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Abstract. We solve an energy minimization problem for local fields. As

an application of these results, we improve on lower bounds set by Bombieri
and Zannier for the limit infimum of the Weil height in fields of totally p-

adic numbers and generalizations thereof. In the case of fields with mixed

archimedean and non-archimedean splitting conditions, we are able to combine
our bounds with similar bounds at the archimedean places for totally real fields.

1. Introduction

1.1. Local energy minimization and equidistribution. Let L be a complete
field with respect to a nontrivial absolute value | · |. Given a Borel probability
measure ν on P1(L), define the energy integral

(1) I(ν) =

∫∫
P1(L)×P1(L)

− log δ(x, y) dν(x) dν(y),

where δ : P1(L)× P1(L)→ R is defined by

δ(x, y) =
|x0y1 − y0x1|

max{|x0|, |x1|}max{|y0|, |y1|}
for x = (x0 : x1) and y = (y0 : y1) in P1(L). The function δ : P1(L)×P1(L)→ R is
symmetric, nonnegative, continuous, and vanishes precisely along the diagonal ∆
of P1(L)×P1(L), and thus − log δ(x, y) is a reasonable choice for a potential kernel
on P1(L). In the non-archimedean case, δ(x, y) is the standard projective metric on
P1(L), and in both the non-archimedean and archimedean cases, − log δ(x, y) may
be viewed as a continuously varying family of Weil local height functions.

The first main result of this paper is the solution to the minimization problem
for the energy integral (1) in the case where the field L is locally compact but not
algebraically closed.

Theorem 1. Let L be a non-algebraically-closed (equivalently, non-complex) locally
compact field with respect to a nontrivial absolute value | · |, which is normalized to
coincide with the modulus of additive Haar measure on L.

(a) There exists a unique Borel probability measure µL on P1(L) such that
I(ν) ≥ I(µL) for all Borel probability measures ν on P1(L). If {νn} is a
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sequence of Borel probability measures on P1(L) with I(νn)→ I(µL), then
νn → µL weakly.

(b) In the real case, the measure µR of minimal energy is given explicitly by

µR(x) =
1

π2x
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣ dx
and the minimal energy is

I(µR) =
7ζ(3)

2π2
= 0.426278 . . .

where ζ(3) =
∑
n≥1 n

−3.

(c) In the non-archimedean case, the measure µL of minimal energy is the
unique PGL2(OL)-invariant Borel probability measure on P1(L), and the
minimal energy is

I(µL) =
q log q

q2 − 1

where q denotes the number of elements in the residue field of L.

Our inspiration for Theorem 1 comes from the solution in the algebraically closed
setting, which is due to M. Baker and R. Rumely. First, when L = C, the relevant
result is implicit in Rumely [10], and in a formulation closer to the one consid-
ered here in Baker-Rumely1 [3, §3.6]. The unique Borel probability measure µC
on P1(C) minimizing the energy integral (1) is the normalized Haar measure sup-
ported on the unit circle of C, and the minimal energy I(µC) is zero. Among other
things, Rumely’s result in [10] provides a new potential-theoretic proof of the Bilu
equidistribution theorem [4] on global points of small Weil height.

In [3] (and [2, §10.2]), Baker-Rumely also treat the case in which L is non-
archimedean and algebraically closed. In the non-archimedean setting, if L is alge-
braically closed it follows that P1(L) is not compact, which is problematic from the
point of view of minimizing the energy integral (1). Indeed, while it follows from
the nonnegativity of − log δ(x, y) in the non-archimedean setting that I(ν) ≥ 0 for
all Borel probability measures ν on P1(L), it may also be shown when L = Cp that
no case of equality exists, and one can find sequences {νn} of Borel probability
measures on P1(L), possessing no weak limit, but for which I(νn) → 0. Baker-
Rumely overcome this difficulty by passing from the ordinary projective line P1(L)
to the (compact) Berkovich projective line P1

