̂ is a metric on

G/Z(f̂).

It is the largest function that does so, that is, for any other function g which satisfies the

above conditions, we have g(α) ≤ f̂(α) for all α ∈ G. In particular, if f already satisfies

the triangle inequality, then f̂ = f .

This last property of being the largest metric less than or equal to f we call the extremal
property. The construction of metric heights only uses the group structure of G, and ignores
the vector space structure. If we wish to respect scaling in G as well, we arrive at the notion
of a norm height:
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Definition 3.3. Let f : G → [0,∞) be a given function. We define the norm height

associated to f to be the function f̃ : G → [0,∞) given by

f̃(α) = inf
α=α

r1
1 ···α

rn
n

n∑
i=1

|ri| f(αi),

where the infimum ranges over all possible factorizations α = αr1
1 · · ·αrn

n in G with αi ∈ G
and ri ∈ Q.

Proposition 3.4. The norm height f̃ satisfies the properties:

(1) f̃(α) ≤ f(α) for all α ∈ G.

(2) f̃(αr) = |r|f̃(α) for all r ∈ Q and α ∈ G.

(3) f̃(αβ−1) ≤ f̃(α) + f̃(β) for all α,β ∈ G.

(4) The zero set Z(f̃) = {α ∈ G : f̃(α) = 0} is a vector subspace of G.

Thus, f̃ is a seminorm on G, and a norm on G/Z(f̃). It is the largest function on G that
satisfies the above properties, that is, for any other function g which satisfies the above

conditions, we have g(α) ≤ f̃(α) for all α ∈ G. In particular, if f is already a seminorm

on G, then f̃ = f .

The proof of Proposition 3.4 follows easily from the definitions. As above, we refer to
the last part of the proposition as the extremal property of the norm height construction.

Observe that if f satisfies the scaling property f(αr) = |r|f(α), then f̃ = f̂ and the
construction is the same.

Proposition 3.5. m̃p is a vector space norm on G.

Proof. It only remains to show that the m̃p vanishes precisely on the zero subspace of
the vector space G, which is {1}. Observe that hp ≤ mp, and therefore, by the extremal
property,

hp(α) ≤ m̃p(α) for all α ∈ G.
In particular, we see that m̃p(α) = 0 if and only if hp(α) = 0, which occurs precisely when
α = 1. �

Note that as the degree function δ is invariant under nonzero scaling, we have that

δhp(α
r) = |r|δhp(α) for rational r. Therefore, the metric construction δhp 7→ δ̂hp re-

sults in a norm on G. The following result shows that this norm is exactly m̃p, which is
computationally very useful and will be tacitly used several times in our proofs below:

Proposition 3.6. The norm m̃p extremal with respect to the Mahler measure mp is precisely

δ̂hp, that is, m̃p(α) = δ̂hp(α) for all α ∈ G.

Proof. By Lemma 2.5, there is a unique minimal ` ∈ N such that

d(α`) = δ(α).

Then it is easy to see that for α ∈ G, the expression

|s/r|mp(α
r/s) = |s/r| d(αr/s)hp(α

r/s)
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is minimized for r/s = `, and for that value,

|1/`| d(α`)hp(α
`) = δ(α)hp(α).

We may then conclude that

m̃p(α) = inf
α=α

r1
1 ···α

rn
n

n∑
i=1

|ri|mp(αi) = inf
α=α1···αn

n∑
i=1

δ(αi)hp(αi) = δ̂hp(α)

which is the desired result. �

3.2. Explicit values. We will now compute the values of the norms m̃p on certain classes
of algebraic numbers.

Recall that a surd is an algebraic number α ∈ Q× such that αn ∈ Q× for some n ∈ N.
Call α ∈ G a surd if one (and therefore all) coset representatives of α are surds.

Proposition 3.7. If α ∈ G is a surd, then m̃p(α) = hp(α).

Proof. Observe that δ(α) = 1 for any surd. Since hp ≤ mp is a norm, we have by the
extremal property of m̃p that

hp(α) ≤ m̃p(α) ≤ mp(α) for all α ∈ G.
But then

m̃p(α) = δ̂hp(α) ≤ δ(α)hp(α) = hp(α),

and therefore we have equality. �

For a comparison of computations of m̃p on surds with the p-metric Mahler measures,
see [6, 13].

We now consider a class of numbers analogous to the CPS numbers of [6].

Lemma 3.8. Suppose that α ∈ G satisfies m̂p(α
n) = n m̂p(α) for all n ∈ N. Then

m̃p(α) = m̂p(α).

Proof. Using Theorem 1 we may choose a factorization α = α1 · · ·αn so that

δ̂hp(α) =
n∑
i=1

δ(αi)hp(αi).

By Lemma 2.5 we have an exponent `i = `(αi) ∈ N such that α`i
i ∈ R for 1 ≤ i ≤ n. Let

k = lcm{`1, . . . , `n}. Then observe that

k · δ̂hp(α) =

n∑
i=1

δ(αk
i )hp(α

k
i ) =

n∑
i=1

d(αk
i )hp(α

k
i ) ≥ m̂p(α

k) = k m̂p(α).

