Littlewood Richardson coefficients for reflection groups

Arkady Berenstein and Edward Richmond*

University of British Columbia

Joint Mathematical Meetings Boston

January 7, 2012

2 Algebraic approach to Schubert Calculus

Statement of results

5 The Nil-Hecke ring

Preliminaries: Schubert Calculus of G/B

• Let G be a Kac-Moody group over $\mathbb C$ (or a simple Lie group).

Fix $T \subseteq B \subseteq G$ a maximal torus and Borel subgroup of G.

Let W := N(T)/T denote the Weyl group G.

• Let G/B be the flag variety (projective ind-variety).

• For any $w \in W$, we have the Schubert variety $X_w = \overline{BwB}/B \subseteq G/B$.

Denote the cohomology class of X_w by

$$\sigma_w \in H^{2\ell(w)}(G/B).$$

Additively, we have that
$$H^*(G/B) \simeq \bigoplus_{w \in W} \mathbb{Z} \, \sigma_w.$$

Goal (Schubert Calculus)

Compute the structure (Littlewood-Richardson) coefficients $c_{u,v}^w$ with respect to the Schubert basis defined by the product

$$\sigma_u \cdot \sigma_v = \sum_{w \in W} c_{u,v}^w \sigma_w.$$

- Note that if $\ell(w) \neq \ell(u) + \ell(v)$, then $c_{u,v}^w = 0$.
- For any $w, u, v \in W$, we have that $c_{u,v}^w \ge 0$. (proofs are geometric)

For example, if G is a finite Lie group, then the cardinality

$$|g_1X_u \cap g_2X_v \cap g_3X_{w_0w}| = c_{u,v}^w$$

for a generic choice of $g_1, g_2, g_3 \in G$.

Algebraic approach to Schubert calculus

Let A = A(G) denote the Cartan matrix of G.

Alternatively, fix a finite index set I and let $A=\{a_{ij}\}$ be an $I\times I$ matrix such that

- $a_{ii} = 2$
- $a_{ij} \in \mathbb{Z}_{\leq 0}$ if $i \neq j$
- $a_{ij} = 0 \iff a_{ji} = 0.$

The matrix A defines an action of a Coxeter group W generated by reflections $\{s_i\}_{i\in I}$ on the vector space $V := \operatorname{Span}_{\mathbb{C}}\{\alpha_i\}_{i\in I}$ given by

$$s_i(v) := v - \langle v, \alpha_i^{\vee} \rangle \alpha_i$$

where $\langle \alpha_i, \alpha_j^{\vee} \rangle := a_{ij}$.

In particular, Coxeter groups of this type are crystallographic.

Algebraic approach to Schubert calculus

If we abandon the group G, we can consider a matrix ${\cal A}$ as follows:

Fix a finite index set I and let $A = \{a_{ij}\}$ be an $I \times I$ matrix such that

- $a_{ii} = 2$
- $a_{ij} \in \mathbb{R}_{\leq 0}$ if $i \neq j$
- $a_{ij} = 0 \iff a_{ji} = 0.$

The matrix A defines an action of a Coxeter group W generated by reflections $\{s_i\}_{i\in I}$ on the vector space $V := \operatorname{Span}_{\mathbb{C}}\{\alpha_i\}_{i\in I}$ given by

$$s_i(v) := v - \langle v, \alpha_i^{\vee} \rangle \alpha_i$$

where $\langle \alpha_i, \alpha_j^{\vee} \rangle := a_{ij}$.

Every Coxeter group can be represented as above.

