Eigenvalues of sums of hermitian matrices and the cohomology of Grassmannians

Edward Richmond

University of British Columbia

January 16, 2013

2 Schubert calculus of the Grassmannian

Majorized sums and equivariant cohomology

Outline of proof

The eigenvalue problem on hermitian matrices:

Consider the sequences of real numbers

$$\begin{aligned} \alpha &:= (\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n) \\ \beta &:= (\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n) \\ \gamma &:= (\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_n). \end{aligned}$$

Question:

For which triples (α,β,γ) do there exist $n\times n$ hermitian matrices A,B,C with respective eigenvalues α,β,γ and

$$A + B = C?$$

Motivation:

- Functional analysis: decomposing self-adjoint operators on Hilbert spaces
- Frame theory (sensor networks, coding theory, and compressed sensing)
- Invariant theory of representations

Example: Let n = 2.

$$\left(\begin{array}{cc} \alpha_1 & 0\\ 0 & \alpha_2 \end{array}\right) + \left(\begin{array}{cc} a & c\\ \bar{c} & b \end{array}\right) = \left(\begin{array}{cc} a + \alpha_1 & c\\ \bar{c} & b + \alpha_2 \end{array}\right)$$

Then

$$\beta = \frac{a + b \pm \sqrt{(a - b)^2 + |c|^2}}{2}$$
$$\gamma = \frac{\alpha_1 + \alpha_2 + a + b \pm \sqrt{(a - b + \alpha_1 - \alpha_2)^2 + |c|^2}}{2}$$

Solution for the n = 2 case

We get that matrices A + B = C exist if and only if the triple (α, β, γ) satisfies

$$\begin{array}{ll} \alpha_1+\alpha_2+\beta_1+\beta_2=\gamma_1+\gamma_2 \quad \text{and} \quad \begin{array}{l} \alpha_1+\beta_1\geq\gamma_1\\ \alpha_1+\beta_2\geq\gamma_2\\ \alpha_2+\beta_1\geq\gamma_2. \end{array}$$

What about n = 3?

Theorem: Horn '62

There exist 3×3 matrices A + B = C with eigenvalues (α, β, γ) if and only if (α, β, γ) satisfies

$$\alpha_1 + \alpha_2 + \alpha_3 + \beta_1 + \beta_2 + \beta_3 = \gamma_1 + \gamma_2 + \gamma_3$$

and up to $\alpha \leftrightarrow \beta$ symmetry

$\alpha_1 + \beta_1 \ge \gamma_1$	$\alpha_1 + \alpha_2 + \beta_1 + \beta_2 \ge \gamma_1 + \gamma_2$
$\alpha_1 + \beta_2 \ge \gamma_2$	$\alpha_1 + \alpha_2 + \beta_1 + \beta_3 \ge \gamma_1 + \gamma_3$
$\alpha_1 + \beta_3 \ge \gamma_3$	$\alpha_1 + \alpha_2 + \beta_2 + \beta_3 \ge \gamma_2 + \gamma_3$
$\alpha_2 + \beta_2 \ge \gamma_2$	$\alpha_1 + \alpha_3 + \beta_1 + \beta_3 \ge \gamma_2 + \gamma_3.$

What about the general case?

Conjecture: Horn '62

There exist $n \times n$ matrices A + B = C with eigenvalues (α, β, γ) if and only if (α, β, γ) satisfies

$$\sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j = \sum_{k=1}^{n} \gamma_k$$

and for every r < n we have a "certain" collection of subsets $I, J, K \subset [n] := \{1, 2, \dots, n\}$ of size r where

$$\sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j \ge \sum_{k \in K} \gamma_k.$$

Example: If n = 4 and r = 2, then $(I, J, K) = (\{1, 3\}, \{2, 4\}, \{3, 4\})$ corresponds to the linear inequality

$$\alpha_1 + \alpha_3 + \beta_2 + \beta_4 \ge \gamma_3 + \gamma_4.$$

Schubert calculus of the Grassmannian:

Fix a basis $\{e_1, \ldots, e_n\}$ of \mathbb{C}^n and consider the Grassmannian

$$\operatorname{Gr}(r,n) := \{ V \subseteq \mathbb{C}^n \mid \dim V = r \}.$$

For any partition $\lambda := (\lambda_1 \ge \cdots \ge \lambda_r)$ where $\lambda_1 \le n - r$ define the Schubert subvariety

$$X_{\lambda} := \{ V \in \operatorname{Gr}(r, n) \mid \dim(V \cap E_{n-r+i-\lambda_i}) \ge i \quad \forall \ i \le r \}$$

where $E_i := \operatorname{Span}\{e_1, \ldots, e_i\}.$

For example

•
$$X_{\varnothing} = \operatorname{Gr}(r, n)$$

• $X_{\Lambda} = \{E_r\}$ where $\Lambda := (n - r, \dots, n - r)$

In general, $\operatorname{codim}_{\mathbb{C}}(X_{\lambda}) = |\lambda| := \sum_{i} \lambda_{i}.$

Denote the cohomology class of X_{λ} by

$$\sigma_{\lambda} \in H^{2|\lambda|}(\mathrm{Gr}(r,n),\mathbb{C}).$$

Additively, we have that Schubert classes σ_λ form a basis of

$$H^*(\operatorname{Gr}(r,n)) \simeq \bigoplus_{\lambda \subseteq \Lambda} \mathbb{C} \ \sigma_{\lambda}.$$

Define the Littlewood-Richardson coefficients $c_{\lambda,\mu}^{\nu}$ as the structure constants

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum_{\nu \subseteq \Lambda} c_{\lambda,\mu}^{\nu} \ \sigma_{\nu}.$$

Facts:

$$\begin{array}{l} \bullet \ c_{\lambda,\mu}^{\nu}\in\mathbb{Z}_{\geq0}.\\ \bullet \ \mathrm{If} \ c_{\lambda,\mu}^{\nu}>0, \ \mathrm{then} \ |\lambda|+|\mu|=|\nu|. \end{array}$$

The LR-rule for computing $c_{\lambda,\mu}^{\nu}$:

For any partition $\lambda = (\lambda_1 \ge \lambda_2 \dots \ge \lambda_r)$, we have the associated Young diagram

If $\lambda \subseteq \nu$, then we can define the skew diagram ν/λ by removing the boxes of the Young diagram of λ from the Young diagram of ν .

$$(4,3,2)/(2,2) =$$

We have

$$c_{\lambda,\mu}^{\nu} = #\{ LR \text{ skew tableaux of shape } \nu/\lambda \text{ with content } \mu \}.$$

Appearances of Littlewood-Richardson coefficients $c_{\lambda,\mu}^{\nu}$:

The number of points in a finite intersection of translated Schubert varieties

$$|g_1 X_\lambda \cap g_2 X_\mu \cap g_3 X_{\nu^\vee}| = c_{\lambda,\mu}^\nu.$$

Let V_{λ} be the irreducible, finite-dimensional representation of $GL_r(\mathbb{C})$ of highest weight λ . Then

$$V_{\lambda} \otimes V_{\mu} \simeq \bigoplus_{\nu} V_{\nu}^{\oplus c_{\lambda,\mu}^{\nu}}$$

Let s_{λ} denote the Schur function indexed by λ . Then

$$s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c_{\lambda,\mu}^{\nu} \ s_{\nu}.$$

Let $\Lambda = \underbrace{(n-r, \dots, n-r)}_{r}$. There is a bijection between {Partitions $\lambda \subseteq \Lambda$ } \Leftrightarrow {Subsets of [n] of size r}.

Consider the Young diagram of $\lambda \subseteq \Lambda$.

			7	8,	9
			6		
	3	4	5		
1	2 ′				

Example: n = 9 and r = 4 with $\lambda = (5, 3, 3, 1)$. We identify λ with vertical labels on the boundary path.

 $(5,3,3,1) \leftrightarrow \{2,5,6,9\}.$

For any subset $I = \{i_1 < \cdots < i_r\} \subseteq [n]$, let

$$\phi(I) := \{i_r - r \ge \dots \ge i_1 - 1\}$$

denote the corresponding partition.