By the extremal property, δ̂hp(α) ≤ m̂p(α), so we must have equality, as claimed. �

Definition 3.9. Call τ ∈ G a Pisot/Salem number if it has a representative τ ∈ Q× that
can be written as τ = τ1 · · · τk where each τi > 1 is a Pisot number (that is, an algebraic
integer with all of its conjugates strictly inside the unit circle) or a Salem number (an
algebraic integer with all of its conjugates on or inside the unit circle, and at least one on
the unit circle).
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Proposition 3.10. Every Pisot/Salem number τ is representable, that is, τ ∈ R.

Proof. It is easy to see that for a Pisot/Salem number τ ∈ G and its given representative
τ > 1 that all other Galois conjugates τ ′ 6= τ have |τ ′| < |τ |. Therefore τ is torsion-free,

since otherwise there would be a conjugate τ ′ = ζτ for some 1 6= ζ ∈ Tor(Q×), having the
same modulus as τ , a contradiction. It follows by Lemma 2.5 that τ ∈ R. �

For a Pisot/Salem number τ ∈ G, it is shown in [6, Theorem 1(c)] that

m̂1(τ
n) = 2 log τn for all n ∈ N.

Thus, by Lemma 3.8 above, we have the following result:

Proposition 3.11. Let τ ∈ G be a Pisot/Salem number with given representative τ ∈ Q×.
Then

m̃1(τ ) = m̂1(τ ) = 2 log τ .

Since there exist Pisot and Salem numbers of arbitrarily large degree, and for a Pisot or
Salem number τ > 1 we have h1(τ) = (2/ deg τ) log τ , we easily see that the norms h1 and
m̃1 are inequivalent.

4. The infimum in the m̃1 norm

4.1. S-unit subspaces and quotient norms. Let K ∈ K be a number field with places
MK . Let S ⊂ MK be a finite set of places of K, including all archimedean places. Then
for any field L, let

(4.1) VL,S = {α ∈ VL : ‖α‖w = 1 for w | v ∈MK \ S}.
Then VL,S is the Q-vector space span inside VL of the S′-units of L, where S′ is the set of
places w of L such that w | v ∈ S. Since we always require that S include the archimedean
places, VL,S will always include the vector space span of the units of L.

Dirichlet’s S-unit theorem and, in particular, the non-vanishing of the S-regulator, imply
the following result:

Proposition 4.1. If S ⊂ MK as above, then the Q-vector space VK,S and its completion

VK,S have finite dimension #S − 1. For L 6= K, the space VL,S has dimension #S′ − 1
where S′ is the set of places w of L such that w | v ∈ S.

In what follows below, we will primarily require S to be a set of rational primes, including
the infinite prime. Notice that under these definitions, if K ⊂ L, then VK,S ⊂ VL,S . One
of the goals of this section will be to determine the properties of the quotient norm of
VL,S/VK,S , in a manner inspired by the initial work of A.M. Bergé and J. Martinet [2, 3]
and in particular the more recent work of A.C. de la Maza and E. Friedman [11].

The main result of this section is the following theorem, which is essentially an analogue
for the norm m̃1 of the main result of [12] for the infimum of the metric Mahler measure:

Theorem 1. Let α ∈ VK , where K is Galois. Then there exists a finite set of rational
primes S, containing the archimedean place, such that

m̃1(α) =
∑
F⊆K

[F : Q] · h1(αF )
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where αF ∈ VF,S, α =
∏
F⊆K αF . Furthermore, for each pair of fields E ⊆ F ⊆ K,

h1(αF ) = inf
β∈VE,S

h1(αF /β).

In other words, the norm of each αF is equal to the quotient norm of αF with respect to
any subfield.

In contrast to the main result of [12], we are unable to prove that this infimum is in fact
attained in the vector space of classical algebraic numbers G, rather than the completion.
However, our result is strengthened by the fact that the S-unit spaces in which the infimum
is attained are finite dimensional real vector spaces. Therefore, if we must pass to the
completion, we know that the terms in the infimum are limits of the form limn→∞αrn

where α ∈ G and rn is a sequence of rational numbers tending to a real limit r as n→∞.
Before we can prove Theorem 1, we must first prove several quotient norm results very

much related to the results of [11], and then we will construct an S-unit projection which
will allow us to reduce to the specified situation. Let S ⊂ MK be a finite set of places
to be specified later, and consider two number fields K ⊂ L. Again let VK,S denote the
vector subspace of VK spanned by the S-units of K and let VL,S denote the corresponding
subspace of VL. Now for each v ∈ S let dv = [Kv : Qv] be the local degree. Rather than
following the usual convention and considering the places of L which lie above the places
S of K, we will consider the [L : K] absolute values which restrict to each place v (that
is, we will not consider equivalence on L nor weight such by local degrees). Thus we get
#S · [L : K] absolute values on L. Let us fix the α ∈ VL,S \ VK,S for which we want to
compute the quotient norm modulo VK,S . For a given v ∈ S, order the [L : K] absolute
values on L which extend ‖ · ‖v so that

‖α‖v,1 ≤ ‖α‖v,2 ≤ · · · ≤ ‖α‖v,[L:K].

