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Preliminaries on flag varieties

Preliminaries: Schubert Calculus of G/B

o Let G be a Kac-Moody group over C (or a simple Lie group).
Fix T'C B C G a maximal torus and Borel subgroup of G.
Let W := N(T)/T denote the Weyl group G.

o Let G/B be the flag variety (projective ind-variety).

o For any w € W, we have the Schubert variety X,, = BwB/B C G/B.

Denote the cohomology class of X, by

0w € H*™)(G/B).
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Preliminaries on flag varieties

Additively, we have that H*(G/B) ~ @ Zoy.
weWw

Goal (Schubert Calculus)

Compute the structure (Littlewood-Richardson) coefficients c;;, with respect to
the Schubert basis defined by the product

_ w
Oy Oy = E Copy O+

weWw

o Note that if £(w) # £(u) + £(v), then ¢/ , = 0.

o For any w,u,v € W, we have that ¢/, > 0. (proofs are geometric)

For example, if G is a finite Lie group, then the cardinality
|ngu n g2Xv N gSXw0w| = civ

for a generic choice of ¢1,g2,93 € G.
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Algebraic approach to Schubert Calculus
Algebraic approach to Schubert calculus

Let A = A(G) denote the Cartan matrix of G.

Alternatively, fix a finite index set I and let A = {a;;} be an I x I matrix such
that

oaii:2
[} aijEZSO ifi#j

oaijzo -~ aji:0.

The matrix A defines an action of a Coxeter group W generated by reflections
{si}ier on the vector space V := Spanc{«; }ics given by
5;(v) == v — (v, 0] Yoy
v

where (a;, o) := a;;.

In particular, Coxeter groups of this type are crystallographic.
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Algebraic approach to Schubert Calculus
Algebraic approach to Schubert calculus

If we abandon the group G, we can consider a matrix A as follows:

Fix a finite index set I and let A = {a;;} be an I x I matrix such that
9 a;; = 2
9 a;j ERSO Ifl#j

oaij:(J -~ aji:O.

The matrix A defines an action of a Coxeter group W generated by reflections
{si}icr on the vector space V := Spanc{«;}ics given by
5i(v) == v — (v, 0] Yoy
v

where (a;, o)) := a;;.

Every Coxeter group can be represented as above.

Arkady Berenstein and Edward Richmond* (UBC) L-R coefficients January 7, 2012 6 /20



Algebraic approach to Schubert Calculus
Some examples

o G=SL(4) (type A3)

2 -1 0
A= -1 2 -1 | and W =S4 (symmetric group)
0 —1 2

o G = Sp(4) (type C2)

A= [ _? _g ] and W = I,(4) (dihedral group of 8 elements)

o —

o G = SL(2) (affine type A)
A= [ _3 _g ] and W = I3(o0) (free dihedral group)
o Let p= 2COS(7T/5)

A= [ _z _’g ] and W = I5(5) (dihedral group of 10 elements)
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Algebraic approach to Schubert Calculus

Notation on sequences and subsets

o Any sequence i := (i1,...,4m) € I"™ has a corresponding element
Siy t 8, € w.

If si, -5, is a reduced word of some w € W, then we say that i € R(w),
the collection of reduced words.

o For each i€ I"™ and subset K = {ky < ko < --- < ky} of the interval
[m] :={1,2,...,m} let the subsequence

ig = (ikl,. . .,ikn) el™.
We say a sequence i is admissible if i; # ;41 for all j € [m —1].

o Observe that any reduced sequence is admissible. (In general, the converse is
false.)
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Algebraic approach to Schubert Calculus

Let m > 0 and let K, L be subsets of [m] := {1,2,...,m} such that
|K|+ |L| = m. We say that a bijection

¢: K —[m]\L

is bounded if ¢(k) < k for each k € K.

Definition

Given a reduced sequence i = (i1, ...,%,) € I"™, we say that a bounded bijection
¢: K —[m]\ L

is i-admissible if the sequence i, and the sequences iy ;) are admissible for all
k € K where

L(k) = LU $(K<p)-
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Statement of results

Recall that the Littlewood-Richardson coefficients ¢y, are defined by the product

_ w
Oy Oy = E Coupy Ow-

weWw

Theorem: Berenstein-R, 2010

Let uw,v,w € W such that {(w) = ¢(u) + ¢(v) and let i = (i1,...,im) € R(w).

Then
=> o

where the summation is over all triples (4,0, ¢), where
® 4, C [m] such that iy € R(u), i; € R(v).
@ ¢p:uN?v — [m]\ (GUD) is an i-admissible bounded bijection.

@ The Theorem is still true without i-admissible.

@ The Theorem generalizes to structure coefficients of T-equivariant
cohomology H7}.(G/B).
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Statement of results

For any k € [m] and i = (i1,...,%n), denote oy := o, and s :=s;,. For any
bounded bijection

¢: K —[m]\L

we define the monomial py € Z by the formula

pg = (—1)IKl H (wk(ak),a;g(kﬂ where  wy, = H S
keK reL(k)
¢(k)<r<k

—

where the product [] is taken in the natural order induced by the sequence [m]
and if the product is empty, we set wy, = 1. Also, if K = (), then p, = 1.