Some examples

•
$$G = SL(4)$$
 (type A_3)
 $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ and $W = S_4$ (symmetric group)

•
$$G = Sp(4)$$
 (type C_2)
 $A = \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix}$ and $W = I_2(4)$ (dihedral group of 8 elements)

•
$$G = \widehat{SL(2)}$$
 (affine type A)
 $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $W = I_2(\infty)$ (free dihedral group)

• Let
$$\rho = 2\cos(\pi/5)$$

 $A = \begin{bmatrix} 2 & -\rho \\ -\rho & 2 \end{bmatrix}$ and $W = I_2(5)$ (dihedral group of 10 elements)

Notation on sequences and subsets

• Any sequence $\mathbf{i}:=(i_1,\ldots,i_m)\in I^m$ has a corresponding element

$$s_{i_1} \cdots s_{i_m} \in W.$$

If $s_{i_1} \cdots s_{i_m}$ is a reduced word of some $w \in W$, then we say that $\mathbf{i} \in R(w)$, the collection of reduced words.

• For each $i \in I^m$ and subset $K = \{k_1 < k_2 < \dots < k_n\}$ of the interval $[m] := \{1, 2, \dots, m\}$ let the subsequence

$$\mathbf{i}_K := (i_{k_1}, \dots, i_{k_n}) \in I^n.$$

We say a sequence i is *admissible* if $i_j \neq i_{j+1}$ for all $j \in [m-1]$.

• Observe that any reduced sequence is admissible. (In general, the converse is false.)

Definition

Let m > 0 and let K, L be subsets of $[m] := \{1, 2, ..., m\}$ such that |K| + |L| = m. We say that a bijection

$$\phi: K \to [m] \setminus L$$

is *bounded* if $\phi(k) < k$ for each $k \in K$.

Definition

Given a reduced sequence $\mathbf{i} = (i_1, \dots, i_m) \in I^m$, we say that a bounded bijection

$$\phi: K \to [m] \setminus L$$

is i-admissible if the sequence \mathbf{i}_L and the sequences $\mathbf{i}_{L(k)}$ are admissible for all $k\in K$ where

$$L(k) := L \cup \phi(K_{\leq k}).$$

Recall that the Littlewood-Richardson coefficients $c_{u,v}^w$ are defined by the product

$$\sigma_u \cdot \sigma_v = \sum_{w \in W} c^w_{u,v} \ \sigma_w.$$

Theorem: Berenstein-R, 2010

Let $u,v,w\in W$ such that $\ell(w)=\ell(u)+\ell(v)$ and let $\mathbf{i}=(i_1,\ldots,i_m)\in R(w).$ Then

$$c_{u,v}^w = \sum p_\phi$$

where the summation is over all triples (\hat{u}, \hat{v}, ϕ) , where

•
$$\hat{u}, \hat{v} \subset [m]$$
 such that $\mathbf{i}_{\hat{u}} \in R(u)$, $\mathbf{i}_{\hat{v}} \in R(v)$.

- $\phi: \hat{u} \cap \hat{v} \rightarrow [m] \setminus (\hat{u} \cup \hat{v})$ is an i-admissible bounded bijection.
- The Theorem is still true without i-admissible.
- The Theorem generalizes to structure coefficients of T-equivariant cohomology $H^*_T(G/B)$.

Statement of results

Definition

For any $k \in [m]$ and $\mathbf{i} = (i_1, \dots, i_m)$, denote $\alpha_k := \alpha_{i_k}$ and $s_k := s_{i_k}$. For any bounded bijection

$$\phi: K \to [m] \setminus L$$

we define the monomial $p_{\phi} \in \mathbb{Z}$ by the formula

$$p_\phi := (-1)^{|K|} \prod_{k \in K} \langle w_k(\alpha_k), \alpha_{\phi(k)}^\vee \rangle \quad \text{where} \quad w_k := \prod_{\substack{r \in L(k) \\ \phi(k) < r < k}} s_r$$

where the product \prod is taken in the natural order induced by the sequence [m] and if the product is empty, we set $w_k = 1$. Also, if $K = \emptyset$, then $p_{\phi} = 1$.

Theorem: Berenstein-R, 2010

If the Cartan matrix $A = (a_{ij})$ satisfies

$$a_{ij} \cdot a_{ji} \ge 4 \qquad \forall \quad i \neq j,$$

then $p_{\phi} \geq 0$ when ϕ is an i-admissible bounded bijection.