Berk(L), and they show that the unique
Borel probability measure µL on P1

Berk(L) of minimal energy is the Dirac measure
supported at the Gauss point ζ of P1

Berk(L).
Strictly speaking, Theorem 1 holds vacuously for measures ν charging any single

point of P1(L), because any such measure has energy I(ν) = +∞, and thus the
hypothesis I(νn) → I(µL) cannot be satisfied along sequences of such measures.
However, with some care it is possible to obtain a nontrivial discrete analogue of
Theorem 1 as a corollary. Given a finite subset Z of P1(L) with |Z| = N , define

1In fact, the results of Baker-Rumely hold, in both the complex and non-archimedean cases, for

a much more general class of potential kernels arising from the study of the dynamics of rational
maps on P1. For our purposes it is enough to confine our discussion of their results to this special

case.
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the energy sum (or discrepancy) of the set Z by

D(Z) =
1

N(N − 1)

∑
α,β∈Z
α6=β

− log δ(α, β).

Corollary 2. Let L be a non-algebraically-closed (equivalently, non-complex) lo-
cally compact field with respect to a nontrivial absolute value | · |. If {Zn} is a
sequence of finite subsets of P1(L) with |Zn| → ∞, then

(2) lim inf
n→∞

D(Zn) ≥ I(µL).

Moreover, if D(Zn) → I(µL), then the sequence {Zn} is µL-equidistributed in the
sense that [Zn]→ µL weakly, where [Zn] denotes the unit Borel measure on P1(L)
supported equally on the points of Zn.

1.2. Global height bounds. The most obvious difference between the locally
compact, non-complex setting of Theorem 1 and Corollary 2, and the results of
Baker-Rumely in the algebraically closed case, is that the minimal energies are
positive in the former case, and zero in the latter. The second main result of this
paper makes use of this positivity to obtain lower bounds on the usual absolute
Weil height h : K̄ → R for algebraic numbers over a number field K satisfying
certain splitting conditions. This connection is made possible by the dual role of
the function − log δ(x, y) as the potential kernel for the energy integral (1) on the
one hand, and as a continuously varying family of Weil local height functions on
the other hand.

The following theorem illustrates our main global result in the simplest special
case of algebraic numbers over Q with mixed splitting conditions. Denote by MQ =

{∞, 2, 3, 5, . . . } the set of places of Q. An algebraic number α ∈ Q is said to be
totally real (resp. totally p-adic) if its minimal polynomial over Q splits completely
over R (resp. Qp).

Theorem 3. Let S be a nonempty subset of MQ, and let LS be the subfield of Q
consisting of all those α ∈ Q such that α is totally p-adic for all primes p ∈ S, and
α is totally real if ∞ ∈ S. Then

(3) lim inf
α∈LS

h(α) ≥


1

2

∑
p∈S

p log p

p2 − 1
if ∞ 6∈ S

1

2

∑
p∈S
p-∞

p log p

p2 − 1
+

7ζ(3)

4π2
if ∞ ∈ S

In all cases except S = {∞}, the lower bound in Theorem 3 is the best currently
known. Our result was inspired in part by work of Bombieri-Zannier [5], who
used an elementary counting argument to study the distribution of the Gal(Q/Q)-
conjugates of α in the residue classes modulo primes lying above p. They treat only
the case ∞ /∈ S, and in the same setting as Theorem 3 their bound is

lim inf
α∈LS

h(α) ≥ 1

2

∑
p∈S

log p

p+ 1
,

which is slightly worse than Theorem 3. While very similar in spirit to the approach
of Bombieri-Zannier, our potential-theoretic approach allows us to treat the real
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place on equal footing with the non-archimedean places as well as leading to an
improvement in the bound at each finite prime p ∈ S.

