An equivariant basis for the cohomology of Springer fibers

Martha Precup and Edward Richmond*

Washington University in St. Louis Oklahoma State University*

March 19, 2022

Fix $n \in \mathbb{Z}_+$ and define the **flag variety**

$$\mathcal{B} := \{ V_{\bullet} = (V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n) \mid \dim(V_i) = i \}.$$

For any nilpotent matrix $X \in M_{n \times n}$, we define the **Springer fiber**:

$$\mathcal{B}_X := \{ V_{\bullet} \in \mathcal{B} \mid XV_i \subseteq V_i \; \forall i \}.$$

Theorem: Springer (1976)

There is an action of the permutation group $W := S_n$ on the cohomology ring $H^*(\mathcal{B}_X)$. Moreover,

- $H^{top}(\mathcal{B}_X)$ is an irreducible representation of W.
- Every irreducible representation of appears as $H^{top}(\mathcal{B}_X)$ for some X.

Springer correspondence:

{Nilpotent orbits in $M_{n \times n}$ } \Leftrightarrow {Irreducible W-representations}.

Question: Is there a nice combinatorial model for $H^*(\mathcal{B}_X)$?

Example:

If X = [0], then $\mathcal{B}_X = \mathcal{B}$ (full flag variety) and we have Borel's presentation:

$$H^*(\mathcal{B}) \simeq \mathbb{C}[x_1, \dots, x_n] / \langle e_1, \dots, e_n \rangle.$$
$$c_1(V_i/V_{i-1}) \mapsto -x_i.$$

Remarks:

given by

• Monomial basis:
$$H^*(\mathcal{B}) \simeq \bigoplus_{w \in W} \mathbb{C} \cdot \mathbf{x}^{inv(w)}$$
, where $\mathbf{x}^{inv(w)} := \prod_{(i,j) \in inv(w)} x_i$.

• The Springer action of W on $H^*(\mathcal{B})$ is permuting variables.

What about $H^*(\mathcal{B}_X)$ for other nilpotent elements?

Theorem: Spaltenstein (1976), Hotta-Springer (1977)

Let $i : \mathcal{B}_X \hookrightarrow \mathcal{B}$ denote inclusion. Then $i^* : H^*(\mathcal{B}) \to H^*(\mathcal{B}_X)$ is surjective.

Therefore

$$H^*(\mathcal{B}_X) \simeq \mathbb{C}[x_1, \dots, x_n]/\langle e_1, \dots, e_n, \ker i^* \rangle.$$

Remarks:

- The ideal, $\langle \ker i^* \rangle$, is generated by elementary symmetric functions determined by the Jordan type of X (De Concini-Procesi (1981), Tanisaki (1982)).
- The Springer action of W on $H^*(\mathcal{B}_X)$ is permuting variables.
- Monomial basis??

Row-strict tableaux:

Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_k)$ be a partition of n and let $RST(\lambda)$ denote the set of row-strict tableaux of shape λ (decreasing across columns).

Example: $\lambda = (3, 2, 2)$ and

	5	3	1
T =	4	2	
	7	6	

We say (i, j) is a **Springer inversion** of $T \in RST(\lambda)$ if there exists j' in row j such that i < j' and either

• j' appears above i and in the same column, or

(2) j' appears in a column strictly to the right of the column containing *i*.

Let inv(T) denote the set of Springer inversions of T. Example (con't):

 $\operatorname{inv}(T) = \{(2,1), (4,1), (4,3), (5,3)\}.$

Theorem: De Concini-Procesi (1981), Garsia-Procesi (1991)

Let X be of Jordan type λ . Then the cohomology ring

$$H^*(\mathcal{B}_X) \simeq \bigoplus_{T \in \mathtt{RST}(\lambda)} \mathbb{C} \cdot \mathbf{x}^T,$$

where
$$\mathbf{x}^T := \prod_{(i,j) \in \operatorname{inv}(T)} x_i$$
.

Example: $\lambda = (2, 2)$

Problem: Given $F \in \mathbb{C}[x_1, \ldots, x_n]$, compute the coefficients given by

$$i^*(F) = \sum_{T \in \mathtt{RST}(\lambda)} c_T \ \mathbf{x}^T$$

Solution: Use equivariant cohomology.

• Let T denote the standard torus acting on the flag variety \mathcal{B} .

• Let
$$S := Z(L)_0 \subseteq T$$
 (X is regular in the Levi L).

• The subtorus S acts on \mathcal{B}_X and we have a surjective map

$$H_T^*(\mathcal{B}) \twoheadrightarrow H_S^*(\mathcal{B}_X).$$

Presenting *S*-equivariant cohomology: Let $\mathfrak{s} \times \mathfrak{t}$ denote the Lie algebra of $S \times T$. Consider the reduced closed subvariety of $\mathfrak{s} \times \mathfrak{t}$,

$$Z_{\lambda} := \{ (h, wh) \mid h \in \mathfrak{s}, w \in W \}.$$

Theorem: Kumar-Procesi (2012), Abe-Horguchi (2016)

Let X be of Jordan type λ . Then the cohomology ring

$$H_S^*(\mathcal{B}_X) \simeq \mathbb{C}[Z_\lambda] = \mathbb{C}[y_1, \dots, y_k; x_1, \dots, x_n]/I(Z_\lambda).$$

• (Evaluation)
$$H^*(\mathcal{B}_X) \simeq \mathbb{C}[Z_\lambda]_{\mathbf{y}\equiv 0}.$$

