Divided symmetrization, quasisymmetric functions and Schubert polynomials

Vasu Tewari
University of Pennsylvania
(joint with Philippe Nadeau, Université Lyon 1)

AMS Sectional Meeting Gainesville, 3rd November 2019

Given $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, the divided symmetrization of f, denoted by $\langle f\rangle_{n}$, is:

$$
\langle f\rangle_{n}=\sum_{\sigma \in S_{n}} \sigma \cdot\left(\frac{f}{\prod_{1 \leq i \leq n-1}\left(x_{i}-x_{i+1}\right)}\right)
$$

Example

$$
\begin{gathered}
\langle 1\rangle_{2}=\frac{1}{x_{1}-x_{2}}+\frac{1}{x_{2}-x_{1}}=0 . \\
\left\langle x_{1}\right\rangle_{2}=\frac{x_{1}}{x_{1}-x_{2}}+\frac{x_{2}}{x_{2}-x_{1}}=1 . \\
\left\langle x_{1}^{2} x_{2}\right\rangle_{3}=\sum_{\sigma \in S_{3}} \sigma \cdot\left(\frac{x_{1}^{2} x_{2}}{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)}\right)=x_{1}+x_{2}+x_{3} .
\end{gathered}
$$

$$
\langle f\rangle_{n}=\sum_{\sigma \in S_{n}} \sigma \cdot\left(\frac{f}{\prod_{1 \leq i \leq n-1}\left(x_{i}-x_{i+1}\right)}\right) .
$$

(1) $\langle f\rangle_{n}$ is a symmetric polynomial in x_{1}, \ldots, x_{n}.
(2) If $f=g h$ where g is symmetric, then $\langle f\rangle_{n}=g\langle h\rangle_{n}$.
(3) $\operatorname{deg} f<n-1 \Longrightarrow\langle f\rangle_{n}=0$.
(4) $\operatorname{deg} f=n-1$ implies $\langle f\rangle_{n}$ is a scalar!

$$
\langle f\rangle_{n}=\sum_{\sigma \in S_{n}} \sigma \cdot\left(\frac{f}{\prod_{1 \leq i \leq n-1}\left(x_{i}-x_{i+1}\right)}\right) .
$$

(1) $\langle f\rangle_{n}$ is a symmetric polynomial in x_{1}, \ldots, x_{n}.
(2) If $f=g h$ where g is symmetric, then $\langle f\rangle_{n}=g\langle h\rangle_{n}$.
(3) $\operatorname{deg} f<n-1 \Longrightarrow\langle f\rangle_{n}=0$.
(4) $\operatorname{deg} f=n-1$ implies $\langle f\rangle_{n}$ is a scalar!

If $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg} f=n-1$, does $\langle f\rangle_{n}$ have a deeper meaning?

Usual permutahedra

Definition (Usual permutahedra)

For $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in \mathbb{R}^{n}$, the permutahedron \mathcal{P}_{λ} is the convex hull of the S_{n}-orbit of λ.

\mathcal{P}_{λ} lies on the hyperplane defined by the sum of the λ_{i}.
Thus, the dimension of \mathcal{P}_{λ} is at most $n-1$.

Definition

For a polytope P lying in a hyperplane in \mathbb{R}^{n}, define its volume $\operatorname{vol}(P)$ as the usual ($n-1$)-dimensional volume of the projection of P onto $x_{n}=0$.

Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, set

$$
V(\lambda):=\operatorname{vol}\left(P_{\lambda}\right)
$$

Permutahedron \mathcal{P}_{210}

Permutahedron \mathcal{P}_{210}

Theorem (Postnikov'05)

$$
(n-1)!V(\lambda)=\left\langle\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right)^{n-1}\right\rangle_{n}
$$

Example

In the case $n=3$ and $\lambda_{3}=0$, we get

$$
\begin{aligned}
2 V\left(\lambda_{1}, \lambda_{2}, 0\right) & =\left\langle\lambda_{1}^{2} x_{1}^{2}+2 \lambda_{1} \lambda_{2} x_{1} x_{2}+\lambda_{2}^{2} x_{2}^{2}\right\rangle_{3} \\
& =\lambda_{1}^{2}\left\langle x_{1}^{2}\right\rangle_{3}+2 \lambda_{1} \lambda_{2}\left\langle x_{1} x_{2}\right\rangle_{3}+\lambda_{2}^{2}\left\langle x_{2}^{2}\right\rangle_{3} \\
& =\lambda_{1}^{2}+2 \lambda_{1} \lambda_{2}-2 \lambda_{2}^{2} .
\end{aligned}
$$

Alex Woo: Compute the class of the Peterson variety in terms of Schubert classes.