In the case S = {∞}, it was shown by Schinzel that

h(α) ≥ 1

2
log

(
1 +
√

5

2

)
= 0.24061...

whenever α ∈ Q \ {0,±1} is totally real, and this bound is better than then right-
hand-side of (3), which is 7ζ(3)/4π2 = 0.21314....

While our archimedean result is weaker than this global bound, it has the ad-
vantage that it can be used in conjunction with similar restrictions on splitting at
the non-archimedean primes, and thus we can achieve bounds in the cases of mixed
archimedean and non-archimedean splitting conditions. This is illustrated in the
following example.

Example. Let S = {2,∞}, so that in the notation of the theorem, LS is the field of
all numbers which are both totally 2-adic and totally real. Then Theorem 3 implies
that

lim inf
α∈LS

h(α) ≥ 1

2
· 2 log 2

22 − 1
+

7ζ(3)

4π2
= 0.231049 . . .+ 0.213139 . . . = 0.444188 . . .

In contrast, if we had applied the Bombieri-Zannier bound separately at p = 2, we
could say that

lim inf
α∈LS

h(α) ≥ 1

2
· log 2

2 + 1
= 0.115525 . . .

and if we had applied the bound of Schinzel for totally real numbers, we could say
that

lim inf
α∈LS

h(α) ≥ 1

2
log

(
1 +
√

5

2

)
= 0.24061...

We note that a similar potential-theoretic approach was taken by the first author
in [6] to analyze the case of totally p-adic algebraic integers, arriving at the bound
of

lim inf
α∈OLS

h(α) ≥ 1

2

∑
p∈S

log p

p− 1
,

where OLS denotes the ring of algebraic integers of LS .
Theorem 3 and Corollary 2 together imply the following global equidistribution

result:

Corollary 4. Let S be a nonempty subset of MQ, and let LS be the subfield of Q
consisting of all those α ∈ Q such that α is totally p-adic for all primes p ∈ S, and
α is totally real if ∞ ∈ S. If αn ∈ LS is a sequence such that

lim
n→∞

h(αn) =
1

2

∑
p∈S
p-∞

p log p

p2 − 1
+
∑
p∈S
p|∞

7ζ(3)

4π2
,

then for each p ∈ S, the probability measures [αn] supported equally on each Galois
conjugates of αn converge weakly to the measure µQp .

Essentially, this result states that if such a sequence exists, then the p-adic
conjugates of each αn must equidistribute along P1(Qp) for each p ∈ S according
the measure determined in Theorem 1. We note that as a coarse but interesting
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corollary of this result, the conjugates of each αn must also distribute uniformly
amongst the residue classes of P1(Fp) for each p ∈ S. It is worth observing that
if S = {∞}, then the above theorem is vacuous, as by Schinzel’s result the lower
bound is not attained. In all other cases, however, it is unknown if the lower bound
on the height is achieved. We remark that the bound in Theorem 3 is of the correct
order of magnitude, as it follows from a more general result in [6, Theorem 2] that,
for S which do not include ∞, we have

lim inf
α∈LS

h(α) ≤
∑
p∈S

log p

p− 1
.

2. Local energy minimization and equidistribution

2.1. Archimedean preliminaries. In this section we will prove the basic poten-
tial theoretic results for the − log δ(x, y) kernel in the case where L is archimedean
and non-complex, that is, when L = R. As it makes no difference in our proofs, we
will prove these results for arbitrary closed subsets of P1(C). Let |·| be the usual
absolute value on C, and for a Borel probability measure µ on P1(C), define the
energy to be

(4) I(µ) =

∫∫
P1(C)2

− log δ(x, y) dµ(x) dµ(y).

When µ is supported on L = R, this is the same energy integral defined in (1). We
can associate a potential function to µ by:

(5) pµ(x) =

∫
P1(C)

− log δ(x, y) dµ(y).

Notice that − log 2 ≤ − log δ(x, y) ≤ ∞ for all x, y ∈ P1(C), so the energy I(µ)
always exists as a value in [− log 2,∞].

