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Tight fusion frames

A question from functional analysis

Definition: A sequence of N x N orthogonal projection matrices (P, ..., Pk) is
called a tight fusion frame if

P+ -+ Pg=aly

for some positive real number «.
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Tight fusion frames

A question from functional analysis

Definition: A sequence of N x N orthogonal projection matrices (P, ..., Pk) is
called a tight fusion frame if

P+ -+ Pg=aly

for some positive real number «.

Question: For which integer sequences L = (L, ..., Lk ) does there exist a tight
fusion frame (P, ..., Px) such that rank(P;) = L;?
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Tight fusion frames

Motivation: Sensor networks

Fusion frames are used to model sensor networks.

Sensors with limited range are placed through an area.
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Sensors with limited range are placed through an area.
Local receivers are placed to record and package data (F;).
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Sensors with limited range are placed through an area.
Local receivers are placed to record and package data (F;).
A main processing center then combines the data.
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Tight fusion frames
otivation: Sensor networks
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Sensors with limited range are placed through an area.
Local receivers are placed to record and package data (F;).
A main processing center then combines the data. (al, = P, + -+ Pk)
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Tight fusion frames

Motivation: Sensor networks

Fusion frames are used to model sensor networks.

Sensors with limited range are placed through an area.

Local receivers are placed to record and package data (F;).

A main processing center then combines the data. (al, = P, + -+ Pk)
The eigenvalue a measures the “redundancy” in the system.
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Tight fusion frames
Examples

Exl. N=3and L=(2,2,1,1)
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Tight fusion frames
Examples

Exl. N=3and L=(2,2,1,1)
1 0 1 0 0 0 0
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Ex2. N=3and L =(1,1,1,1)
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Tight fusion frames
Examples

Constructing tight fusion frames for the following sequences is not possible.
e N=5L=(2,1,1)
o N=5L=(52,1,1)
o N=5L=(3,3,2,1)
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Tight fusion frames
Examples

Constructing tight fusion frames for the following sequences is not possible.
e N=5L=(2,1,1)
o N=5L=(52,1,1)
o N=5L=(3,3,2,1)

Definition: Let TFF () denote the set of integer sequences for which
N-dimensional tight fusion frames exist.

By the examples, we have

(2,2,1,1),(1,1,1,1) € TFF(3) and (5,2,1,1) ¢ TFF(5).
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Tight fusion frames
A characterization in the uniform rank case

Suppose that L; = --- = L. We denote these sequences by (L).
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Tight fusion frames

A characterization in the uniform rank case

Suppose that L; = --- = L. We denote these sequences by (L).

Theorem: Casazza, Fickus, Mixon, Wang, Zhou (2010)

Suppose L divides N. Then

(LX) € TFF(N) ifand onlyif KL > N.
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Tight fusion frames

A characterization in the uniform rank case

Suppose that L; = --- = L. We denote these sequences by (L).

Theorem: Casazza, Fickus, Mixon, Wang, Zhou (2010)

Suppose L divides N. Then

(LX) € TFF(N) ifand onlyif KL > N.

Otherwise, suppose 2L < N. Then the following are true:
o If (LX) € TFF(N), then K > [#] +1.
o If K > [H7+2, then (LX) € TFF(N).
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Tight fusion frames

A characterization in the uniform rank case

Suppose that L; = --- = L. We denote these sequences by (L).

Theorem: Casazza, Fickus, Mixon, Wang, Zhou (2010)

Suppose L divides N. Then

(LX) € TFF(N) ifand onlyif KL > N.

Otherwise, suppose 2L < N. Then the following are true:
o If (LX) € TFF(N), then K > [#] +1.
o If K > [H7+2, then (LX) € TFF(N).

Moreover (Naimark and spatial duality),

(L¥) € TFF(N) ifand only if (L¥) ¢ TFF(LK — N)

(L¥) € TFF(N) ifand only if ((N — L)¥) € TFF(N).
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Littlewood-Richardson coefficients

Representations of G Ly (C)

Question: Can we characterize TFF sequences in general?
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Littlewood-Richardson coefficients

epresentations of GLy(C)

Question: Can we characterize TFF sequences in general?

Let G = GLN(C) and define the Littlewood-Richardson coefficients cj ,, as the
tensor product multiplicities

VoV, =@d, V.

m

where V) denotes the fd. irr. representation of G with highest weight A.
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Littlewood-Richardson coefficients

Representations of G Ly (C)

Question: Can we characterize TFF sequences in general?

Let G = GLN(C) and define the Littlewood-Richardson coefficients cj ,, as the
tensor product multiplicities

VoV, =@d, V.

m

where V) denotes the fd. irr. representation of G with highest weight A.