We translate this question into an equivalent form that involves studying polynomials modulo a specific ideal.

Let $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ denote the k th elementary symmetric polynomial.

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}
$$

$$
I_{n}=\text { ideal in } \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \text { generated by the } e_{k}
$$

The (type A) coinvariant algebra is the quotient $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$.
By work of Borel, this quotient is isomorphic to the integer cohomology ring of the complete flag variety.

Theorem (Anderson-Tymoczko'07)
The class of the Peterson variety is represented by

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)
$$

Theorem (Anderson-Tymoczko'07)
The class of the Peterson variety is represented by

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)
$$

Here is A. Woo's question reformulated:
Reduce the product above mod I_{n} and expand in terms of representatives of Schubert classes

Theorem (Anderson-Tymoczko'07)
The class of the Peterson variety is represented by

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)
$$

Here is A. Woo's question reformulated:
Reduce the product above mod I_{n} and expand in terms of representatives of Schubert classes aka Schubert polynomials.

(Reduced) Pipe dreams aka rc-graphs

To build a pipe dream for $w \in S_{n}$, draw the staircase $(n, \ldots, 1)$, enumerate its rows from 1 through n and columns from $w(1)$ through $w(n)$. Fill in the internal squares with crossing tiles \square or elbow tiles \square so that

- i connects to $w(i)$,
- two strands intersect at most once.

Figure: A reduced pipe dream for $w=1432$.

Given a reduced pipe dream D, set

$$
\mathbf{x}_{D}:=\prod_{\text {crossings } c \in D} x_{\text {row }(c)}
$$

Figure: A pipe dream D with $\mathbf{x}_{D}=x_{1} x_{2} x_{3}$.

The code of $w \in S_{n}$ is the weak composition $\left(c_{1}, \ldots, c_{n}\right)$ where

$$
c_{i}=\left\{j>i \mid w_{i}>w_{j}\right\}
$$

For instance, if $w=1432$, then $\operatorname{code}(w)=(0,2,1,0)$.
The bottom pipe dream for w is attached naturally to code (w).

Figure: The bottom pipe dream for $w=1432$.

$$
\operatorname{PD}(w):=\{\text { reduced pipe dreams for } w\} .
$$

Definition

For $w \in S_{n}$, the Schubert polynomial $\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right)$ is defined as

$$
\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right):=\sum_{D \in \operatorname{PD}(w)} \mathbf{x}_{D}
$$

Reduced pipe dreams for $w=1432$

$$
\mathfrak{S}_{1432}=x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1}^{2} x_{2}
$$

Henceforth, for $w \in S_{n}$ with $\ell(w)=n-1$, set

$$
a_{w}:=\left\langle\mathfrak{S}_{w}\right\rangle_{n}
$$

Theorem (Nadeau-T.'19)

The a_{w} give coefficients for Schuberts in the class of the Peterson.

Henceforth, for $w \in S_{n}$ with $\ell(w)=n-1$, set

$$
a_{w}:=\left\langle\mathfrak{S}_{w}\right\rangle_{n}
$$

Theorem (Nadeau-T.'19)

The a_{w} give coefficients for Schuberts in the class of the Peterson.

Geometry says $a_{w} \geq 0$.

Henceforth, for $w \in S_{n}$ with $\ell(w)=n-1$, set

$$
a_{w}:=\left\langle\mathfrak{S}_{w}\right\rangle_{n}
$$

Theorem (Nadeau-T.'19)

The a_{w} give coefficients for Schuberts in the class of the Peterson.

Geometry says $a_{w} \geq 0$. In fact

- $a_{w}>0$ conjecturally. Also conjectured by Harada et al.
- $a_{w}=a_{w^{-1}}$ conjecturally.
- $a_{w}=a_{w_{0}} w w_{0}$. Straightforward to establish.

We need to reduce

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)=x_{1}-x_{3}
$$

modulo ideal generated by $x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$, and $x_{1} x_{2} x_{3}$.