We will begin by proving the standard results of potential theory for the energy
kernel in this setting.

Theorem 5 (Maria’s theorem). Let µ be a Borel probability measure on P1(C) of
finite energy and let µ be supported on the closed set E ⊂ P1(C). If the potential
satisfies

pµ(x) ≤M <∞ for all x ∈ E,
then in fact

pµ(x) ≤M for all x ∈ P1(C).

Proof. Let U be the complement of E in the Riemann sphere. Then for y ∈ E,
it follows that − log δ(x, y) is a subharmonic function of x, since for x 6= ∞,
− log δ(x, y) = max{log |x|, 0} + max{log |y|, 0} + log|1/(x − y)| and log|f | is sub-
harmonic when f is holomorphic, and a sum or maximum of subharmonic functions
is again subharmonic, and when x =∞, we simply note that in a neighborhood of
∞ we have − log δ(x, y) = max{log |y|, 0} + log|x/(x − y)| so this is again subhar-
monic. It follows by [9, Theorem 2.4.8] that pµ(x) is then subharmonic on U , and
so Maria’s theorem follows from the maximum principle for subharmonic functions
[9, Theorem 2.3.1]. �

Before stating Frostman’s theorem, we recall that a set F is called polar if it
has logarithmic capacity 0, or equivalently, if every Borel probability measure ν
supported on F has infinite energy with respect to the usual logarithmic kernel.
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It is easy to see that the collection of polar sets in C is the same for the energy
with respect to the usual logarithmic kernel − log|x− y| as they are for the energy
defined above.

Theorem 6 (Frostman’s theorem). Let E be a closed subset of P1(C), and assume
that there exists some Borel probability measure supported on E with finite energy.
Then there exists a unique Borel probability measure µ on E such that

I(µ) = inf
ν

supp(ν)⊆E
I(ν) <∞,

where the infimum is taken over all Borel probability measures supported on E. We
call this measure µ the equilibrium measure of E and we call V = V (E) = I(µ) be
the Robin constant of E. Further, the associated potential pµ satisfies

pµ(x) ≤ I(µ) for all x ∈ P1(C)

and pµ(x) = I(µ) for all x ∈ E \ F , where F is a polar subset of E.

Proof. This result follows from Theorem 1.1 of [11] with the choice of weight w(z) =
1/max{|z|, 1}. �

Theorem 7. Let E ⊂ P1(C) be a closed set of finite energy. Let µ be the equilibrium
measure of E and let V = I(µ) be the Robin constant. Then for any Borel probability
measure ν supported on E,

inf
x∈E

pν(x) ≤ V ≤ sup
x∈E

pν(x).

Proof. Our proof largely follows [13, Theorem III.15]. Since − log δ(x, y) ≥ − log 2
on P1(C) and µ, ν are probability measures, it follows from Tonelli’s theorem that∫

E

pν(x) dµ(x) =

∫
E

pµ(x) dν(x).

Since pµ(x) ≤ V everywhere, it follows that∫
E

pν(x) dµ(x) ≤ V

hence infx∈E pν(x) ≤ V . In other direction, we may as well assume that that
pν(x) < ∞, and from the usual maximum principle argument it follows that
I(ν) < ∞. It then follows from the proof of [13, Theorem III.7], the only change
being replacing the potential kernel with the − log δ(x, y), that ν cannot assign any
positive mass to a set of capacity zero. Therefore, since pµ(x) = V for all x ∈ E
except possibly on a set of capacity zero, it follows that∫

E

pµ(x) dν(x) = V,

and hence we can conclude that supx∈E pν(x) ≥ V . �

From the the uniqueness of the equilibrium measure and the above theorem we
immediately gain the following result:

Corollary 8. If ν is a Borel probability measure supported on a closed set E ⊂
P1(C) and pν(x) = C for all x ∈ E \ F , where F is a polar subset, then ν is the
equilibrium measure of E and V (E) = C.
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2.2. The minimal energy. In this section we will prove Theorem 1 and Corol-
lary 2.