Examples where $G = \widehat{SL}(2)$, $\mathbf{i} = (1, 2, 1, 2)$

$$A = \left[\begin{array}{cc} 2 & -2 \\ -2 & 2 \end{array} \right]$$

Compute $c_{u,v}^w$ where $w = s_1 s_2 s_1 s_2$, $u = v = s_1 s_2$.

• Find $\hat{u}, \hat{v} \subseteq [4] = \{1, 2, 3, 4\}$

 $1 2 \overline{3} \overline{4} \quad \underline{1} 2 \overline{3} \overline{4} \quad \underline{1} 2 \overline{3} \overline{4} \quad \underline{1} 2 \overline{3} \overline{4} \quad \overline{1} 2 3 \overline{4} \quad \overline{1} 2 3 \overline{4}$ $\overline{1} 2 3 \overline{4} \quad \overline{1} \overline{2} 3 4 \quad \overline{1} \overline{2} 3 4 \quad \overline{1} \overline{2} 3 4$

• For $1\ 2\ \overline{3}\ \overline{4}$, we have

 $\hat{u} \cap \hat{v} = \{3,4\} \quad \text{and} \quad [4] \setminus (\hat{u} \cup \hat{v}) = \{1,2\}$

with bounded bijections

$$\phi_1: (3,4) \to (1,2) \qquad \phi_2: (3,4) \to (2,1).$$

NOTE: ϕ_1 is not **i**-admissible.

Examples where $G = \widehat{SL}(2)$, $\mathbf{i} = (1, 2, 1, 2)$

• For $1 \ 2 \ \overline{\underline{3}} \ \overline{\underline{4}}$, we have bounded bijections

$$\phi_1: (3,4) \to (1,2) \qquad \phi_2: (3,4) \to (2,1).$$

$$p_{\phi_1} = \langle \alpha_3, \alpha_1^{\vee} \rangle \cdot \langle s_3(\alpha_4), \alpha_2^{\vee} \rangle \qquad p_{\phi_2} = \langle \alpha_3, \alpha_2^{\vee} \rangle \cdot \langle s_2 s_3(\alpha_4), \alpha_1^{\vee} \rangle$$

• Totaling over all bounded bijections, we have

$$c_{u,v}^{w} = \underbrace{\langle \alpha_{3}, \alpha_{1}^{\vee} \rangle \cdot \langle s_{3}(\alpha_{4}), \alpha_{2}^{\vee} \rangle}_{-\langle s_{3}(\alpha_{4}), \alpha_{2}^{\vee} \rangle - \langle s_{3}(\alpha_{4}), \alpha_{2}^{\vee} \rangle} + \langle \alpha_{3}, \alpha_{2}^{\vee} \rangle \cdot \langle s_{2}s_{3}(\alpha_{4}), \alpha_{1}^{\vee} \rangle$$

$$= -\cancel{4} + 4 + \cancel{2} + \cancel{2} + 1 + 1 = 6$$

With only i-admissible terms.

Examples where $G = \widehat{SL}(2)$, $\mathbf{i} = (1, 2, 1, 2, 1)$

Compute $c_{u,v}^w$ where $w = s_1 s_2 s_1 s_2 s_1$, $u = s_1 s_2 s_1$, $v = s_2 s_1$.

• Find $\hat{u}, \hat{v} \subseteq [5] = \{1, 2, 3, 4, 5\}$

 $1 \ 2 \ \overline{3} \ \overline{4} \ \overline{5} \quad \overline{1} \ 2 \ 3 \ \overline{4} \ \overline{5} \quad \overline{1} \ \overline{2} \ 3 \ \overline{4} \ \overline{5} \quad \overline{1} \ \overline{2} \ \overline{3} \ \overline{4} \ \overline{5} \quad 1 \ \underline{2} \ \overline{3} \ \overline{4} \ \overline{5} \quad \overline{1} \ \underline{2} \ 3 \ \overline{4} \ \overline{5}$