Now we associate to α a vector a ∈ RS×[L:K] via

ϕ : VL,S → RS×[L:K]

α 7→ a = (dv log ‖α‖v,i)v∈S, 1≤i≤[L:K]

Note that by the product formula and our normalization above, the sum of the components
of a is zero. By the ordering above, we also have

av,i ≤ av,i+1

for all v ∈ S and 1 ≤ i < [L : K]. The goal of this section is to prove the following results
which will be needed below:

Theorem 4 (de la Maza, Friedman 2008). For α ∈ VL,S and the vector a = ϕ(α) ∈
RS×[L:K] with indices ordered as above,

inf
β∈VK,S

h1(αβ−1) =
1

[L : Q]

[L:K]∑
i=1

∣∣∣∣∑
v∈S

av,i

∣∣∣∣.
Equivalently,

‖α‖VL,S/VK,S =

[L:K]∑
i=1

∣∣∣∣∑
v∈S

av,i

∣∣∣∣,
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where we are loosely using the notation VL,S/VK,S for the quotient space of the vector spaces

ϕ(VK,S) ⊂ ϕ(VL,S) ⊂ RS×[L:K] endowed with the L1 norm.

Remark 4.2. When the authors of [11] claimed the infimum appearing in Theorem 4 occurs
in VK,S , they use in eqn. (2.19) that for a dense open subset of VL,S = VL,S ⊗ R (the real
span of the image of the logarithmic embedding) the components av,i for a given v may
be assumed distinct. However, this is not always true as the distinct places of L lying
above v might not be [L : K] in number (for example, if v is a finite place which ramifies
or has inertia). Thus we might always have a certain number of equalities amongst the
{av,i : 1 ≤ i ≤ [L : K]} for a given v. However, if we make the very minor modification

of working inside of RS×[L:K] rather than VL,S , then we have no such number theoretic
restrictions and may assume [L : K] distinct places for a given v. After adjusting for this,
the remainder of the proof in [11] carries through to show the slightly weaker result that
the infimum actually occurs in the completion VK,S .

We make a slight extension of another result of [11]:

Theorem 5. Let α ∈ VK have nonzero support at only the infinite places and one finite
place v of K. Let W denote the subspace of VK spanned by the units of K. Then there
exists β ∈W such that

h1(αβ−1) = inf
γ∈W

h1(αγ−1) =
1

[K : Q]

(
|dv log ‖α‖v|+

∣∣∣∣∑
w|∞

dw log ‖α‖w
∣∣∣∣).

We conclude with a new theorem that will be used to describe the infimum of m̃1:

Theorem 6. For a given α ∈ VL,S, there exists η ∈ VK,S such that the following conditions
all hold:

(1) h1(αη−1) = inf
β∈VK,S

h1(αβ−1), and

(2) h1(η) + [L : K]h1(αη−1) = inf
β∈VK,S

(
h1(β) + [L : K]h1(αβ−1)

)
.

We now provide the proofs for the above results.

Proof of Theorem 4. Notice that∑
v∈S

av,1 ≤
∑
v∈S

av,2 ≤ · · · ≤
∑
v∈S

av,[L:K].

Let k be an index such that ∑
v∈S

av,k ≤ 0 ≤
∑
v∈S

av,k+1

where we let k = 0 or k = [L : K] if
∑

v∈S av,1 ≥ 0 or
∑

v∈S av,[L:K] ≤ 0, respectively.
We will assume for the moment that 1 ≤ k < [L : K] and defer the proof for the extreme

cases for the moment. Let X denote the set of x ∈ ϕ(VK,S) ⊂ RS×[L:K] which satisfy the
conditions:

av,k ≤ xv ≤ av,k+1 for all v ∈ S
and ∑

v∈S
xv = 0,
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where we use xv to denote the common value of xv,i, which must be equal for all i since x
arises from VK,S . It is easy to see that X is nonempty as it contains, for example,

xv = av,k +
−sk

sk+1 − sk
(av,k+1 − av,k)

where si =
∑

v∈S av,i. Notice that

‖a− x‖1 =

[L:K]∑
i=1

∑
v∈S
|av,i − xv| =

∑
v∈S

( [L:K]∑
i=k+1

(av,i − xv)−
k∑
i=1

(av,i − xv)
)

=

[L:K]∑
i=1

∣∣∣∣∑
v∈S

av,i

∣∣∣∣− ([L : K]− 2k)
∑
v∈S

xv =

[L:K]∑
i=1

∣∣∣∣∑
v∈S

av,i

∣∣∣∣.
Since x = ϕ(η) for some η ∈ VK,S and [L : Q]h1(αη−1) = ‖a − x‖1, the result will be

proven if we can show that the above value is minimal for the function Fa : RS → R given
by y 7→ ‖a− y‖1 where we again view y as a vector in RS×[L:K] via yv,i = yv.