Proof of Theorem 1 (a). For this part of the problem, we only assume L is local and
non-complex, as our proof will work in both the archimedean and non-archimedean
settings. First, we may suppose that

V (L) = inf
ν
I(ν) <∞

where the infimum is taken over Borel probability measures supported on P1(L), as
we will construct measures of finite energy in (b) and (c). In the non-archimedean
setting, notice that δ(x, y) as defined above in fact coincides with the Hsia kernel
on P1

Berk(F ) × P1
Berk(F ) with respect to the basepoint given by the Gauss point

ζ = ζ0,1. The existence and uniqueness of the minimal measure is then nothing
more than Frostman’s theorem, which in the non-archimedean setting is proven
in [2, Theorem 6.18, Corollary 7.21] for the potential with respect to the Gauss
point ζ of F , noting that P1(L) is a compact subset of P1

Berk(F ) \ {ζ}, and in the
archimedean setting follows from Theorem 6.

Now suppose we have a sequence Borel probability measures {νn} supported on
P1(L) such that

I(νn)→ V (L).

We will show that νn → µL weakly by demonstrating that every subsequence has
a further subsequence which converges weakly to µL. Given any subsequence of
νn, we can assume by passing to a further subsequence νnk that the sequence
converges weakly to some Borel probability measure ν on P1(L), since the space of
such measures is weak-* compact. Since − log δ(x, y) is lower semicontinuous and
bounded below, it follows by the same argument as in [2, Proposition 6.6] that

I(ν) = lim
k→∞

I(νnk) = V (L).

The uniqueness of the equilibrium measure from Frostman’s theorem then implies
that ν = µL, proving the claim. �

Proof of Theorem 1 (b). Let us start by proving that µ = µR as defined by

dµ(x) =
1

π2x
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣ dx
is in fact a Borel probability measure on P1(R). It is absolutely continuous with
respect to the Lebesgue measure of R with nonnegative derivative so it suffices to
show that it has total mass 1. We compute, taking advantage of the fact that the
integrand is even and invariant under the change of variables x 7→ 1/x,∫ ∞

−∞
dµ(x) = 4

∫ 1

0

1

π2x
log

1 + x

1− x
dx

=
8

π2

∫ 1

0

1

x

∞∑
n=1

x2n−1

2n− 1
dx

=
8

π2

∞∑
n=1

1

(2n− 1)2
= 1.
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By the above Corollary 8, it suffices to show that the associated potential pµ(x) is
finite and constant on P1(R)\F for a polar set F , and the result will follow. Recall
that the Hilbert transform (see [12, §III.1]) of f : R→ R is defined to be

f̃(x) =
1

π

∫
R

f(t)

x− t
dt

with the integral extended over the singularity by the principal value. As is well-
known, the Hilbert transform of a function in Lp(R) is also in Lp(R) for 1 < p <∞,

and
˜̃
f(x) = −f(x). Let f(x) = d

dx log+|x|, that is, f(x) = 0 for |x| < 1 and
f(x) = 1/x for |x| > 1, so f ∈ Lp(R) for 1 < p <∞. Then

f̃(x) =
1

π

(∫ −1
−∞

+

∫ ∞
1

)
1

t(x− t)
dt

=
1

π

(∫ −1
−∞

+

∫ ∞
1

)
1

x

(
1

t
+

1

x− t

)
dt

= − 1

πx
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣ .
It then follows from the property

˜̃
f(x) = −f(x) of the Hilbert transform that

− d

dx
log+|x| = −f(x) =

1

π

∫
R

1

x− t

(
− 1

πt
log

∣∣∣∣ t+ 1

t− 1

∣∣∣∣) dt,

and so

p′µ(x) =
1

π

∫
R

−1

x− t

(
1

πt
log

∣∣∣∣ t+ 1

t− 1

∣∣∣∣) dt+
d

dx
log+|x| = 0

as a function of real x, for x 6= ±1. A straightforward change of variables shows
that pµ(x) = pµ(1/x), so since pµ(x) is constant on (−1, 1), it must be constant on
P1(R) \ {−1, 1,∞}, and hence by Corollary 8 it must be the equilibrium measure,
as any finite set is polar.