We need to reduce

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)=x_{1}-x_{3}
$$

modulo ideal generated by $x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$, and $x_{1} x_{2} x_{3}$.

$$
x_{1}-x_{3} \equiv x_{1}+\left(x_{1}+x_{2}\right)=1 \mathfrak{S}_{213}+1 \mathfrak{S}_{132}
$$

We need to reduce

$$
\prod_{j-i>1}\left(x_{i}-x_{j}\right)=x_{1}-x_{3}
$$

modulo ideal generated by $x_{1}+x_{2}+x_{3}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$, and $x_{1} x_{2} x_{3}$.

$$
x_{1}-x_{3} \equiv x_{1}+\left(x_{1}+x_{2}\right)=1 \mathfrak{S}_{213}+1 \mathfrak{S}_{132}
$$

$$
\begin{aligned}
& \left\langle\mathfrak{S}_{231}\right\rangle_{3}=\left\langle x_{1} x_{2}\right\rangle_{3}=1 \\
& \left\langle\mathfrak{S}_{312}\right\rangle_{3}=\left\langle x_{1}^{2}\right\rangle_{3}=1
\end{aligned}
$$

Find a manifestly positive combinatorial rule for a_{w}. Bonus points if it reflects invariance under inverses and/or conjugation by w_{0}.

Find a manifestly positive combinatorial rule for a_{w}. Bonus points if it reflects invariance under inverses and/or conjugation by w_{0}.

Naive idea: Use divided symmetrization of monomials and BJS expansion of Schuberts.

Results in a signed formula, and yet instructive.

Call $w \in S_{n}$ with $\ell(w)=n-1$ a Catalan permutation if the bottom pipe dream of w has at least i crosses in the first i diagonals for $1 \leq i \leq n-1$.

Figure: The bottom pipe dream for $w=24153$.

Call $w \in S_{n}$ with $\ell(w)=n-1$ a Catalan permutation if the bottom pipe dream of w has at least i crosses in the first i diagonals for $1 \leq i \leq n-1$.

Figure: The bottom pipe dream for $w=24153$.

Call $w \in S_{n}$ with $\ell(w)=n-1$ a Catalan permutation if the bottom pipe dream of w has at least i crosses in the first i diagonals for $1 \leq i \leq n-1$.

Figure: The bottom pipe dream for $w=24153$.

Call $w \in S_{n}$ with $\ell(w)=n-1$ a Catalan permutation if the bottom pipe dream of w has at least i crosses in the first i diagonals for $1 \leq i \leq n-1$.

Figure: The bottom pipe dream for $w=24153$.

Call $w \in S_{n}$ with $\ell(w)=n-1$ a Catalan permutation if the bottom pipe dream of w has at least i crosses in the first i diagonals for $1 \leq i \leq n-1$.

Figure: The bottom pipe dream for $w=24153$.

Catalan permutations

Theorem (Nadeau-T.'19)
If $w \in S_{n}$ is Catalan, then

$$
\left\langle\mathfrak{S}_{w}\right\rangle_{n}=|\mathrm{PD}(w)|=\mathfrak{S}_{w}\left(1^{n}\right)
$$

Theorem (Nadeau-T.'19)

If $w \in S_{n}$ is Catalan, then

$$
\left\langle\mathfrak{S}_{w}\right\rangle_{n}=|\mathrm{PD}(w)|=\mathfrak{S}_{w}\left(1^{n}\right)
$$

If w is Catalan then so is w^{-1}, and so $\left\langle\mathfrak{S}_{w}\right\rangle_{n}=\left\langle\mathfrak{S}_{w^{-1}}\right\rangle_{n}$ says that $\mathrm{PD}(w)=\mathrm{PD}\left(w^{-1}\right)$.

Given partition $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{k}\right)$, a semistandard Young tableau T of shape λ is a filling of the Young diagram of λ so that rows increase weakly and columns increase strictly.

4				
2	2			
1	1	$	$	
:---				

Figure: A semistandard Young tableau of shape (1, 2, 3).

$$
s_{\lambda}\left(x_{1}, \ldots, x_{m}\right):=\sum_{T \in \operatorname{SSYT}_{\leq m}(\lambda)} \mathbf{x}^{\operatorname{cont}(T)}
$$

A standard Young tableau of shape λ is one where all numbers from 1 through $|\lambda|$ are used precisely once.