 $\overline{1}\; \overline{\underline{2}}\; 3\; 4\; \overline{\underline{5}} \quad \overline{1}\; \overline{\underline{2}}\; \overline{3}\; 4\; \underline{5} \quad 1\; \underline{2}\; \overline{\underline{3}}\; \overline{4}\; \overline{5} \quad \overline{1}\; \underline{2}\; \underline{3}\; \overline{4}\; \overline{5} \quad \overline{1}\; \underline{\underline{2}}\; \underline{3}\; 4\; \overline{5} \quad \overline{1}\; \overline{\underline{2}}\; \underline{3}\; 4\; \overline{5} \quad \overline{1}\; \overline{\underline{2}}\; \overline{\underline{3}}\; 4\; \overline{5} \quad \overline{1}\; \overline{\underline{3}}\; \overline{4}\; \overline{5} \quad \overline{1}\; \overline{\underline{3}}\; \overline{4}\; \overline{5} \quad \overline{1}\; \overline{\underline{3}}\; \overline{4}\; \overline{5} \quad \overline{1}\; \overline{2}\; \overline{3}\; 4\; \overline{5} \quad \overline{1}\; \overline{1}\; \overline{5}\; \overline{5}\; \overline{1}\; \overline{5}\; \overline{5}$

• Totaling over all bounded bijections, we have

$$c_{u,v}^{w} = \underbrace{\langle \alpha_{4}, \alpha_{2}^{\vee} \rangle \cdot \langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle}_{\langle s_{3}(\alpha_{4}), \alpha_{1}^{\vee} \rangle \cdot \langle s_{3}s_{4}(\alpha_{5}), \alpha_{2}^{\vee} \rangle}_{\langle s_{3}(\alpha_{4}), \alpha_{1}^{\vee} \rangle \cdot \langle s_{3}s_{4}(\alpha_{5}), \alpha_{2}^{\vee} \rangle} + \langle s_{3}(\alpha_{4}), \alpha_{2}^{\vee} \rangle \cdot \langle s_{2}s_{3}s_{4}(\alpha_{5}), \alpha_{1}^{\vee} \rangle}_{\langle s_{2}(\alpha_{3}), \alpha_{1}^{\vee} \rangle - \langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle} - \langle s_{2}s_{3}s_{4}(\alpha_{5}), \alpha_{1}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle} - \langle s_{2}s_{3}s_{4}(\alpha_{5}), \alpha_{1}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5}), \alpha_{3}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5}), \alpha_{4}^{\vee} \rangle}_{\langle s_{4}(\alpha_{5$$

With only i-admissible terms.

Examples where
$$G = \widehat{SL}(2)$$
, $\mathbf{i} = \underbrace{(2, 1, \dots, 2, 1)}_{2n}$

Question: Bounded bijections vs. i-admissible bounded bijections?

$$\begin{split} c(n) &:= c_{u,v}^w, \qquad w = \underbrace{s_2 s_1 \cdots s_2 s_1}_{2n}, \quad u = v = \underbrace{\cdots s_2 s_1}_n \\ & \underbrace{ \# \{ \text{Bounded bijections} \} \mid \# \{ \text{i-admissible bounded bijections} \}}_{c(3)} \\ \hline c(2) & 6 & & 3 \\ c(3) & 20 & & 7 \\ c(4) & 190 & & 19 \\ c(5) & 1110 & & 51 \\ c(6) & 14348 & & 141 \\ c(n) & ?? & & \text{largest coeff of } (1 + x + x^2)^n ?? \\ \end{split}$$

General rank 2 group G.

Let $a, b \neq 0$,

$$A = \left[\begin{array}{cc} 2 & -a \\ -b & 2 \end{array} \right].$$

Define "Chebyshev" sequences

$$A_k := aB_{k-1} - A_{k-2}$$
 and $B_k := bA_{k-1} - B_{k-2}$

where $A_0 = B_0 = 0$ and $A_1 = B_1 = 1$. Let

$$u_k = \underbrace{\cdots s_2 s_1}_k$$
 and $v_k = \underbrace{\cdots s_1 s_2}_k$.