The function Fa is clearly convex. As remarked earlier, we must work inside of RS×[L:K]

in order to be assured of our vectors having distinct components. Observe that for any
ε > 0 we may find an a′ ∈ RS×[L:K] such that its components a′v,i for a given v are distinct

and further that ‖a−a′‖1 < ε. In order that the above computation remains unchanged for
‖a′−x‖1, we will construct a′ from a by adding sufficiently small εi < 0 to each component
av,i for 1 ≤ i ≤ k, and adding sufficiently small εi > 0 for k + 1 ≤ i ≤ [L : K] in such a
way that

∑
i εi = 0. We will determine the minimum of Fa′ and this will in turn tell us the

minimum of Fa. Let Y denote the subset of RS defined by

a′v,k < yv < a′v,k+1 for all v ∈ S,

and
∑

v∈S yv = 0. Observe that by our choice of a′, we have that X ⊂ Y . For our vector x
from above, observe that by the triangle inequality, we have

|‖x− a‖1 − ‖x− a′‖1| ≤ ‖a− a′‖1 < ε,

and hence

|Fa(x)− Fa′(x)| ≤ ‖a− a′‖1 < ε.

Thus, by allowing ε to approach 0 we see that in showing Fa(x) is the minimum value on
X, it suffices to show Fa′(x) is the minimum value on Y . Notice that Y is an open set of
RS and that our vector x lies in Y so it is nonempty. Notice further that by construction
of a′ the above computation at x works out still to give the same value for Fa′ at any
y ∈ Y . Therefore, as Fa′ is a convex function of RS which is constant on the open set Y ,
we conclude that Fa′ is minimal on Y , as any convex function which is constant on an open
set attains its minimum on that set, which completes the proof for all 1 ≤ k < [L : K].

For the remaining cases where k = 0 or k = [L : K] we make some trivial modifications

to our set X. For the case k = 0, we let X ⊂ ϕ(VK,S) ⊂ R[L:K]×S be given by

xv < av,1 for all v ∈ S
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and ∑
v∈S

xv = 0,

where we again use xv to denote the common value of xv,i. Now we demonstrate that X is
nonempty by constructing

xv = av,1 −
s1

#S
.

where si =
∑

v∈S av,i. In the case k = [L : K] likewise we take
∑

v∈S xv = 0 and

xv > av,[L:K] for all v ∈ S,

to define our set X and observe that we have a point given by

xv = av,[L:K] −
s[L:K]

#S

(noting that s[L:K] ≤ 0 in this case). The remainder of the proof continues exactly as
above. �

Proof of Theorem 5. This is in essence an application of the above theorem with W substi-
tuted as the subspace; the primary difference is that we wish to show that in this instance,
the infimum claimed is in fact attained in W , rather than W . Suppose without loss of
generality that dv log ‖α‖v < 0 so that av < 0 (for otherwise we may replace α by α−1 and
the height is unaffected). Then

s =
∑
w|∞

dw log ‖α‖w =
∑
w|∞

aw > 0.

Let X ⊂ ϕ(W ) ⊂ RS (where S = {w ∈MK : w | ∞} ∪ {v}) be the set of x satisfying

xv = 0, xw < aw, for all w | ∞,

and ∑
w|∞

xw = 0.

The set X is nonempty as it contains

xw = aw − s/n for all w | ∞,

where n = #{w ∈MK : w | ∞}. But then

‖a− x‖1 = |av|+
∑
w|∞

|aw − xw| = |av|+
∑
w|∞

(aw − xw) = |av|+
∣∣∣∣∑
w|∞

aw

∣∣∣∣,
and the claim will follow if we can show that this value is minimal, since [K : Q]h1(γ) =

‖ϕ(γ)‖1 for γ ∈ VK . But X is nonempty and is open as a subspace of the hyperplane ϕ(W ),

where the convex function F : ϕ(W ) → R given by y 7→ ‖a− y‖1 is constant, therefore, it

is the minimum of this function. Since we have an open subset of ϕ(W ) clearly we have a
β ∈W such that y = ϕ(β) ∈ X and the proof is complete. �
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Proof of Theorem 6. With notation as in Theorem 4, recall that we defined X to be the
set of all vectors x ∈ ϕ(VK,S) ⊂ RS×[L:K] satisfying:

av,k ≤ xv ≤ av,k+1 for all v ∈ S

and ∑
v∈S

xv = 0,

where we use xv to denote the common value of xv,i, which must be equal for all i since

x arises from VK,S . It was shown in Theorem 4 that for η ∈ ϕ−1(X) ⊂ VK,S , we have
the first condition that h1(αη−1) is minimized. Our goal will be to show that if we choose
η ∈ ϕ−1(X) of minimal height, then the remaining two conditions will be satisfied. Let us
determine then what the minimal height of x = ϕ(η) ∈ RS can be. For a real number t we
will denote t+ = max{t, 0} and t− = max{−t, 0}, so that t = t+ − t− and |t| = t+ + t−.
Assume for the moment that 1 ≤ k < [L : K] and let

(4.2) εv = a−v,k − x
−
v and ε′v = x+v − a+v,k.

Note that εv, ε
′
v ≥ 0 since av,k ≤ xv. It follows that we may write

(4.3) xv = av,k + εv + ε′v,

and

(4.4) |xv| = |av,k| − εv + ε′v.

To minimize ‖x‖1 we want to let
∑

v εv be as large as possible, and it is easy to see that
we must have 0 ≤ εv ≤ min{a−v,k, av,k+1 − av,k}. Observe that min{a−v,k, av,k+1 − av,k} =

a−v,k − a
−
v,k+1, for suppose the minimum is a−v,k. Then a−v,k+1 = 0, and

min{a−v,k, av,k+1 − av,k} = a−v,k = a−v,k − a
−
v,k+1.