A descent in a standard Young tableau is an entry i such that $i+1$ occupies a row strictly above.

9		
4		
3	6	7
1	2	5

Figure: An SYT with descent set $\{2,3,5,8\}$.

Theorem (Nadeau-T.'19)

$$
\left\langle s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)\right\rangle_{n}=\#\{\text { SYTs of shape } \lambda \text { with } k-1 \text { descents }\}
$$

Example

$$
\begin{array}{|l|l|}
\hline \begin{array}{|l|l|}
\hline 3 & \\
\hline 1 & 2 \\
\hline
\end{array} & \begin{array}{|l}
2 \\
\hline
\end{array} \\
& \\
s_{12}\left(x_{1}, x_{2}\right) & =2, \\
s_{12}\left(x_{1}, x_{2}, x_{3}\right) & =0 .
\end{array}
$$

Descents showing up is a hint that quasisymmetric functions are in the background.

$$
\mathbf{x}:=\left\{x_{1}, x_{2}, \ldots\right\} .
$$

The ring of quasisymmetric functions QSym is the \mathbb{Z}-linear span of M_{α} defined as

$$
M_{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}:=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}} .
$$

The fundamental quasisymmetric function F_{α} is defined as

$$
\begin{gathered}
F_{\alpha}:=\sum_{\beta \preccurlyeq \alpha} M_{\beta} . \\
M_{312}=x_{1}^{3} x_{2}^{1} x_{3}^{2}+x_{1}^{3} x_{3}^{1} x_{4}^{2}+x_{2}^{3} x_{3}^{1} x_{4}^{2}+\cdots, \\
F_{311}=M_{311}+M_{1211}+M_{2111}+M_{11111} .
\end{gathered}
$$

If we set $x_{i}=0$ for all $i>m$ in a quasisymmetric function, we obtain a quasisymmetric polynomial in $\mathbf{x}_{m}=\left\{x_{1}, \ldots, x_{m}\right\}$.

Theorem (Nadeau-T.'19)

Given $\alpha \vDash n-1$ and $m \leq n$, we have

$$
\left\langle F_{\alpha}\left(\mathbf{x}_{m}\right)\right\rangle_{n}=\delta_{m, \ell(\alpha)} .
$$

The divided symmetrization for Schur polynomials follows from the well-known expansion of Schur functions into fundamental quasisymmetrics.

$$
s_{\lambda}=\sum_{T \in \operatorname{SYT}(\lambda)} F_{\operatorname{comp}(\operatorname{des}(T))}
$$

$$
J_{n}=\left\langle F_{\alpha}\left(x_{1}, \ldots, x_{n}\right) \text { where }\right| \alpha|\geq 1\rangle .
$$

Note that the coinvariant ideal $I_{n} \subset J_{n}$.

Theorem (Nadeau-T.' 19)

For $f \in J_{n}$ homogeneous of degree $n-1$,

$$
\langle f\rangle_{n}=0 .
$$

$$
J_{n}=\left\langle F_{\alpha}\left(x_{1}, \ldots, x_{n}\right) \text { where }\right| \alpha|\geq 1\rangle .
$$

Note that the coinvariant ideal $I_{n} \subset J_{n}$.

Theorem (Nadeau-T.'19)

For $f \in J_{n}$ homogeneous of degree $n-1$,

$$
\langle f\rangle_{n}=0
$$

Upshot: Computing $\langle f\rangle_{n}$ could be facilitated by expanding f $\bmod J_{n}$ in a DS-friendly basis for the quotient $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / J_{n}$.

Theorem (Aval-Bergeron-Bergeron'04)

We have the following monomial basis \mathcal{B}_{n} for $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / J_{n}$:

$$
\mathcal{B}_{n}=\left\{\mathbf{x}_{P} \text { where } P \text { is }(n-1, k) \text {-subdiagonal for some } k\right\} .
$$

1

x_{2}

x_{3}

$x_{2} x_{3}$

x_{3}^{2}

Figure: The ABB monomial basis for $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right] / J_{3}$.

$$
\left|\mathcal{B}_{n}\right|=\text { Cat }_{n} .
$$

Call degree $n-1$ monomials in \mathcal{B}_{n} as anti-Catalan monomials. Their DS is $(-1)^{n-1}$.