In general, for any collection of weights A!,--- A% i define the coefficients
X1 .\« by the tensor product

Vi @@ Vax = Pk x Vi
I
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Littlewood-Richardson coefficients
Statement of results for general sequences

Theorem: Bownik-Luoto-R

Let L=(L; >--- > Lg) where L; < N and let

The following are equivalent:

v
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Let L=(L; >--- > Lg) where L; < N and let

The following are equivalent:

@ The sequence L € TFF(N).

v

Bownik-Luoto-Richmond* (UBC) LR coefficients and TFFs May 19, 2012 9 /24



Littlewood-Richardson coefficients

Statement of results for general sequences

Theorem: Bownik-Luoto-R
Let L=(L; >--- > Lg) where L; < N and let

The following are equivalent:

@ The sequence L € TFF(N).

@ The Littlewood-Richardson coefficient

(™)
Ca) e (vime) 70

where (a®) denotes the rectangular partition (a, ..., a).
~———

v

Bownik-Luoto-Richmond* (UBC) LR coefficients and TFFs

May 19, 2012

9/ 24



Littlewood-Richardson coefficients
Applying the LR-rule for skew tableau

Consider N =5 and L = (2,2,2,2).

Goal: Fill the rectangle below with skew diagrams according to the “rules”.

111(1]|1]|1 1)11(1]1]|1
212(2(2|2 2(212]2|2

Rules: Each rectangle gives a skew diagram \/u where p is the partition
consisting of the union of previous rectangles.

(LR-skew tableau) In each skew diagram we have:
o Content across rows is weakly increasing.
o Content down columns is strictly increasing.

@ The content is a Yamanouchi word.
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Littlewood-Richardson coefficients
Applying the LR-rule for skew tableau

The existence of such tableaux implies that the Littlewood Richardson coefficient

(8%)
C(52),(52),(52),(52) 7 0

and hence (2,2,2,2) € TFF(5).
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Littlewood-Richardson coefficients
Applying the LR-rule for skew tableau

The existence of such tableaux implies that the Littlewood Richardson coefficient

(8%)
C(52),(52),(52),(52) 7 0
and hence (2,2,2,2) € TFF(5).

In fact, the number of such tableaux is equal to the corresponding LR coefficient.
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Littlewood-Richardson coefficients
More examples

(272’171) (2’ ]‘?]‘71) (1717 1’ 1)
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Littlewood-Richardson coefficients
More examples

W N | DN —
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Littlewood-Richardson coefficients
More examples

(3,2,2,2,1)
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Consequences and applications

Restrictions on tight fusion frames

Young tableaux can be used to prove non-existence of tight fusion frames as well.
Consider N =4 and (3,1,1,1).

1)1

Last column cannot be completed with remaining partitions.
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Consequences and applications

Restrictions on tight fusion frames

Young tableaux can be used to prove non-existence of tight fusion frames as well.
Consider N =4 and (3,1,1,1).

1

1

Last column cannot be completed with remaining partitions.
Consider N =5 and (3,3,2,1).

First two partitions are too large.
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Consequences and applications
Restrictions on tight fusion frames

Theorem: Bownik-Luoto-R

Let L= (Ly >--- > Lg) where L; < N and let M := Y% I,.

If L € TFF(N) and M < 2N, then

QL <M-N

Q Li+Ly<N

Q If 2M > 3N, then Ly + Ly + L3 < 2(M — N)
Q If 2M = 3N, then Ly + Ly + L3 < 3N/2

@ If2M < 3N, then L1 + Ly + L3 < N
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Consequences and applications
Restrictions on tight fusion frames

Theorem: Bownik-Luoto-R

Let L= (Ly >--- > Lg) where L; < N and let M := Y% I,.

If L € TFF(N) and M < 2N, then

QL <M-N

Q Li+L <N

@ If 2M > 3N, then Ly + Ly + L3 < 2(M — N)
@ If 2M = 3N, then Ly + Ly + L3 < 3N/2

Q If2M < 3N, then L1 + Lo+ L3 < N

Conversely, if Ly = --- = Lxg = 1 and Ly, Lo, L3 satisfy the conditions above,
then L € TFF(N).
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Consequences and applications

Dominance partial order on TFFs

Using Okada's theorem (1998) on multiplying rectangular Schur functions, one
can show that any integers a > b, we have the following Schur positive inequality:

ey, (v S Cwvant), (vos)-
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Consequences and applications
Dominance partial order on TFFs

Using Okada's theorem (1998) on multiplying rectangular Schur functions, one
can show that any integers a > b, we have the following Schur positive inequality:

ey, (v S Cwvant), (vos)-

Suppose that L= (Ly > Ly > --- > Lg) and L' = (L] > Ly > --- > L%.).
We say that L' = L if

K K k k
NLi=) L and > Li<) I
=1 =1 =1 =1

for all £k < K.
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Consequences and applications

Dominance partial order on TFFs

Using Okada's theorem (1998) on multiplying rectangular Schur functions, one
can show that any integers a > b, we have the following Schur positive inequality:

ey, (v S Cwvant), (vos)-

Suppose that L= (Ly > Ly > --- > Lg) and L' = (L] > Ly > --- > L%.).
We say that L' = L if

K

K k k
NLi=) L and > Li<) I
=1 =1 =1 =1

for all £k < K.