Now, suppose min{a−v,k, av,k+1−av,k} = av,k+1−av,k. Then we must have av,k ≤ av,k+1 ≤ 0,

and so

min{a−v,k, av,k+1 − av,k} = av,k+1 − av,k = a−v,k − a
−
v,k+1.

Thus in general min{a−v,k, av,k+1 − av,k} = a−v,k − a
−
v,k+1. Define

C =
∑
v∈S

(
a−v,k − a

−
v,k+1

)
to be the largest possible value for

∑
v εv. Our proof will break into two cases. First, assume

that C ≥ −
∑

v av,k, and note that this condition is equivalent to

(4.5)
∑
v

a+v,k ≥
∑
v

a−v,k+1.

Recall that
∑

v av,k ≤ 0 and observe that this is equivalent to

(4.6)
∑
v

a+v,k ≤
∑
v

a−v,k.
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Then by equations (4.5) and (4.6) we may subtract from a−v,k a real number bv satisfying

(4.7) bv ≥ a−v,k+1 and
∑
v

bv =
∑
v

a+v,k,

and since av,k ≤ av,k+1 implies that a−v,k+1 ≤ a−v,k, the value bv may further be chosen to

satisfy a−v,k − bv ≥ 0 for each v. Thus, when C ≥ −
∑

v av,k, we define εv to be a−v,k − bv
and ε′v to be 0. It then follows that xv = av,k + εv ∈ [av,k, av,k+1] for each v and

∑
v xv =∑

v a
+
v,k −

∑
v bv = 0, giving us

‖x‖1 =
∑
v

|av,k| −
∑
v

εv =
∑
v

2a+v,k,

and ‖x‖1 is minimal since
∑

v εv is maximized. (Our choices of εv and ε′v agree with our
previous definitions (4.2), by observing that xv = av,k+εv = a+v,k−bv. Thus, if av,k = −a−v,k,
then xv = −bv ≤ 0, so that εv = a−v,k−x

−
v = xv − av,k, and from (4.3) we get ε′v = 0. While

if av,k = a+v,k, we have 0 ≤ bv ≤ a−v,k = 0, so that xv = a+v,k ≥ 0, implying ε′v = 0, and

εv = xv − av = a+v,k − a
+
v,k = 0 = a−v,k − x

−
v .)

Now for the second case, assume that C < −
∑

v av,k. Again, in order to minimize ‖x‖1
we want to let

∑
v εv be as large as possible; which by construction is equal to C. But we

require ∑
v

(εv + ε′v) = −
∑
v

av,k (≥ 0)

in order to have
∑

v xv = 0, so this implies that we will need ε′v, precisely such that∑
v

ε′v = −
∑
v

av,k −
∑
v

εv = −
∑
v

av,k − C.

Then clearly

‖x‖1 =
∑
v

|av,k| −
∑
v

εv +
∑
v

ε′v =
∑
v

|av,k| −
∑
v

av,k − 2C

=
∑
v

2a−v,k − 2
∑
v

(a−v,k − a
−
v,k+1) =

∑
v

2a−v,k+1.

So, by (4.5) we may express the minimal height of x in both cases as

‖x‖1 = max

{∑
v

2a+v,k,
∑
v

2a−v,k+1

}
.

Using such a minimal η = ϕ−1(x) ∈ VK,S we see that the first two claims are satisfied.
It remains to show that the third claim is true, specifically, that

h1(η) + [L : K]h1(αη−1) ≤ [L : K]h1(α).

Translated into the appropriate L1-norms, this claim is equivalent to:

‖x‖L1(RS) + ‖a− x‖L1(R[L:K]×S) ≤ ‖a‖L1(R[L:K]×S).
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Where in the term ‖a − x‖L1(R[L:K]×S) we view x as a vector in R[L:K]×S via xv,i = xv for

all i. Writing this expression out, we have

∑
v

|xv|+
[L:K]∑
i=1

∣∣∣∣∑
v

av,i

∣∣∣∣ ≤ [L:K]∑
i=1

∑
v

|av,i|,

equivalently, rearranging these terms,

(4.8) 2 max

{∑
v

a+v,k,
∑
v

a−v,k+1

}
≤ 2

∑
v

( k∑
i=1

a+v,i +

[L:K]∑
i=k+1

a−v,i

)
,

which is clearly true and completes the proof for the cases 1 ≤ k < [L : K]. For the
remaining cases, observe that for k = 0 we have xv < av,1 and thus it is easy to see that
our minimal height is ∑

v

|xv| =
∑
v

2a−v,1

and since the right hand side of (4.8) holds for k = 0, the inequality still holds. The
k = [L : K] case is similar, as av,[L:K] < xv implies our minimal height is∑

v

|xv| =
∑
v

2a+v,[L:K]. �

4.2. S-unit projections and proof of Theorem 1. Let K be a finite Galois extension of
Q with set of places MK . We normalize our absolute values by letting ‖ · ‖v be the absolute

value which extends |·|p for the rational prime p such that v|p, and let |·|v = ‖·‖[Kv :Qv ]/[K:Q]
v .