Theorem (Nadeau-T.'19)

Given homogeneous f of degree $n-1$, express it as $g+h$ where $h \in J_{n}$ and g is a linear combination of anti-Catalan monomials.
Then

$$
\langle f\rangle_{n}=(-1)^{n-1} g\left(1^{n}\right)
$$

Theorem (Nadeau-T.'19)

$$
\sum_{\substack{w \in S_{n} \\ \ell(w)=n-1}} \mathfrak{S}_{w w_{0}}\left(1^{n}\right)\left\langle\mathfrak{S}_{w}\right\rangle_{n}=n^{n-2}
$$

Proof involves:

- Cauchy identity of double Schuberts;
- LHS is the constant term in $\left\langle\prod_{1 \leq i \leq n}\left(1+x_{i}\right)^{n-i}\right\rangle_{n}$;
- Eventually need to count lattice points in the permutahedron $P_{(n-2, \ldots, 1,0,0)}$, which equals the volume of the standard permutahedron $P_{(n-1, \ldots, 1,0)}$.

Thank you for listening!

Given nonnegative integers $k \leq n$, a lattice path from $(0,0)$ to (n, k) is called (n, k)-subdiagonal if it stays below the line $y=x$.

Figure: $\mathrm{A}(5,2)$-subdiagonal path P.

Given nonnegative integers $k \leq n$, a lattice path from $(0,0)$ to (n, k) is called (n, k)-subdiagonal if it stays below the line $y=x$.

Figure: $\mathrm{A}(5,2)$-subdiagonal path P.

Given nonnegative integers $k \leq n$, a lattice path from $(0,0)$ to (n, k) is called (n, k)-subdiagonal if it stays below the line $y=x$.

Figure: $\mathrm{A}(5,2)$-subdiagonal path P.

Given nonnegative integers $k \leq n$, a lattice path from $(0,0)$ to (n, k) is called (n, k)-subdiagonal if it stays below the line $y=x$.

Figure: $\mathrm{A}(5,2)$-subdiagonal path P.

The monomial x_{P} attached to P is $x_{3} x_{5}$.

Schuberts modulo quasisymmetrics

Example

$$
\begin{aligned}
\mathfrak{S}_{321} & =x_{1}^{2} x_{2}=F_{21}\left(x_{1}, x_{2}\right) \\
& =F_{21}\left(\mathbf{x}_{4}\right)-F_{2}\left(\mathbf{x}_{4}\right) F_{1}\left(x_{3}, x_{4}\right)+F_{1}\left(\mathbf{x}_{4}\right) F_{2}\left(x_{3}, x_{4}\right)-F_{21}\left(x_{3}, x_{4}\right) . \\
& \equiv-x_{3}^{2} x_{4} \bmod J_{4}
\end{aligned}
$$

Schuberts modulo quasisymmetrics

Example

$$
\begin{aligned}
\mathfrak{S}_{321} & =x_{1}^{2} x_{2}=F_{21}\left(x_{1}, x_{2}\right) \\
& =F_{21}\left(\mathbf{x}_{4}\right)-F_{2}\left(\mathbf{x}_{4}\right) F_{1}\left(x_{3}, x_{4}\right)+F_{1}\left(\mathbf{x}_{4}\right) F_{2}\left(x_{3}, x_{4}\right)-F_{21}\left(x_{3}, x_{4}\right) . \\
& \equiv-x_{3}^{2} x_{4} \bmod J_{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathfrak{S}_{1 \times 321} & =x_{2}^{2} x_{3}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{2}^{2} \\
& =F_{21}\left(x_{1}, x_{2}, x_{3}\right)+F_{12}\left(x_{1}, x_{2}\right) \\
& \equiv-x_{3} x_{4}^{2} \bmod J_{4}
\end{aligned}
$$

Schuberts modulo quasisymmetrics

Example

$$
\begin{aligned}
\mathfrak{S}_{321} & =x_{1}^{2} x_{2}=F_{21}\left(x_{1}, x_{2}\right) \\
& =F_{21}\left(\mathbf{x}_{4}\right)-F_{2}\left(\mathbf{x}_{4}\right) F_{1}\left(x_{3}, x_{4}\right)+F_{1}\left(\mathbf{x}_{4}\right) F_{2}\left(x_{3}, x_{4}\right)-F_{21}\left(x_{3}, x_{4}\right) . \\
& \equiv-x_{3}^{2} x_{4} \bmod J_{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathfrak{S}_{1 \times 321} & =x_{2}^{2} x_{3}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{2}^{2} \\
& =F_{21}\left(x_{1}, x_{2}, x_{3}\right)+F_{12}\left(x_{1}, x_{2}\right) \\
& \equiv-x_{3} x_{4}^{2} \bmod J_{4}
\end{aligned}
$$

Thus $\left\langle\mathfrak{S}_{1 \times 321}\right\rangle_{4}=\left\langle\mathfrak{S}_{321}\right\rangle_{4}=1$.