• (Localization) Any $F(\mathbf{y}, \mathbf{x}) \in \mathbb{C}[Z_{\lambda}]$ is uniquely determined by the values

 $\{F(\mathbf{y}, w\mathbf{y}) \mid w \in W\}.$

Localization: Let $\lambda = (2, 2)$

$$\mathfrak{s} = \operatorname{diag}(y_1, y_1, y_2, y_2) \subseteq \operatorname{diag}(x_1, x_2, x_3, x_4) = \mathfrak{t}.$$

The action of W on $\mathbf{y} = (y_1, y_1, y_2, y_2)$ gives

 (y_1, y_2, y_1, y_2) (y_1, y_2, y_2, y_1) (y_1, y_1, y_2, y_2)

3	1	4	1	2	1	
4	2	3	2	4	3	

 (y_2, y_1, y_1, y_2) (y_2, y_1, y_2, y_1) (y_2, y_2, y_1, y_1)

3	2	4	2	4	3	
4	1	3	1	2	1	

Identify

$$\{w\mathbf{y} \mid w \in W\} \Leftrightarrow \{\mathbf{y}_T \mid T \in \mathtt{RST}(\lambda)\}.$$

Equivariant Springer monomials: For any $T \in RST(\lambda)$ define

$$P_T(\mathbf{y},\mathbf{x}) := \prod_{(i,j)\in \mathrm{inv}(T)} (x_i - y_j) \quad \text{ and } \quad p_{T,T'}(\mathbf{y}) := P_T(\mathbf{y},\mathbf{y}_{T'}).$$

Theorem: Precup-R. (2021)

The following are true:

• $A := [p_{T,T'}(\mathbf{y})]_{(T,T') \in \mathtt{RST}(\lambda)^2}$ is invertible (as a matrix over $Q(\mathbf{y})$).

• Let $F \in \mathbb{C}[x_1, \ldots, x_{n-1}]$ and write

$$i^*(F) = \sum_{T \in \mathtt{RST}(\lambda)} c_T \ \mathbf{x}^T.$$

Define vectors $\mathbf{f} := [F(\mathbf{y}_T)]_{T \in \mathtt{RST}(\lambda)}$ and $\mathbf{c} := [c_T]_{T \in \mathtt{RST}(\lambda)}$. Then

$$\mathbf{c} = (A^{-1} \cdot \mathbf{f})|_{\mathbf{y} \equiv 0}.$$

Monomials:

Let

$$\mathbf{x}^{\delta} = x_1^{\delta_1} \cdots x_{n-1}^{\delta_{n-1}} \qquad \text{and} \qquad \mathbf{x}^{\gamma} = x_1^{\gamma_1} \cdots x_{n-1}^{\gamma_{n-1}}.$$

We say $\mathbf{x}^{\delta} < \mathbf{x}^{\gamma}$ iff $\delta_i < \gamma_i$ where i denotes the smallest index where the compositions δ and γ differ.

Example: $x_1^2 x_2^3 x_3^2 < x_1^2 x_2^4$ since $\delta = (2, 3, 2)$ and $\gamma = (2, 4, 0)$.

Theorem: Precup-R. (2021)

Let $\mathbf{x}^{\delta} \in \mathbb{C}[x_1, \dots, x_{n-1}]$. Then

$$i^*(\mathbf{x}^{\delta}) = \sum_{\substack{T \in \mathtt{RST}(\lambda), \\ \mathbf{x}^{\delta} \leq \mathbf{x}^T}} c_T \ \mathbf{x}^T$$

for some coefficients $c_T \in \mathbb{Z}$. In other words, if $\mathbf{x}^T < \mathbf{x}^{\delta}$, then $c_T = 0$.

Schubert polynomials: Let $\mathfrak{S}_w(\mathbf{x})$ denote the Schubert polynomial corresponding to the permutation $w \in W$.

Problem: Find a subset $W(\lambda) \subseteq W$ such that

 $\{i^*(\mathfrak{S}_w(\mathbf{x})) \mid w \in W(\lambda)\}\$

is a basis of $H^*(\mathcal{B}_{\lambda})$.

Previously answered cases:

•
$$\lambda = (1, \dots, 1)$$
, then $W(\lambda) = W$.

•
$$\lambda = (n)$$
, then $W(\lambda) = \{e\}$.

- $\lambda = (n 1, 1)$ case due to Harada-Tymoczko (2017).
- $\lambda = (n 2, 2)$ case due to Dewitt-Harada (2012).

Methods use GKM theory and poset pinball.

Remark: $|W(\lambda)| = |RST(\lambda)|$.

Permutation associated to $T \in RST(\lambda)$:

Example: Let $\lambda = (3, 2, 2)$.

$$T = \begin{bmatrix} 5 & 3 & 1 \\ 4 & 2 \\ 7 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 3 & 1 \\ 4 & 2 \\ 7 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 6 & 5 & 4 & 7 \\ 7 & 6 \end{bmatrix} \rightarrow 1326547 =: w_T$$

Define

$$W(\lambda) := \{ w_T \mid T \in \mathtt{RST}(\lambda) \}.$$

Theorem: Precup-R. (2021)

The set

$$\{i^*(\mathfrak{S}_w(\mathbf{x})) \mid w \in W(\lambda)\}\$$

is a basis of $H^*(\mathcal{B}_{\lambda})$.