We will now establish that

pµ(x) =
7ζ(3)

2π2
for all x ∈ R

by computing the required integral for pµ(x) at x = 0. We begin by expanding in
terms of series using − log x =

∑
m≥1(1−x)m/m and log 1+x

1−x =
∑
n≥0 2x2n+1/(2n+

1), both series valid for |x| < 1:

pµ(0) = 2

∫ 1

0

− log x

π2x
log

1 + x

1− x
dx

= 2

∫ 1

0

1

π2x

∞∑
n=0

∞∑
m=1

(1− x)m

m
· 2x2n+1

2n+ 1
dx

=
4

π2

∞∑
n=0

∞∑
m=1

m!(2n)!

m(m+ 2n+ 1)!(2n+ 1)

where we can interchange summation and integration as all terms are nonnegative,
and we have used the well-known identity for the beta function B(s, t) to evaluate
the Euler integral that arises:

B(s, t) =

∫ 1

0

xs−1(1− x)t−1 dx =
(s− 1)! (t− 1)!

(s+ t− 1)!
for s, t ∈ N.
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We continue our evaluation now by regrouping the terms and recognizing another
Euler integral:

pµ(0) =
4

π2

∞∑
n=0

∞∑
m=1

1

(2n+ 1)2
· (m− 1)!(2n+ 1)!

(m+ 2n+ 1)!

=
4

π2

∞∑
n=0

1

(2n+ 1)2

∞∑
m=1

∫ 1

0

xm−1(1− x)2n+1 dx

=
4

π2

∞∑
n=0

1

(2n+ 1)2

∫ 1

0

(1− x)2n dx

=
4

π2

∞∑
n=0

1

(2n+ 1)3
=

7ζ(3)

2π2

where we evaluated the final sum by noting that
∑
n≥1 1/(2n)3 = ζ(3)/8, so∑

n≥1 1/(2n+ 1)3 = 7ζ(3)/8.
Thus we have established that µ is the equilibrium measure and

I(µ) =

∫∫
P1(R)2

− log δ(x, y) dµ(x) dµ(y) =
7ζ(3)

2π2

is the minimal energy V (P1(R)). �

Proof of Theorem 1 (c). We now assume our field L is non-archimedean. As above
we assume that the absolute value |·| on L has been normalized to coincide with
the modulus of additive Haar measure on L. Let OL = {α ∈ L : |α| ≤ 1} denote
the ring of integers of L, π a uniformizing parameter, and q = |OL/πOL| be the
order of its residue field, which is finite since we assumed that L is locally compact.

First, observe that if f ∈ PGL2(OL), then it follows from the definition of the
projective metric that δ(f(x), f(y)) = δ(x, y) for all x, y ∈ P1(L). To see that µL
is PGL2(OL)-invariant, observe that for any f ∈ PGL2(OL) we have

I(f∗µL) =

∫∫
P1(L)×P1(L)

− log δ(x, y) d(f∗µL)(x) d(f∗µL)(y)

=

∫∫
P1(L)×P1(L)

− log δ(f(x), f(y)) dµL(x) dµL(y)

=

∫∫
P1(L)×P1(L)

− log δ(x, y) dµL(x) dµL(y) = I(µL).

