An equivariant basis for the cohomology of Springer fibers

Martha Precup and Edward Richmond*

Washington University in St. Louis
Oklahoma State University*
March 19, 2022

Fix $n \in \mathbb{Z}_{+}$and define the flag variety

$$
\mathcal{B}:=\left\{V_{\bullet}=\left(V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n}\right) \mid \operatorname{dim}\left(V_{i}\right)=i\right\} .
$$

For any nilpotent matrix $X \in M_{n \times n}$, we define the Springer fiber:

$$
\mathcal{B}_{X}:=\left\{V_{\bullet} \in \mathcal{B} \mid X V_{i} \subseteq V_{i} \forall i\right\} .
$$

Theorem: Springer (1976)

There is an action of the permutation group $W:=S_{n}$ on the cohomology ring $H^{*}\left(\mathcal{B}_{X}\right)$. Moreover,

- $H^{\text {top }}\left(\mathcal{B}_{X}\right)$ is an irreducible representation of W.
- Every irreducible representation of appears as $H^{\text {top }}\left(\mathcal{B}_{X}\right)$ for some X.

Springer correspondence:

\{Nilpotent orbits in $\left.M_{n \times n}\right\} \Leftrightarrow\{$ Irreducible W-representations $\}$.

Question: Is there a nice combinatorial model for $H^{*}\left(\mathcal{B}_{X}\right)$?

Example:

If $X=[0]$, then $\mathcal{B}_{X}=\mathcal{B}$ (full flag variety) and we have Borel's presentation:

$$
H^{*}(\mathcal{B}) \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left\langle e_{1}, \ldots, e_{n}\right\rangle
$$

given by $c_{1}\left(V_{i} / V_{i-1}\right) \mapsto-x_{i}$.

Remarks:

- Monomial basis: $H^{*}(\mathcal{B}) \simeq \bigoplus_{w \in W} \mathbb{C} \cdot \mathbf{x}^{\operatorname{inv}(w)}$, where $\mathbf{x}^{\operatorname{inv}(w)}:=\prod_{(i, j) \in \operatorname{inv}(w)} x_{i}$.
- The Springer action of W on $H^{*}(\mathcal{B})$ is permuting variables.

What about $H^{*}\left(\mathcal{B}_{X}\right)$ for other nilpotent elements?

Theorem: Spaltenstein (1976), Hotta-Springer (1977)

Let $i: \mathcal{B}_{X} \hookrightarrow \mathcal{B}$ denote inclusion. Then $i^{*}: H^{*}(\mathcal{B}) \rightarrow H^{*}\left(\mathcal{B}_{X}\right)$ is surjective.

Therefore

$$
H^{*}\left(\mathcal{B}_{X}\right) \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left\langle e_{1}, \ldots, e_{n}, \operatorname{ker} i^{*}\right\rangle
$$

Remarks:

- The ideal, $\left\langle\operatorname{ker} i^{*}\right\rangle$, is generated by elementary symmetric functions determined by the Jordan type of X (De Concini-Procesi (1981), Tanisaki (1982)).
- The Springer action of W on $H^{*}\left(\mathcal{B}_{X}\right)$ is permuting variables.
- Monomial basis??

Row-strict tableaux:

Let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k}\right)$ be a partition of n and let $\operatorname{RST}(\lambda)$ denote the set of row-strict tableaux of shape λ (decreasing across columns).

Example: $\lambda=(3,2,2)$ and

$$
T=
$$

We say (i, j) is a Springer inversion of $T \in \operatorname{RST}(\lambda)$ if there exists j^{\prime} in row j such that $i<j^{\prime}$ and either
(1) j^{\prime} appears above i and in the same column, or
(2) j^{\prime} appears in a column strictly to the right of the column containing i.

