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Postnikov’s divided symmetrization

Given f ∈ C[x1, . . . , xn], the divided symmetrization of f , denoted
by 〈f 〉n, is:

〈f 〉n =
∑
σ∈Sn

σ ·

(
f∏

1≤i≤n−1(xi − xi+1)

)
.

Example

〈1〉2 =
1

x1 − x2
+

1

x2 − x1
= 0.

〈x1〉2 =
x1

x1 − x2
+

x2
x2 − x1

= 1.

〈x21x2〉3 =
∑
σ∈S3

σ ·
(

x21x2
(x1 − x2)(x2 − x3)

)
= x1 + x2 + x3.



Some basic observations

〈f 〉n =
∑
σ∈Sn

σ ·

(
f∏

1≤i≤n−1(xi − xi+1)

)
.

1 〈f 〉n is a symmetric polynomial in x1, . . . , xn.

2 If f = gh where g is symmetric, then 〈f 〉n = g〈h〉n.

3 deg f < n − 1 =⇒ 〈f 〉n = 0.

4 deg f = n − 1 implies 〈f 〉n is a scalar!

If f ∈ Z[x1, . . . , xn] and deg f = n − 1, does 〈f 〉n have a deeper
meaning?
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Usual permutahedra

Definition (Usual permutahedra)

For λ = (λ1 ≥ · · · ≥ λn) ∈ Rn, the permutahedron Pλ is the
convex hull of the Sn-orbit of λ.



Volumes of permutahedra

Pλ lies on the hyperplane defined by the sum of the λi .

Thus, the dimension of Pλ is at most n − 1.

Definition

For a polytope P lying in a hyperplane in Rn, define its volume
vol(P) as the usual (n − 1)-dimensional volume of the projection
of P onto xn = 0.

Given λ = (λ1, . . . , λn), set

V (λ) := vol(Pλ).



Permutahedron P210



Permutahedron P210



Divided symmetrization and volumes

Theorem (Postnikov’05)

(n − 1)!V (λ) = 〈(
n∑

i=1

λixi )
n−1〉n

Example

In the case n = 3 and λ3 = 0, we get

2V (λ1, λ2, 0) = 〈λ21x21 + 2λ1λ2x1x2 + λ22x
2
2 〉3

= λ21〈x21 〉3 + 2λ1λ2〈x1x2〉3 + λ22〈x22 〉3
= λ21 + 2λ1λ2 − 2λ22.



The class of the Peterson variety

Alex Woo: Compute the class of the Peterson variety in terms of
Schubert classes.

We translate this question into an equivalent form that involves
studying polynomials modulo a specific ideal.



The coinvariant algebra

Let ek(x1, . . . , xn) denote the kth elementary symmetric
polynomial.

ek(x1, . . . , xn) :=
∑

1≤i1<···<ik≤n
xi1 · · · xik

In = ideal in Z[x1, . . . , xn] generated by the ek .

The (type A) coinvariant algebra is the quotient Z[x1, . . . , xn]/In.

By work of Borel, this quotient is isomorphic to the integer
cohomology ring of the complete flag variety.



The class of the Peterson variety

Theorem (Anderson-Tymoczko’07)

The class of the Peterson variety is represented by∏
j−i>1

(xi − xj).

Here is A. Woo’s question reformulated:

Reduce the product above mod In and expand in terms of repre-
sentatives of Schubert classes

aka Schubert polynomials.
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(Reduced) Pipe dreams aka rc-graphs

To build a pipe dream for w ∈ Sn, draw the staircase (n, . . . , 1),
enumerate its rows from 1 through n and columns from w(1)

through w(n). Fill in the internal squares with crossing tiles or

elbow tiles so that

i connects to w(i),

two strands intersect at most once.

1 4 3 2

1

2

3

4

Figure: A reduced pipe dream for w = 1432.



Reduced pipe dreams and associated monomials

Given a reduced pipe dream D, set

xD :=
∏

crossings c ∈ D

xrow(c)

1 4 3 2

1

2

3

4

Figure: A pipe dream D with xD = x1x2x3.



Bottom pipe dreams and codes

The code of w ∈ Sn is the weak composition (c1, . . . , cn) where

ci = {j > i |wi > wj}.

For instance, if w = 1432, then code(w) = (0, 2, 1, 0).

The bottom pipe dream for w is attached naturally to code(w).

1 4 3 2

1

2

3

4

Figure: The bottom pipe dream for w = 1432.



Schubert polynomial (BJS or BB definition)

PD(w) := {reduced pipe dreams for w}.

Definition

For w ∈ Sn, the Schubert polynomial Sw (x1, . . . , xn) is defined as

Sw (x1, . . . , xn) :=
∑

D∈PD(w)

xD .



Reduced pipe dreams for w = 1432

1 4 3 2
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1 4 3 2
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3

4

1 4 3 2

1

2

3

4

1 4 3 2

1

2

3

4

S1432 = x22x3 + x1x2x3 + x1x
2
2 + x21x3 + x21x2



Some empirical observations

Henceforth, for w ∈ Sn with `(w) = n − 1, set

aw := 〈Sw 〉n.

Theorem (Nadeau-T.’19)

The aw give coefficients for Schuberts in the class of the Peterson.

Geometry says aw ≥ 0. In fact

aw > 0 conjecturally. Also conjectured by Harada et al.

aw = aw−1 conjecturally.

aw = aw0ww0 . Straightforward to establish.
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An example: n = 3

We need to reduce ∏
j−i>1

(xi − xj) = x1 − x3

modulo ideal generated by x1 + x2 + x3, x1x2 + x1x3 + x2x3, and
x1x2x3.

x1−x3 ≡ x1+(x1 + x2) = 1S213 + 1S132.