Corollary: Binomial formula (Kitchloo, 2008)

The rank 2 Littlewood-Richardson coefficients

$$c_{u_k,u_{n-k}}^{u_n} = c_{v_{k+1},u_{n-k}}^{v_{n+1}} = \frac{A_n \cdots A_2 A_1}{(A_k \cdots A_2 A_1)(A_{n-k} \cdots A_2 A_1)}$$

$${}^{v_n}_{v_k,v_{n-k}} = c^{u_{n+1}}_{u_{k+1},v_{n-k}} = \frac{D_n D_2 D_1}{(B_k \cdots B_2 B_1)(B_{n-k} \cdots B_2 B_1)}$$

c

Examples Example: G = SL(4)

Examples where G = SL(4), i = (3, 2, 1, 3, 2)

$$A = \left[\begin{array}{rrrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

Compute $c_{u,v}^w$ where

$$w = s_3 s_2 s_1 s_3 s_2, \quad u = s_3 s_1 s_2 = s_1 s_3 s_2, \quad v = s_3 s_1 = s_1 s_3.$$

• Totaling over all bounded bijections, we have

$$c_{u,v}^{w} = \langle \alpha_{3}, \alpha_{1}^{\vee} \rangle \cdot \langle s_{3}(\alpha_{4}), \alpha_{2}^{\vee} \rangle + \langle \alpha_{3}, \alpha_{2}^{\vee} \rangle \cdot \langle s_{2}s_{3}(\alpha_{4}), \alpha_{1}^{\vee} \rangle$$
$$- \langle \alpha_{3}, \alpha_{2}^{\vee} \rangle - \langle \alpha_{3}, \alpha_{2}^{\vee} \rangle$$
$$= 0 - 1 + 1 + 1 = 1$$

In this case: {Bounded bijections}={i-admissible bounded bijections}
In general, the i-admissible formula is not nonnegative.

Construction of Kostant and Kumar

Recall the the matrix A gives an action of the Coxeter group W on V and thus W acts on the algebras S := S(V) and Q := Q(V) (polynomials and rational functions).

Define

$$Q_W := Q \rtimes \mathbb{C}[W]$$

with product structure

$$(q_1w_1)(q_2w_2) := q_1w_1(q_1)w_1w_2$$

and a Q-linear coproduct

$$\Delta: Q_W \to Q_W \otimes_Q Q_W$$

by

$$\Delta(qw) := qw \otimes w = w \otimes qw.$$

For any $i \in I$, define

$$x_i := \frac{1}{\alpha_i}(s_i - 1).$$

If $\mathbf{i} = (i_1, \dots, i_m) \in R(w)$, then define $x_w := x_{i_1} \cdots x_{i_m}$.

If A is a Cartan matrix of some Kac-Moody group G, then (by Kostant-Kumar 1986)

- x_w is independent of $\mathbf{i} \in R(w)$
- $x_i^2 = 0 \quad \forall \ i \in I.$

Define the Nil-Hecke ring $H_W := \bigoplus_{w \in W} S x_w \subseteq Q_W$.

We have that $\Delta(H_W) \subseteq H_W \otimes_S H_W$ (Kostant-Kumar, 1986).

Define the coproduct structure constants $p_{u,v}^w \in S$ by

$$\Delta(x_w) = \sum_{u,v \in W} p_{u,v}^w \, x_u \otimes x_v.$$

Consider the *T*-equivariant cohomology ring $H_T^*(G/B) \simeq \bigoplus_{w \in W} S \sigma_w$ and L-R

coefficients $c_{u,v}^w \in S$ defined by the cup product

$$\sigma_u \cdot \sigma_v = \sum_{w \in W} c_{u,v}^w \sigma_w.$$

Theorem: Kostant-Kumar 1986

The coefficients $c_{u,v}^w = p_{u,v}^w$.