Denote by S a finite set of places to be fixed later which includes all of the archimedean
places. Let OK be the ring of algebraic integers of K and let US be the group of S-units
of K. Since S is finite and contains the archimedean places, we know by Dirichlet’s S-unit
theorem that US is a free abelian group of finite rank s = #S − 1. Recall that the class
group is the group of nonzero fractional ideals of K modulo principal ideals. It is well-
known that for number fields, the class group of a number field has a finite order, and we
will denote the order of the class group of K by h. It follows immediately that if for some
finite place v ∈MK the ideal

Pv = {α ∈ K : ‖α‖v < 1} ⊂ OK
is not principal, then

(4.9) Phv = (α) ⊂ OK
is a principal ideal of OK , since the class of Phv is trivial in the class group.

The goal of this section is to construct a projection PS : VK → VK,S , with VK,S defined
by equation (4.1), which will be instrumental in the proof of the main theorem. Let S
consist of the following places of K:

(1) The archimedean places of K.
(2) The support of α (all places where α has nontrivial valuation).
(3) The Galois conjugates of the above places under the natural action ‖ · ‖σv =
‖σ−1(·)‖v.
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It is clear that S is finite. We now proceed to associate a generator to each place outside
of S:

Lemma 4.3. Let K/Q be galois. For any v ∈MK \ S, we can find αv ∈ VK such that

(1) ‖αv‖v < 1,
(2) ‖αv‖w = 1 for all w ∈MK \ S with w 6= v, and
(3) ‖αv‖w ≥ 1 for all w ∈ S.
(4) h1(αv) = infβ∈VK,S h1(αv/β).

Proof. If Pv = {α ∈ K : ‖α‖v < 1} ⊂ OK is a principal ideal, then let β be a generator.

Otherwise, let Phv = (α) as in (4.9) and let β = α1/h ∈ VK . Clearly, β has a nontrivial

finite valuation only at v of ‖β‖v = p−1/e, where e is the ramification index of v | p. By
Theorem 5 above, we can find η ∈ VK,S such that

h1(βη) =
∑

w∈MK

| log |βη|w|

=
∑

w∈MK\S

| log |β|w|+
∑
w∈S
| log |βη|w|

= | log |β|v|+
∣∣∣∣∑
w∈S

log |βη|w
∣∣∣∣

= | log |β|v|+
∣∣∣∣∑
w∈S

log |β|w
∣∣∣∣,

where the last equality follows from the product formula for η. That we have equality in
the third step above implies that either log |βη|w ≥ 0 for all w ∈ S or log |βη|w ≤ 0 for all
w ∈ S. By our choice of β we have log |β|v < 0, and hence, by the product formula, all of
the S valuations of βη must be nonnegative. We therefore can choose αv = βη and we are
done. �

Let v ∈ MK and suppose v | p for the rational prime p. Let G = Gal(Q/Q) be the
absolute Galois group, and let

H = StabG(v)

be the decomposition group associated to the finite place v. Let α ∈ VK and take
{σ1, . . . , σk} to be a set of right coset representatives for StabH(α) in H (where k = [H :
StabH(α)]) and then define PH : VK → VK to be

PHα = (σ1(α) · · ·σk(α))1/k .

Then by Proposition 2.7, PH is a projection to VF ⊆ VK for F ⊆ K the fixed field of H, of
operator norm 1 with respect to the Weil p-height hp for 1 ≤ p ≤ ∞. We will now construct
a system of αv for each place v ∈MK \ S.

Lemma 4.4. There exists a set {αv ∈ VK : v ∈ MK \ S} such that each αv satisfies the
conditions of Lemma 4.3 above with the following additional property: for any w ∈ S and
σ ∈ G, if ‖αv‖w 6= ‖αv‖σw then σv 6= v.
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Proof. For each rational prime p which has a place in MK \ S lying above it, pick one
particular place v | p lying above it. Choose α′v to be the number constructed by Lemma
4.3 above, and let αv = PHα

′
v where H = StabG(v) is the stabilizer of the place v in

the absolute Galois group as above. Notice that by the fact that PH has norm 1 and by
minimality modulo VK,S of α′v in Lemma 4.3, h1(PHα

′
v) = h1(α

′
v). Since S is closed under

the Galois action, and H fixes the place v, αv still satisfies the criteria of Lemma 4.3. For
any other place w | p lying above the same rational prime p, observe that there exists σ ∈ G
with σv = w. Define αw = σ−1(αv), and repeat this construction for every rational prime
p whose extensions to K lie in MK \ S. This gives us the entire set of αv whose existence
we need to establish, and since the Galois action permutes the places v lying over p, the
αv thus constructed all meet the conditions of Lemma 4.3.

It now remains to see that this set has the additional property claimed. This is guaranteed
by the “averaging” over H done by PH in constructing the original αv whose orbit we took
in the above construction. Observe that if σ ∈ G fixes the v-adic valuation of αv, then
σ ∈ H. Let F ⊆ K denote the fixed field of H and view PH as the projection to VF . Then
αv ∈ VF is some power of an element of F×/Tor(F×), so by linearity, we have σαv = αv.
Thus we see that for such σ ∈ G, ‖σαv‖w = ‖αv‖σ−1w unless σv 6= v, in which case we
have the desired conclusion. �

Corollary 4.5. For v | p and αv in the set as constructed in Lemma 4.4, δ(αv) is precisely
the number of places of K which lie over p.