Let $\operatorname{inv}(T)$ denote the set of Springer inversions of T.
Example (con't):

$$
\operatorname{inv}(T)=\{(2,1),(4,1),(4,3),(5,3)\}
$$

Theorem: De Concini-Procesi (1981), Garsia-Procesi (1991)

Let X be of Jordan type λ. Then the cohomology ring

$$
H^{*}\left(\mathcal{B}_{X}\right) \simeq \bigoplus_{T \in \operatorname{RST}(\lambda)} \mathbb{C} \cdot \mathbf{x}^{T}
$$

where $\mathbf{x}^{T}:=\prod x_{i}$.
$(i, j) \in \operatorname{inv}(T)$

Example: $\lambda=(2,2)$

Problem: Given $F \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, compute the coefficients given by

$$
i^{*}(F)=\sum_{T \in \operatorname{RST}(\lambda)} c_{T} \mathbf{x}^{T}
$$

Solution: Use equivariant cohomology.

- Let T denote the standard torus acting on the flag variety \mathcal{B}.
- Let $S:=Z(L)_{0} \subseteq T(X$ is regular in the Levi $L)$.
- The subtorus S acts on \mathcal{B}_{X} and we have a surjective map

$$
H_{T}^{*}(\mathcal{B}) \rightarrow H_{S}^{*}\left(\mathcal{B}_{X}\right)
$$

Presenting S-equivariant cohomology: Let $\mathfrak{s} \times \mathfrak{t}$ denote the Lie algebra of $S \times T$. Consider the reduced closed subvariety of $\mathfrak{s} \times \mathfrak{t}$,

$$
Z_{\lambda}:=\{(h, w h) \mid h \in \mathfrak{s}, w \in W\} .
$$

Theorem: Kumar-Procesi (2012), Abe-Horguchi (2016)

Let X be of Jordan type λ. Then the cohomology ring

$$
H_{S}^{*}\left(\mathcal{B}_{X}\right) \simeq \mathbb{C}\left[Z_{\lambda}\right]=\mathbb{C}\left[y_{1}, \ldots, y_{k} ; x_{1}, \ldots, x_{n}\right] / I\left(Z_{\lambda}\right) .
$$

- (Evaluation) $H^{*}\left(\mathcal{B}_{X}\right) \simeq \mathbb{C}\left[Z_{\lambda}\right]_{y \equiv 0}$.
- (Localization) Any $F(\mathbf{y}, \mathbf{x}) \in \mathbb{C}\left[Z_{\lambda}\right]$ is uniquely determined by the values

$$
\{F(\mathbf{y}, w \mathbf{y}) \mid w \in W\} .
$$

Localization: Let $\lambda=(2,2)$

$$
\mathfrak{s}=\operatorname{diag}\left(y_{1}, y_{1}, y_{2}, y_{2}\right) \subseteq \operatorname{diag}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\mathfrak{t}
$$

The action of W on $\mathbf{y}=\left(y_{1}, y_{1}, y_{2}, y_{2}\right)$ gives

$$
\left(y_{1}, y_{2}, y_{1}, y_{2}\right) \quad\left(y_{1}, y_{2}, y_{2}, y_{1}\right) \quad\left(y_{1}, y_{1}, y_{2}, y_{2}\right)
$$

3	1
4	2

4	1
3	2

2	1
4	3

$$
\left(y_{2}, y_{1}, y_{1}, y_{2}\right) \quad\left(y_{2}, y_{1}, y_{2}, y_{1}\right) \quad\left(y_{2}, y_{2}, y_{1}, y_{1}\right)
$$

3	2
4	1

4	2
3	1

4	3
2	1

Identify

$$
\{w \mathbf{y} \mid w \in W\} \Leftrightarrow\left\{\mathbf{y}_{T} \mid T \in \operatorname{RST}(\lambda)\right\} .
$$

Equivariant Springer monomials: For any $T \in \operatorname{RST}(\lambda)$ define

$$
P_{T}(\mathbf{y}, \mathbf{x}):=\prod\left(x_{i}-y_{j}\right) \quad \text { and } \quad p_{T, T^{\prime}}(\mathbf{y}):=P_{T}\left(\mathbf{y}, \mathbf{y}_{T^{\prime}}\right)
$$