Theorem: Berenstein-R, 2010

If the Cartan matrix A = (a;;) satisfies

aijraj; 24V i#],

then py > 0 when ¢ is an i-admissible bounded bijection.

v
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Examples " Example: G = S'L(2)

Examples where G' = §Z(2) S22 1,2)

2 =2
S
Compute Cy Where w = 51825182, u=10v = s152.
o Find 4,0 C [4] ={1,2,3,4}

12 1237 1234 1231

[S¥}
]

123

]

1234 1234 1234 1234
o For 1234, we have

ano={3,4} and [4]\ (aUD)={1,2}
with bounded bijections

¢1:(3,4) = (1,2)  ¢2:(3,4) = (2,1).
NOTE: ¢; is not i-admissible.
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Examples " Example: G = S'L(2)

Examples where G' = §Z(2) =2, 1,2)

o For 1 2 3 4, we have bounded bijections

()bl : (3»4) - (1a2) ¢2 : (374) - (2a ]-)
Po, = (a3, 0)) - (s3(o), ) pg, = (a3, ) - (s253(0u), )

o Totaling over all bounded bijections, we have

w
cu

v = (a3, ay) + (as, o) - (s253(0), )

—(s3toeryay) — (satoerkay) + 1 +1

= A+4+X+E+1+1=6

With only i-admissible terms.
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Examples " Example: G = S'L(2)

Examples where G = SL(2),i=(1,2,1,2,1)

Compute Co v where w = 51825152581, U = $15281, U = S951.

o Find @, C [5] = {1,2,3,4,5}

23 1

W]
(&3}
=
[\

3

[N
|
ol
w
1S
(<]
=
]|
wl
[N
|t
—_
]
wl
N}
[@x]]
=
no
w
N
(<]

=
[N]]

3 34

=~
(&3]
[N]]

1

|t
no
[9¥]]
N
[
=
)
99
N
(2]
=
[Ne]]
[9%)
N
o
=
(]
[9¥]]
i
ot

1
o Totaling over all bounded bijections, we have

w —
¢ty = l(onafrtestaslof) + (0sa a3)

+ (s3(au as), o3 ) + (s3(aa), ag) - (s2s354(as), )
— (s2(a3),0) — (s ) — (sateeRay) — (s2sssalas), ay)
+ o141

= A+A-A+4+2+X+2+2+14+1=10

With only i-admissible terms.
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Examples | Example: G = S'L(2)

Examples where G' = §Z(2) ... 2, 1)
R

Question: Bounded bijections vs. i-admissible bounded bijections?

c(n) = cy s W = 8981 °+* 8251, U=V ="--8281
7 2n n

#{Bounded bijections} | #{i-admissible bounded bijections}
¢(3) 20 7
c(4) 190 19
c(5) 1110 51
c(6) 14348 141
c(n) ” largest coeff of (1 + z + z2)™ 7?7

Remark: ¢(n) = <2n>
n
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Examples ["Example: G'is rank 2.

General rank 2 group G.

Let a,b # 0,

Define “Chebyshev’ sequences
Ap:=aBp_1— Ap_o and By :=bAr_1 — Bi_o
where Ag = Bg =0 and A; = B; = 1. Let
U = ---89817 and wvp =---8189.
—— ——

k k

Corollary: Binomial formula (Kitchloo, 2008)
The rank 2 Littlewood-Richardson coefficients
. . A, - Ay Ay
Wetin—k TR YRk (A Ay Ag ) (Apg - AaAd)

Un — AUn+1 —

o s B B, - ByB;
VUt UL Un—k By oo By By)(Bp—k - - - BaBy)

v
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Examples

Examples where G = SL(4),

2 -1 0
A= -1 2 -1
0 -1 2

w
Compute ¢/, where

W = 835285153852, U = §351S82 = S153S2, V = 83581 = S153.

o Totaling over all bounded bijections, we have

Cuw = (as, o) (s3(aa),05) + (s, 03) - (s253(ca), o)
—<043, ag) - <a37 a¥>
= 0-1+1+1=1
@ In this case: {Bounded bijections}={i-admissible bounded bijections}

@ In general, the i-admissible formula is not nonnegative.
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The Nil-Hecke ring
Construction of Kostant and Kumar

Recall the the matrix A gives an action of the Coxeter group W on V and thus
W acts on the algebras S := S(V) and @ := Q(V) (polynomials and rational
functions).

Define
Qw = Q x C[W]

with product structure
(qrw1)(gew2) = qrwi(gq1)wiws
and a @-linear coproduct

A:Qw — Qw ®q Qw

Alquw) = qu @ w = w ® qu.
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The Nil-Hecke ring

For any i € I, define

1
T = a—z(sl —1).
Ifi= (i1,...,9m) € R(w), then define x,, := x;, -+~ ;.

If A'is a Cartan matrix of some Kac-Moody group G, then (by Kostant-Kumar
1986)

e x, is independent of i € R(w)
0ez?2=0 Viel.

Define the Nil-Hecke ring Hy := €P) Saw, C Qw.
wew

We have that A(Hy ) C Hy ®g Hw (Kostant-Kumar, 1986).
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The Nil-Hecke ring

Define the coproduct structure constants py/,, € S by

A(zy) = Z Dy Tu @ Ty
u,veW

Consider the T-equivariant cohomology ring H7.(G/B) ~ @ Soy, and L-R
weW
coefficients ¢, € S defined by the cup product

w
Oy Oy = g CopyOw-

weWw

Theorem: Kostant-Kumar 1986

The coefficients ¢y, = py/ -
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