Corollary: Bownik-Luoto-R

If L' = L, then L’ € TFF(N) = L € TFF(N).
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Consequences and applications

Dominance partial order on TFFs

Consider (4,3,3,1,1) € TFF(7).
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Consequences and applications

Dominance partial order on TFFs

Consider (4,3,3,1,1) € TFF(7).

By the dominance order we have that

(43,2,2,1), (43,2,1,1,1), (43,1,1,1,1,1), (4,2,2,2.2), (4,2,2.2,1,1),
(4221,1,11), (42,1,1,1,1,1,1), (41,1,1,1,1,1,1,1), (3,3.3.2,1), (3,3,3,1,1,1),
(33,2,22), (33.2,2,1,1), (3,3,2,1,1,1,1), (3,3,1,1,1,1,1,1), (3,2,2.2,2,1),
(32:2,21,11), (3221,1,1,1,1), (3,21,1,1,1,1,1,1), (3,1,1,1,1,1,1,1,1,1),
(222.2,2,1), (2,2,22,1,1,1), (2,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1,1),
(2,1,1,1,1,1,1,1,1,1), (1,1,1,1,1,1,1,1,1,1,1)

are also elements of TFF(7).
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Consequences and applications

Dominance partial order on TFFs

For classification, it suffices to find only the maximal elements under = .
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Consequences and applications

Dominance partial order on TFFs

For classification, it suffices to find only the maximal elements under = .

N=T

« maximal elements

1 (7)

8/7 (1,1,1,1,1,1,1,1)

9/7 (2,2,2,1,1,1)
10/7 (3,3,1,1,1,1),(3,2,2,2,1)
11/7 (4,3,1,1,1,1),(4,2,2,2,1)
12/7 (5,2,2,1,1,1),(4,3,3,1,1),(3,3,3,3)
13/7 (6,1,1,1,1,1,1,1),(5,2,2,2,2),(4,3,3,3)

2 (7,7)
15/7 | (7,1,1,1,1,1,1,1),(6,2,2,2,2,1),(5,3,3,2,2), (4,4,4,3)
16/7 (7,2,2,2,1,1,1),(6,3,3,3,1),(5,4,4,2,1), (4,4,4,4)
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Consequences and applications
Identities between LR coefficients

In analysis, there are natural dualities between fusion frames. Let
L= (Ly, - ,Lg)andlet M =5 L,
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Consequences and applications
Identities between LR coefficients

In analysis, there are natural dualities between fusion frames. Let
L= (Ly, - ,Lg)andlet M =5 L,

Spatial duality

L € TFF(N) & (N — Ly,--- , N — Lg) € TFF(N)

Ex.
(4,2,2,1,1) € TFF(6) < (5,5,3,3,2) € TFF(6).

May 19, 2012 19 / 24
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Consequences and applications

Identities between LR coefficients

In analysis, there are natural dualities between fusion frames. Let
L= (Ly, - ,Lg)andlet M =5 L,

Spatial duality

L € TFF(N) & (N — Ly,--- , N — Lg) € TFF(N)

Ex.
(4,2,2,1,1) € TFF(6) < (5,5,3,3,2) € TFF(6).

Naimark duality

L € TFF(N) < L € TFF(M — N)

Ex.
(4,2,2,1,1) € TFF(6) & (4,2,2,1,1) € TFF(4).

May 19, 2012 19 / 24
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Consequences and applications

Identities between LR coefficients

Corollary: Combinatorial spatial and Naimark dualities

Let L= (L; > ---> Lgk) where Ly < N and let M := Zfil L;.

Then the LR coefficients satisfy:

(M™) (KN—M)N)
C(NLL), . (NEK) 70 C(NN-L1),. (NN-LK) #0

and
(M™) (M=)
ey, wex) 7 0 C_nymy . (r-wyix) 7 0
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Consequences and applications
Identities between LR coefficients

Theorem (BLR): Combinatorial spatial and Naimark dualities

Let L= (Ly >---> Lg) where Ly < N and let M := Zfil L;.