Solution to the eigenvalue problem:

Theorem: Klyachko '98

Let (α, β, γ) be weakly decreasing sequences of real numbers such that

$$\sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j = \sum_{k=1}^{n} \gamma_k.$$

Then the following are equivalent.

- There exist $n \times n$ matrices A + B = C with eigenvalues (α, β, γ) .
- For every r < n and every triple (I, J, K) of subsets of [n] of size r such that the Littlewood-Richardson coefficient $c_{\phi(I),\phi(J)}^{\phi(K)} > 0$, we have

$$\sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j \ge \sum_{k \in K} \gamma_k.$$

Question: Is Klyachko's solution the same as Horn's conjectured solution?

Theorem: Knutson-Tao '99

Klyachko's solution is the same to Horn's solution.

Let $\lambda, \mu, \nu \subseteq \Lambda$ be partitions such that

 $|\lambda| + |\mu| = |\nu|.$

The following are equivalent:

- The Littlewood-Richardson coefficient $c_{\lambda,\mu}^{\nu} > 0$.
- There exist $r \times r$ matrices A + B = C with respective eigenvalues λ, μ, ν .

Example: Consider the Grassmannian Gr(2, 4).

We have
$$(\sigma_{\Box})^2 = \sigma_{\Box} + \sigma_{\Box}$$
.

For $c_{\Box,\Box} > 0$, we have

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right)+\left(\begin{array}{cc}1&0\\0&0\end{array}\right)=\left(\begin{array}{cc}2&0\\0&0\end{array}\right).$$

 \square

For $c_{\Box,\Box}^{\Box} > 0$, we have

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right)+\left(\begin{array}{cc}0&0\\0&1\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right).$$

But for $c_{\square,\blacksquare}^{\blacksquare} = 0$, we have

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right)+\left(\begin{array}{cc}a&c\\\bar{c}&b\end{array}\right)=\left(\begin{array}{cc}2&0\\0&2\end{array}\right).$$

Not possible with eigenvalues (2,0)!

Generalizations of the eigenvalue problem:

Lie groups of other types (Berenstein-Sjamaar '00):
 Let O_λ denote an orbit of G acting on the dual Lie algebra g*.
 Question: For which (λ, μ, ν) is

$$(O_{\lambda} + O_{\mu}) \cap O_{\nu} \neq \emptyset?$$

• Find a minimal list of inequalities (Knuston-Tao-Woodward '04).

$$c^{
u}_{\lambda,\mu} > 0$$
 (redundant list) $\Rightarrow c^{
u}_{\lambda,\mu} = 1$ (minimal list)

Find a minimal list in any type (Belkale-Kumar '06, Ressayre '10).

• Replace A + B = C with majorized sums $A + B \ge C$ (Friedland '00, Fulton '00).

Definition: We say a matrix $A \ge B$ (A majorizes B) if A - B is semi-positive definite (i.e. A - B has nonnegative eigenvalues).

Consider the sequences of real numbers

$$\begin{aligned} \alpha &:= (\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n) \\ \beta &:= (\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n) \\ \gamma &:= (\gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_n). \end{aligned}$$

Question:

For which triples (α,β,γ) do there exist $n\times n$ hermitian matrices A,B,C with respective eigenvalues α,β,γ and

$$A + B \ge C?$$

Solution to the majorized eigenvalue problem:

Theorem: Friedland '00, Fulton '00

Let (α,β,γ) be weakly decreasing sequences of real numbers such that

$$\sum_{i=1}^{n} \alpha_i + \sum_{j=1}^{n} \beta_j \ge \sum_{k=1}^{n} \gamma_k.$$

Then the following are equivalent.

- There exist $n \times n$ matrices $A + B \ge C$ with eigenvalues (α, β, γ) .
- For every r < n and every triple (I, J, K) of subsets of [n] of size r such that the Littlewood-Richardson coefficient $c_{\phi(I),\phi(J)}^{\phi(K)} > 0$, we have

$$\sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j \ge \sum_{k \in K} \gamma_k$$

and (α, β, γ) satisfies other inequalities.