Proof. As seen in the proof, if σ(αv) 6= αv, then σv 6= v. While, if σ(αv) = αv, then
1 > ‖αv‖v = ‖σ(αv)‖v = ‖αv‖σ−1v, which gives σv = v. �

We are now ready to construct the projection PS : VK → VK,S which is fundamental to
the proof of Theorem 1.

Proposition 4.6. There exists a linear projection PS : VK → VK,S which satisfies the
following properties:

(1) h1(PSα) ≤ h1(α), so ‖PS‖ = 1 with respect to the Weil height norm, and
(2) δ(PSα) ≤ δ(α), and thus ‖PS‖ = 1 with respect to the Mahler norm.

Proof. For our given S, let {αv : v ∈ MK \ S} be the set constructed by Lemma 4.4. For
each v ∈MK \ S, define the map nv : VK → Q via the requirement that∥∥∥βα−nv(β)v

∥∥∥
v

= 1 for all β ∈ VK .

It is easy to see that such a value for nv must exist and be unique, since the v-adic valuations
are discrete.4 Further, observe that

nv(βγ) = nv(β) + nv(γ) for all β,γ ∈ VK .

4The reader will note that by our choice of αv, the function nv(·) is essentially the linear extension of
ordv(·) from K×/Tor(K×) to VK .
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Define the map

PS : VK → VK,S

α 7→ α ·
∏

v∈MK\S

αv
−nv(α).

That this is well-defined follows from the fact that nv(α) = 0 for all but finitely many v
and from the fact that by our choice of αv and nv(α), PSα has support only in S and thus
belongs to the Q-vector space span of the S-units VK,S . It follows easily from the definition
that PS(βrγs) = PS(β)rPS(γ)s, hence PS is linear.

We will now prove that PS satisfies the first desired property. Fix our α ∈ VK and let
β = PSα ∈ VK,S . Let T denote the Galois orbit of supp(α) \ S inside MK . The claim is
then that

h1(β) ≤ h1
(
β
∏
v∈T

αnv
v

)
= h1(α),

where we will suppress the argument in the exponents nv = nv(α). Denote S′ = MK \ S.
Then

(4.10) h1(β) =
∑
w∈S
|log |β|w|+

∑
w∈S′

|log |β|w| .

Now,
∑

w∈S′ |log |β|w| = 0, since β ∈ VK,S . We apply the triangle inequality to the remain-
ing term:

(4.11)
∑
w∈S
|log |β|w| ≤

∑
w∈S

∣∣∣∣∣log |β|w +
∑
v∈T

nv log |αv|w

∣∣∣∣∣+
∑
w∈S

∣∣∣∣∣∑
v∈T

nv log |αv|w

∣∣∣∣∣ .
Observe that by our choice of αv for v ∈ T in the lemmas above, we have |αv|w ≥ 1 for all
w ∈ S and |αv|w ≤ 1 for all w ∈ S′. Thus,∑

w∈S

∣∣∣∣∣∑
v∈T

nv log |αv|w

∣∣∣∣∣ ≤∑
w∈S

∑
v∈T
|nv| log |αv|w =

∑
w∈S′

∑
v∈T
|nv|(− log |αv|w),

where the last equality follows from the product formula. But |αv|w = 1 for all w ∈ S′ \{v}
and |αv|v < 1, so in fact,∑

w∈S

∣∣∣∣∣∑
v∈T

nv log |αv|w

∣∣∣∣∣ ≤ ∑
w∈S′

∣∣∣∣∣∑
v∈T

nv log |αv|w

∣∣∣∣∣ .
On observing that |β|w = 1 for all w ∈ S′, we may write this same expression as:

(4.12)
∑
w∈S

∣∣∣∣∣∑
v∈T

nv log |αv|w

∣∣∣∣∣ ≤ ∑
w∈S′

∣∣∣∣∣log |β|w +
∑
v∈T

nv log |αv|w

∣∣∣∣∣ .
Combining equations (4.10), (4.11), and (4.12), we find that

h1(β) ≤
∑

w∈MK

∣∣∣∣∣log |β|w +
∑
v∈T

nv log |αv|w

∣∣∣∣∣ = h1

(
β
∏
v∈T

αnv
v

)
,

which is the desired result.
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It now remains to prove the second claim, namely that

δ(β) ≤ δ
(
β
∏
v∈T

αnv
v

)
= δ(α).

Suppose for some σ ∈ G that β 6= σβ but σ(α) = α. Then for some w ∈ S, ‖β‖w 6= ‖β‖σw,
and so we must have ∥∥∥∥∏

v∈T
αnv
v

∥∥∥∥
w

6=
∥∥∥∥∏
v∈T

αnv
v

∥∥∥∥
σw

.