Then the LR coefficients satisfy:

(M™) _(KEN-M)Y)
CE),. (NEK) T C(NN=L1) (NN-LK)
d
an L) (M=)

(NLL),..o(NEx) T S(M=N)E),.. (M=N)Px)"

These numbers are equal.
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Consequences and applications
Identities between LR coefficients

Theorem (BLR): Combinatorial spatial and Naimark dualities

Let L= (Ly >---> Lg) where Ly < N and let M := Zfil L;.

Then the LR coefficients satisfy:

(M™) _(KEN-M)Y)
CE),. (NEK) T C(NN=L1) (NN-LK)
d
an L) (M=)

(NLL),..o(NEx) T S(M=N)E),.. (M=N)Px)"

These numbers are equal.
Proof: Construct a bijection between “unions” of LR-tableaux.
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Consequences and applications

Bijection for Naimark duality
Consider N =4, M =7 and L =(2,2,2,1).
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Consequences and applications

Bijection for Naimark duality

Consider N =4, M =7 and L =(2,2,2,1).

=
—
—

[
[
[}
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Consequences and applications

Bijection for Naimark duality
Consider N =4, M =7 and L =(2,2,2,1).

This is a tableaux for N =3 and L = (2,2,2,1).

EEE B EEE o
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Proof

Stepl: Find a connection with representation theory.
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Proof
Proof

Stepl: Find a connection with representation theory.

Theorem (Mumford-Fogarty-Kirwan '94, Knutson '99, Kylachko '98):

Let A, ..., A\ be weakly decreasing sequences of integers. Then the following
are equivalent:

@ There exist N x N hermitian matrices By, ..., Bx with spectra A',... AKX

such that
K
> B;=0.
i=1

@ There exists an integer p > 0 such that the G-invariant subspace

(V(pA") @ --- @ V(pAF))% £ 0.
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Proof
Proof

Stepl: Find a connection with representation theory.

Theorem (Mumford-Fogarty-Kirwan '94, Knutson '99, Kylachko '98):

Let A, ..., A\ be weakly decreasing sequences of integers. Then the following
are equivalent:

@ There exist N x N hermitian matrices By, ..., Bx with spectra A',... AKX

such that
K
> B;=0.
i=1

@ There exists an integer p > 0 such that the G-invariant subspace

(V(pA") @ --- @ V(pAF))% £ 0.

The proof of this theorem requires techniques in symplectic geometry and
geometric invariant theory.
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Proof

Step 2: Apply to TFFs. Suppose L = (L1, , Lx) € TFF(N).
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Step 2: Apply to TFFs. Suppose L = (L1, , Lx) € TFF(N).
Then there exists orthogonal projections matrices Py, ..., Pk such that

P+---+Pg—aly=0.
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Step 2: Apply to TFFs. Suppose L = (L1, , Lx) € TFF(N).
Then there exists orthogonal projections matrices Py, ..., Pk such that
P+ -+ Pg—aly=0.
Note that &« = M/N is rational and thus the matrices in the sum
NP, +---+ NPg — MIn =0.

have integral eigenvalues.
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P+ -+ Pg—aly=0.
Note that &« = M/N is rational and thus the matrices in the sum
NP, +---+ NPg — MIn =0.
have integral eigenvalues.

The previous theorem implies that there exists an integer p > 0 such that

(V(p(N)"™) @@ V(p(N) <) @ V(p(MY))") # 0.
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Step 2: Apply to TFFs. Suppose L = (L1, , Lx) € TFF(N).
Then there exists orthogonal projections matrices Py, ..., Pk such that
P+ -+ Pg—aly=0.
Note that &« = M/N is rational and thus the matrices in the sum
NP, +---+ NPg — MIn =0.

have integral eigenvalues.

The previous theorem implies that there exists an integer p > 0 such that

(V(p(N)"™) @@ V(p(N) <) @ V(p(MY))") # 0.

MN
Hence L= (Ly,-,Lx) € TFF(N) & QL) ue) >0,
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Step 3: Apply saturation.
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Step 3: Apply saturation.

Saturation theorem (Knutson-Tao 1999):

For any integer p > 0, the Littlewood-Richardson coefficients satisfy

w m
O, x>0 cg)\l,...,pAK > 0.
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Saturation theorem (Knutson-Tao 1999):

For any integer p > 0, the Littlewood-Richardson coefficients satisfy

w m
O, x>0 cg)\l,...,p)\K > 0.

The proof of saturation uses the honeycomb model.
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Step 3: Apply saturation.

Saturation theorem (Knutson-Tao 1999):

For any integer p > 0, the Littlewood-Richardson coefficients satisfy

w m
O, x>0 cg)\l,...,p)\K > 0.

The proof of saturation uses the honeycomb model.

Hence L = Ly, , L) € TEF(N) if and only if ¢z i) >0.
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