Question: Is there an analogue of the Knutson-Tao equivalence for majorized sums?

Theorem: Knutson-Tao '99

Let $\lambda, \mu, \nu \subseteq \Lambda$ be partitions such that

$$|\lambda| + |\mu| = |\nu|.$$

The following are equivalent:

- The Littlewood-Richardson coefficient $c_{\lambda,\mu}^{\nu} > 0$.
- There exist $r \times r$ matrices A + B = C with respective eigenvalues λ, μ, ν .

Answer: YES! Use torus-equivariant cohomology.

Equivariant Schubert calculus of the Grassmannian:

Let $T = (\mathbb{C}^*)^n$ denote the standard torus acting on \mathbb{C}^n .

This induces a *T*-action on the Grassmannian Gr(r, n). Let $H_T^*(Gr(r, n))$ be the *T*-equivariant cohomology ring of Gr(r, n).

Since the Schubert variety X_λ is $T\mbox{-stable},$ it determines an equivariant Schubert class denoted by

$$\Sigma_{\lambda} \in H_T^{2|\lambda|}(\operatorname{Gr}(r,n)).$$

Additively, we have that Schubert classes Σ_{λ} form a basis of

$$H_T^*(\operatorname{Gr}(r,n)) \simeq \bigoplus_{\lambda \subseteq \Lambda} \mathbb{C}[t_1,\ldots,t_n] \Sigma_{\lambda}$$

over the polynomial ring $H_T^*(\mathsf{pt}) = \mathbb{C}[t_1, \ldots, t_n].$

Define the equivariant structure coefficients $C^{\nu}_{\lambda,\mu} \in \mathbb{C}[t_1,\ldots,t_n]$ as the structure constants

$$\Sigma_{\lambda} \cdot \Sigma_{\mu} = \sum_{\nu \subseteq \Lambda} C_{\lambda,\mu}^{\nu} \Sigma_{\nu}.$$

Facts:

- $C_{\lambda,\mu}^{\nu} \in \mathbb{Z}_{\geq 0}[t_1 t_2, t_2 t_3, \dots, t_{n-1} t_n].$
- If $C_{\lambda,\mu}^{\nu} \neq 0$, then $|\lambda| + |\mu| \ge |\nu|$ and $\lambda, \mu \subseteq \nu$. In particular, $C_{\lambda,\mu}^{\nu}$ is a homogeneous polynomial of degree $|\lambda| + |\mu| - |\nu|$.

• If
$$|\lambda| + |\mu| = |\nu|$$
, then $C^{\nu}_{\lambda,\mu} = c^{\nu}_{\lambda,\mu}$.

• Let S_{λ} denote the factorial Schur function indexed by λ . Then

$$S_{\lambda} \cdot S_{\mu} = \sum_{\nu} C^{\nu}_{\lambda,\mu} S_{\nu}.$$

(character theory of $\operatorname{GL}_r(\mathbb{C}) \times T$)

Example: $(\Sigma_{\Box})^2 = (t_1 - t_2) \Sigma_{\Box} + \Sigma_{\square} + \Sigma_{\Box}$

Theorem: Anderson-R.-Yong '12

Let $\lambda, \mu, \nu \subseteq \Lambda$ be partitions such that

$$|\lambda|+|\mu|\geq |\nu| \quad \text{and} \quad \lambda,\mu\subseteq \nu.$$

The following are equivalent:

- The structure coefficient $C^{\nu}_{\lambda,\mu} \neq 0$.
- There exist $r \times r$ matrices $A + B \ge C$ with respective eigenvalues λ, μ, ν .
- For every d < r and every triple (I, J, K) of subsets of [r] of size d such that the Littlewood-Richardson coefficient $c_{\phi(I),\phi(J)}^{\phi(K)} > 0$, we have

$$\sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j \ge \sum_{k \in K} \gamma_k.$$

Corollary in Saturation:

Saturation Theorem: Knutson-Tao '99

Let λ, μ, ν be partitions. Then the Littlewood-Richardson coefficients

 $c_{\lambda,\mu}^{\nu}\neq 0 \qquad \text{if and only if} \qquad c_{N\lambda,N\mu}^{N\nu}\neq 0 \quad \text{for any} \quad N>0.$

Equivariant Saturation Theorem: Anderson-R.-Yong '12

Let λ, μ, ν be partitions. Then the equivariant structure coefficients

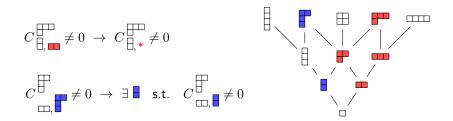
 $C^{\nu}_{\lambda,\mu} \neq 0 \qquad \text{if and only if} \qquad C^{N\nu}_{N\lambda,N\mu} \neq 0 \quad \text{for any} \quad N>0.$

Proof: $A + B \ge C$ if and only if $N \cdot A + N \cdot B \ge N \cdot C$ for any N > 0.

Key Proposition: Anderson-R.-Yong '12

Assume $C^{\nu}_{\lambda,\mu} \neq 0$. Then:

- $C^{\nu}_{\lambda,\mu^{\uparrow}} \neq 0$ for any $\mu \subset \mu^{\uparrow} \subseteq \nu$;
- If $|\lambda| + |\mu| > |\nu|$, then there is a μ^{\downarrow} such that $|\lambda| + |\mu^{\downarrow}| = |\nu|$, with $\mu^{\downarrow} \subsetneq \mu$ and $C^{\nu}_{\lambda,\mu^{\downarrow}} \neq 0$.



Proof: Use equivariant tableaux combinatorics of Thomas-Yong '12.

Proof that the inequalities are necessary:

• They are necessary if $|\lambda| + |\mu| = |\nu|$ (Klyachko '98).

• If $C_{\lambda,\mu}^{\nu} \neq 0$ and $|\lambda| + |\mu| > |\nu|$, then there exists $c_{\lambda,\mu^{\downarrow}}^{\nu} \neq 0$ with $\mu^{\downarrow} \subsetneq \mu$ and

 $|\lambda| + |\mu^{\downarrow}| = |\nu|.$

 \bullet For any necessary inequality (I,J,K) we have

$$\sum_{i \in I} \lambda_i + \sum_{j \in J} \mu_j \ge \sum_{i \in I} \lambda_i + \sum_{j \in J} \mu_j^{\downarrow} \ge \sum_{k \in K} \nu_k.$$

Proof that the inequalities are sufficient:

- Suppose that $C^{\nu}_{\lambda,\mu} = 0$ and satisfies all the inequalities.
- Show that $C^{\nu}_{\lambda,\mu} \neq 0$, a contradiction.
- Run a double induction on the degree $p:=|\lambda|+|\mu|-|\nu|$ and r the maximum number of parts in each partition.
- Proof of the base case: p = 0 follows from (Klyachko '98) and r = 1 follows from $Gr(1, n) \simeq \mathbb{CP}^{n-1}$.

Future projects on this topic:

- Prove Horn and Saturation theorems for $H_T^*(G/P)$ where G/P is a (co)minuscule flag variety (following Belkale '06, Sottile-Purbhoo '08).
- Prove Horn and Saturation theorems for other cohomology theories:

$$\begin{split} &H^*(\mathrm{Gr}(r,n))\Leftrightarrow \mathsf{sum} \text{ of hermitian matrices} \\ &H^*_T(\mathrm{Gr}(r,n))\Leftrightarrow \mathsf{majorized \ sums \ of \ hermitian \ matrices} \end{split}$$

 $\begin{array}{l} QH^*(\mathrm{Gr}(r,n))\Leftrightarrow \mathrm{products} \ \mathrm{in} \ SU(r) \ \big(\mathrm{Belkale} \ '08\big) \\ QH^*_T(\mathrm{Gr}(r,n))\Leftrightarrow \ref{eq:started} \end{array}$

Thank you.