Theorem: Precup-R. (2021)

The following are true:

- $A:=\left[p_{T, T^{\prime}}(\mathbf{y})\right]_{\left(T, T^{\prime}\right) \in \operatorname{RST}(\lambda)^{2}}$ is invertible (as a matrix over $Q(\mathbf{y})$).
- Let $F \in \mathbb{C}\left[x_{1}, \ldots, x_{n-1}\right]$ and write

$$
i^{*}(F)=\sum_{T \in \operatorname{RST}(\lambda)} c_{T} \mathbf{x}^{T} .
$$

Define vectors $\mathbf{f}:=\left[F\left(\mathbf{y}_{T}\right)\right]_{T \in \operatorname{RST}(\lambda)}$ and $\mathbf{c}:=\left[c_{T}\right]_{T \in \operatorname{RST}(\lambda)}$. Then

$$
\mathbf{c}=\left.\left(A^{-1} \cdot \mathbf{f}\right)\right|_{\mathbf{y} \equiv 0} .
$$

Monomials:

Let

$$
\mathbf{x}^{\delta}=x_{1}^{\delta_{1}} \cdots x_{n-1}^{\delta_{n-1}} \quad \text { and } \quad \mathbf{x}^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n-1}^{\gamma_{n-1}}
$$

We say $\mathbf{x}^{\delta}<\mathbf{x}^{\gamma}$ iff $\delta_{i}<\gamma_{i}$ where i denotes the smallest index where the compositions δ and γ differ.

Example: $x_{1}^{2} x_{2}^{3} x_{3}^{2}<x_{1}^{2} x_{2}^{4}$ since $\delta=(2,3,2)$ and $\gamma=(2,4,0)$.

Theorem: Precup-R. (2021)

Let $\mathbf{x}^{\delta} \in \mathbb{C}\left[x_{1}, \ldots, x_{n-1}\right]$. Then

$$
i^{*}\left(\mathbf{x}^{\delta}\right)=\sum_{\substack{T \in \operatorname{RST}(\lambda), \mathbf{x}^{\delta} \leq \mathbf{x}^{T}}} c_{T} \mathbf{x}^{T}
$$

for some coefficients $c_{T} \in \mathbb{Z}$. In other words, if $\mathbf{x}^{T}<\mathbf{x}^{\delta}$, then $c_{T}=0$.

Schubert polynomials: Let $\mathfrak{S}_{w}(\mathbf{x})$ denote the Schubert polynomial corresponding to the permutation $w \in W$.

Problem: Find a subset $W(\lambda) \subseteq W$ such that

$$
\left\{i^{*}\left(\mathfrak{S}_{w}(\mathbf{x})\right) \mid w \in W(\lambda)\right\}
$$

is a basis of $H^{*}\left(\mathcal{B}_{\lambda}\right)$.

Previously answered cases:

- $\lambda=(1, \ldots, 1)$, then $W(\lambda)=W$.
- $\lambda=(n)$, then $W(\lambda)=\{e\}$.
- $\lambda=(n-1,1)$ case due to Harada-Tymoczko (2017).
- $\lambda=(n-2,2)$ case due to Dewitt-Harada (2012).

Methods use GKM theory and poset pinball.
Remark: $|W(\lambda)|=|\operatorname{RST}(\lambda)|$.

Permutation associated to $T \in \operatorname{RST}(\lambda)$:
Example: Let $\lambda=(3,2,2)$.

Define

$$
W(\lambda):=\left\{w_{T} \mid T \in \operatorname{RST}(\lambda)\right\} .
$$

Theorem: Precup-R. (2021)

The set

$$
\left\{i^{*}\left(\mathfrak{S}_{w}(\mathbf{x})\right) \mid w \in W(\lambda)\right\}
$$

is a basis of $H^{*}\left(\mathcal{B}_{\lambda}\right)$.