By the uniqueness of the equilibrium measure, we conclude that f∗µL = µL and
therefore that µL is PGL2(OL)-invariant. To prove uniqueness of the invariant
measure, let µ be an arbitrary PGL2(OL)-invariant unit Borel measure on P1(L).
Given two points x, x′ ∈ P1(L), select f ∈ PGL2(OL) such that x′ = f−1(x), and
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we have

pµ(x′) =

∫
P1(L)

− log δ(f−1(x), y) dµ(y)

=

∫
P1(L)

− log δ(x, f(y)) dµ(y)

=

∫
P1(L)

− log δ(x, y) d(f∗µ)(y)

=

∫
P1(L)

− log δ(x, y) dµ(y) = pµ(x).

It follows that pµ(x) is constant and hence µ = µL.
To calculate the minimal energy, observe that our normalization means that our

uniformizing parameter π has absolute value |π| = 1/q. For each α ∈ P1(L) and r ≥
0, define the ball B(α, r) = {y ∈ P1(L) | δ(x, y) ≤ r}. Letting α1, . . . , αq ∈ OL be
coset represesentatives for the quotientOL/πOL, and letting αq+1 =∞, we obtain a

partition P1(L) = qq+1
j=1B(αj , 1/q) of the projective line into q + 1 balls B(αj , 1/q)

of the same µL-measure. Indeed, using the PGL2(OL)-invariance of µL, when
1 ≤ j ≤ q, B(αj , 1/q) is the image of B(0, 1/q) under x 7→ x + αj , and B(∞, 1/q)
is the image of B(0, 1/q) under x 7→ 1/x. It follows that µL(B(0, 1/q)) = 1

q+1 . For

each n ≥ 1, the ball B(0, 1/q) is a disjoint union of qn−1 balls of the form B(α, 1/qn)
for α ∈ B(0, 1/q), and as these balls are all translates of B(0, 1/qn) under maps
x 7→ x + α, they have equal measure 1

qn−1(q+1) . It follows that µL(B(0, 1/qn)) =
1

qn−1(q+1) and so

µL({y ∈ P1(L) | δ(0, y) = 1/qn}) = µL(B(0, 1/qn) \B(0, 1/qn+1))

=
1

qn−1(q + 1)
− 1

qn(q + 1)

=
q − 1

qn(q + 1)
.

Since the potential has constant value equal to the minimal energy on P1(L), we
can compute the energy by evaluating pµL at a convenient point:

I(µL) = pµL(0) =

∫
P1(L)

− log δ(0, y) dµL(y)

=
∑
n≥1

− log(1/qn)µL({y ∈ P1(L) | δ(0, y) = 1/qn})

=
(q − 1) log q

q + 1

∑
n≥1

n

qn

=
q log q

q2 − 1
. �

Proof of Corollary 2. Let {Znk} be a subsequence of {Zn} for which D(Znk) → `
for some ` ∈ R; we must show that ` ≥ I(µL). Passing to a further subsequence via
Prokhorov’s theorem, we may assume without loss of generality that the sequence
of measures {[Zn]} converges weakly to some unit Borel measure ν on P1(L). By [2,
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Lemma 7.54] it follows that ` ≥ I(ν), while I(ν) ≥ I(µL) follows from Theorem 1;
thus ` ≥ I(µL).

Assume now that D(Zn) → I(µL). In order to show that [Zn] → µL weakly, it
suffices to show that an arbitrary subsequence of {[Zn]} has a subsequence converg-
ing to µL. Let {[Znk ]} be an arbitrary subsequence. By Prokhorov’s theorem, there
is further subsequence {[Znkj ]} converging weakly to some unit Borel measure ν on

P1(L). Again using [2, Lemma 7.54], we have

I(ν) ≤ lim
j→∞

D(Znkj ) = I(µL),

which implies that I(ν) = I(µL) and thus that ν = µL by Theorem 1. �

3. Global height bounds

We will now state and prove a general lower bound on the the absolute Weil
height h : P1(K̄) → R, in which we work over an arbitrary number field K, and
we allow for arbitrary inertial and ramification degrees in our splitting at the non-
archimedean places. Theorem 3 is a special case of this result:

Theorem 9. Fix a number field K, a set of places S of K, and a choice of Galois
extension Lv/Kv for each v ∈ S, taking Lv = R if v | ∞. Let LS be the field of
all algebraic numbers for which all K-Galois conjugates lie in Lv for each v ∈ S.
Then

lim inf
α∈LS

h(α) ≥
∑
v∈S
v-∞

Nv
2
· qfvv log pv

ev(q
2fv
v − 1)

+
∑
v∈S
v|∞

Nv ·
7ζ(3)

4π2
,

where Nv = [Kv : Qv]/[K : Q], ζ(3) =
∑
n≥1 n

−3, and for v - ∞, ev = e(Lv/Kv)

and fv = f(Lv/Kv) denote the ramification and inertial degrees of Lv/Kv, respec-
tively, qv denotes the order of the residue field of Kv, and pv is rational prime above
which v lies.

Proof. First, let us note that if S is infinite, we can take a limit over increasing
finite subsets of S, and the general result will follow, so we may as well assume
that S is finite in our proof. We choose absolute values for each v of K, normalized
so that |·|v = ‖·‖Nvv where ‖·‖v extends the usual absolute of Q over which it lies
and Nv = [Kv : Qv]/[K : Q] as in the theorem statement. Note that if |·| is the
absolute value of Kv normalized to coincide with the additive Haar measure of Kv,

then |·| = |·|[K:Q]
v . With our choice of normalization, the absolute logarithmic Weil

height for α ∈ K is given by

h(α) =
∑
v∈MK

log+|α|v.

Let {αk}∞k=1 denote a sequence of algebraic numbers such that

lim
k→∞

h(αk) = lim inf
α∈L

h(α),

and let nk denote the number of K-Galois conjugates of αk, which we denote

α
(1)
k , . . . , α

(nk)
k . Since the αk have bounded height, it follows from Northcott’s

theorem that nk →∞ as k →∞. For a place v of K and for a finite set of points
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Z ⊂ P1(Kv) with size N , let us define the local discrepancy of αk to be the quantity

Dv(αk) =
1

nk(nk − 1)

∑
1≤i6=j≤nk

− log δv(α
(i)
k , α

(j)
k ),

where as before δv is the spherical metric in the v-adic absolute value |·|v as nor-
malized above.

It follows from Corollary 2 applied to the local field Kv that we have

(6) lim inf
k→∞

Dv(αk) ≥


Nv ·

qfvv log pv

ev(q
2fv
v − 1)

if v -∞ and v ∈ S

Nv ·
7ζ(3)

2π2
if v | ∞ and v ∈ S

where again for non-archimedean v, pv denotes the rational prime over which v lies,
fv = f(Lv/Kv) and ev = e(Lv/Kv) denote the inertial and ramification degrees of
Lv/Kv. For v /∈ S, it follows from Mahler’s inequality ([8]; see also [1]) that

Dv(αk) ≥

−Nv ·
log nk
nk − 1

if v | ∞,

0 otherwise
,

and therefore that

(7) lim inf
k→∞

Dv(αk) ≥ 0 for all v /∈ S.

Now, by the product formula and our choice of normalizations,

h(αk) =
1

2

∑
v∈MK

Dv(αk),

so if we apply (6) and (7) in the above equation we obtain the desired result. �

Using this result, we are now in a position to prove Corollary 4. We note that this
corollary can trivially be generalized as in Theorem 9 above, however, for simplicity
of notation we will prove the simpler statement here.

Proof of Corollary 4. Using the notation of the previous proof above, we let Dp(αn)
denote the p-adic local discrepancy between the Galois conjugates of αn. It then
follows from our hypothesis, together with equations (7) and (6) from above, that
Dp(αn) → I(µQp) for each place p ∈ S. It now follows from Corollary 2 that
the probability measures [αn] supported equally on the Galois conjugates of αn
converge weakly to the measures µQp from Theorem 1. �
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