Conjecture (Nadeau-T.'19)

For $w \in S_{n}$ satisfying $\ell(w) \leq n-1$, the polynomial $(-1)^{\ell(w)} \mathfrak{S}_{w}$ reduced modulo J_{n} expands positively in the ABB basis.

Fix permutation w, let $N:=\ell(w)+1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_{w} modulo J_{m} for $m \geq N$.

Fix permutation w, let $N:=\ell(w)+1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_{w} modulo J_{m} for $m \geq N$.

Example

Set $w=2413$. For $4 \leq m \leq 7$, we have the following representatives for $\mathfrak{S}_{w} \bmod J_{m}$

$$
\begin{aligned}
& -x_{3}^{2} x_{4}^{1}-x_{3}^{1} x_{4}^{2}, \\
& -x_{3}^{2} x_{4}^{1}-x_{3}^{1} x_{4}^{2}-x_{3}^{2} x_{5}-2 x_{3} x_{4} x_{5}-x_{4}^{2} x_{5}-x_{3} x_{5}^{2}-x_{4} x_{5}^{2}, \\
& -F_{12}\left(x_{3}, x_{4}, x_{5}, x_{6}\right)-F_{21}\left(x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& -F_{12}\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)-F_{21}\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) .
\end{aligned}
$$

Fix permutation w, let $N:=\ell(w)+1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_{w} modulo J_{m} for $m \geq N$.

Example

Set $w=2413$. For $4 \leq m \leq 7$, we have the following representatives for $\mathfrak{S}_{w} \bmod J_{m}$

$$
\begin{aligned}
& -x_{3}^{2} x_{4}^{1}-x_{3}^{1} x_{4}^{2}, \\
& -x_{3}^{2} x_{4}^{1}-x_{3}^{1} x_{4}^{2}-x_{3}^{2} x_{5}-2 x_{3} x_{4} x_{5}-x_{4}^{2} x_{5}-x_{3} x_{5}^{2}-x_{4} x_{5}^{2}, \\
& -F_{12}\left(x_{3}, x_{4}, x_{5}, x_{6}\right)-F_{21}\left(x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& -F_{12}\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)-F_{21}\left(x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) .
\end{aligned}
$$

From the viewpoint of DS, only the first expansion is pertinent. That said, maybe the limit object has a nicer description and we can truncate to compute the relevant DS.

Consider the quotient $\mathbb{Q}[\mathbf{x}] / J_{\infty}$. By work of Aval-Bergeron, this has a basis indexed by subdiagonal paths.

Conjecture (Nadeau-T.'19)

For a permutation w, the polynomial $(-1)^{\ell(w)} \mathfrak{S}_{w}$ reduced modulo J_{∞} expands positively in terms of backstable limits of summands in the BJS formula.

How does divided symmetrization of Schubert polynomials show up in the Anderson-Tymoczko class of the Peterson variety?

- Suppose $\prod_{j-i>1}\left(x_{i}-x_{j}\right)=\sum_{w \in S_{n}} a_{w} \mathfrak{S}_{w}+G$ where $G \in I_{n}$.
- Infer that

$$
\frac{\mathfrak{S}_{u w_{0}} \Delta\left(x_{1}, \ldots, x_{n}\right)}{\prod_{1 \leq i \leq n-1}\left(x_{i}-x_{i+1}\right)}=\sum_{w \in S_{n}} a_{w} \mathfrak{S}_{u w_{0}} \mathfrak{S}_{w}+G \mathfrak{S}_{u w_{0}}
$$

- Antisymmetrize both sides to conclude that

$$
\left\langle\mathfrak{S}_{u w_{0}}\right\rangle_{n}=a_{u}
$$