It follows then by Lemma 4.4 that for some v ∈ T we must have σv 6= v and nv 6= nσv, else
the w-adic valuation would not differ. But then it is easy to see that∥∥∥∥ ∏

u∈T
αnu
u

∥∥∥∥
v

= ‖αv‖nvv = p−nv/e 6= p−nσv/e = ‖ασv‖nσvσv =

∥∥∥∥ ∏
u∈T

αnu
u

∥∥∥∥
σv

,

where e is the ramification index of v | p. Thus any contribution the
∏
u∈T αnu

u term might
have towards decreasing the orbit of α = β

∏
v∈T αnv

v by equating two w-adic valuations of
α for w ∈ S will nevertheless result in distinct v-adic valuations for some v ∈ T and thus
the new orbit will be at least as large, proving the claim. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let α ∈ VK , where K is the Galois closure of the minimal field of α.
Let PK : G → VK be the projection to VK , S the set constructed above for K so that in
fact α ∈ VK,S , and PS : VK → VK,S the projection defined in Proposition 4.6, where VK,S
is the Q-vector space span of the S-units in K× modulo torsion. Notice that in fact, for
some set S′ ⊂MQ, we have⋃

v∈S
{w ∈MQ : w | v ∈MK} =

⋃
p∈S′
{w ∈MQ : w | p ∈MQ}

by the requirement that S be closed under the Galois action. S, as a set of places on K,
meets the criteria set forth in the theorem statement. Let P = PSPK : G → VK,S . By
Lemma 2.13 and Propositions 2.7 and 4.6, we have that δh1(Pβ) ≤ δh1(β) for all β ∈ G.
Since P is linear and α ∈ VK,S , note that α = Pα, so if we have a factorization of α into
αi ∈ G for i = 1, . . . , n, then

α = α1 · · ·αn =⇒ α = (Pα1) · · · (Pαn),

and Pαi ∈ VK,S for all i = 1, . . . , n. Then by our established inequalities for PK andPS
with respect to δh1,

n∑
i=1

δh1(Pαi) ≤
n∑
i=1

δh1(αi).

Hence we may take the infimum within VK,S . Associate to each term in the infimum its
minimal subspace VF,S ⊆ VK,S containing it for F ⊂ K. If we have more than one term for
any given minimal subspace VF,S , notice that the δ values are equal and we can combine
any such terms by the triangle inequality for h1. Thus, the first part of the claim is proven.
The remaining criterion easily follows from observing that the choice of αF can be made
in accord with Theorem 6. �
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[3] A.-M. Bergé, J. Martinet. Notions relatives de régulateurs et de hauteurs. (French) Acta Arith. 54
(1989), no. 2, 155–170.

[4] E. Dobrowolski. On a question of Lehmer and the number of irreducible factors of a polynomial.
Acta Arith. 34 (1979), no. 4, 391–401.

[5] A. Dubickas. Two exercises concerning the degree of the product of algebraic numbers. Publ. Inst.
Math. (Beograd) (N.S.) 77(91) (2005), 67–70.

[6] A. Dubickas, C.J. Smyth. On the metric Mahler measure. J. Number Theory 86 (2001), no. 2,
368–387.

[7] A. Dubickas, C.J. Smyth. On metric heights. Periodica Mathematica Hungarica Vol. 46 (2), 2003,
135–155.

[8] D.H. Lehmer. Factorization of certain cyclotomic functions. Ann. of Math. (2) 34 (1933), no. 3,
461–479.

[9] P. Fili, Z. Miner. Orthogonal decomposition of the space of algebraic numbers and Lehmer’s problem,
Preprint available at arXiv:0911.1975.

[10] P. Fili, C.L. Samuels. On the non-Archimedean metric Mahler measure. J. Number Theory 129
(2009), no. 7, 1698–1708.

[11] A.C. de la Maza, E. Friedman. Heights of algebraic numbers modulo multiplicative group actions. J.
Number Theory 128 (2008), no. 8, 2199–2213.

[12] C.L. Samuels. The infimum in the metric Mahler measure. Canad. Math. Bull., to appear.
[13] C.L. Samuels, J. Jankauskas. The t-metric Mahler measures of surds of rational numbers. Acta Math.

Hungar., to appear.
[14] J.D. Vaaler. Notes on Dobrowolski’s Theorem and Lehmer’s Conjecture. Course notes, 2007.
[15] K. Yosida. Functional analysis (Sixth edition). Grundlehren der Mathematischen Wissenschaften,

123. Springer-Verlag, Berlin-New York, 1980. xii+501 pp.

Department of Mathematics, University of Texas at Austin, TX 78712
E-mail address: pfili@math.utexas.edu

Department of Mathematics, University of Texas at Austin, TX 78712
E-mail address: zminer@math.utexas.edu

http://arxiv.org/abs/0911.1975

	1. Introduction
	1.1. Background
	1.2. Main results
	1.3. Applications to Lehmer's problem

	2. Preliminary Lemmas
	2.1. Subspaces associated to number fields
	2.2. Representability
	2.3. Projections to distinguished subspaces

	3. Extremal metric heights and norms
	3.1. Construction
	3.2. Explicit values

	4. The infimum in the m"0365m1 norm
	4.1. S-unit subspaces and quotient norms
	4.2. S-unit projections and proof of Theorem 1

	References