〈S231〉3 = 〈x1x2〉3 = 1

〈S312〉3 = 〈x21 〉3 = 1.
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The real question

Find a manifestly positive combinatorial rule for aw . Bonus points
if it reflects invariance under inverses and/or conjugation by w0.

Naive idea: Use divided symmetrization of monomials and BJS
expansion of Schuberts.

Results in a signed formula, and yet instructive.
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Catalan permutations

Call w ∈ Sn with `(w) = n − 1 a Catalan permutation if the
bottom pipe dream of w has at least i crosses in the first i
diagonals for 1 ≤ i ≤ n − 1.

1 2 3 4 5
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3

Figure: The bottom pipe dream for w = 24153.
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Catalan permutations

Theorem (Nadeau-T.’19)

If w ∈ Sn is Catalan, then

〈Sw 〉n = |PD(w)|= Sw (1n).

If w is Catalan then so is w−1, and so 〈Sw 〉n = 〈Sw−1〉n says that
PD(w) = PD(w−1).
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Schuberts of grassmannian permutations (Schurs)

Given partition λ = (λ1 ≤ · · · ≤ λk), a semistandard Young
tableau T of shape λ is a filling of the Young diagram of λ so that
rows increase weakly and columns increase strictly.

4
2 2
1 1 3

Figure: A semistandard Young tableau of shape (1, 2, 3).

sλ(x1, . . . , xm) :=
∑

T∈SSYT≤m(λ)

xcont(T ).



DS of Schur polynomials

A standard Young tableau of shape λ is one where all numbers
from 1 through |λ| are used precisely once.

A descent in a standard Young tableau is an entry i such that i + 1
occupies a row strictly above.

9
4
3 6 7
1 2 5 8

Figure: An SYT with descent set {2, 3, 5, 8}.



DS of Schur polynomials

Theorem (Nadeau-T.’19)

〈sλ(x1, . . . , xk)〉n = #{SYTs of shape λ with k − 1 descents}

Example

3
1 2

2
1 3

s12(x1, x2) = 2,

s12(x1, x2, x3) = 0.

Descents showing up is a hint that quasisymmetric functions are in
the background.



Quasisymmetric functions and their truncations

x := {x1, x2, . . . }.

The ring of quasisymmetric functions QSym is the Z-linear span of
Mα defined as

M(α1,...,αk ) :=
∑

i1<···<ik

xα1
i1
· · · xαk

ik
.

The fundamental quasisymmetric function Fα is defined as

Fα :=
∑
β4α

Mβ.

M312 = x31x
1
2x

2
3 + x31x

1
3x

2
4 + x32x

1
3x

2
4 + · · · ,

F311 = M311 + M1211 + M2111 + M11111.



Quasisymmetric functions and their truncations

If we set xi = 0 for all i > m in a quasisymmetric function, we
obtain a quasisymmetric polynomial in xm = {x1, . . . , xm}.

Theorem (Nadeau-T.’19)

Given α � n − 1 and m ≤ n, we have

〈Fα(xm)〉n = δm,`(α).



DS of Schur polynomials

The divided symmetrization for Schur polynomials follows from the
well-known expansion of Schur functions into fundamental
quasisymmetrics.

sλ =
∑

T∈SYT(λ)

Fcomp(des(T ))



More quasisymmetric functions

Jn = 〈Fα(x1, . . . , xn) where |α| ≥ 1〉.

Note that the coinvariant ideal In ⊂ Jn.

Theorem (Nadeau-T.’19)

For f ∈ Jn homogeneous of degree n − 1,

〈f 〉n = 0.

Upshot: Computing 〈f 〉n could be facilitated by expanding f
mod Jn in a DS-friendly basis for the quotient Q[x1, . . . , xn]/Jn.
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The Aval-Bergeron-Bergeron basis

Theorem (Aval-Bergeron-Bergeron’04)

We have the following monomial basis Bn for Q[x1, . . . , xn]/Jn:

Bn = {xP where P is (n − 1, k)-subdiagonal for some k}.

1 x2 x3 x2x3 x23

Figure: The ABB monomial basis for Q[x1, x2, x3]/J3.

|Bn| = Catn.



General theorem

Call degree n − 1 monomials in Bn as anti-Catalan monomials.
Their DS is (−1)n−1.

Theorem (Nadeau-T.’19)

Given homogeneous f of degree n − 1, express it as g + h where
h ∈ Jn and g is a linear combination of anti-Catalan monomials.
Then

〈f 〉n = (−1)n−1g(1n).



A ‘strange’ relation

Theorem (Nadeau-T.’19)∑
w∈Sn

`(w)=n−1

Sww0(1n)〈Sw 〉n = nn−2.

Proof involves:

Cauchy identity of double Schuberts;

LHS is the constant term in 〈
∏

1≤i≤n(1 + xi )
n−i 〉n;

Eventually need to count lattice points in the permutahedron
P(n−2,...,1,0,0), which equals the volume of the standard
permutahedron P(n−1,...,1,0).



Thank you for listening!



Subdiagonal paths

Given nonnegative integers k ≤ n, a lattice path from (0, 0) to
(n, k) is called (n, k)-subdiagonal if it stays below the line y = x .

x3

x5

Figure: A (5, 2)-subdiagonal path P.

The monomial xP attached to P is x3x5.
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Schuberts modulo quasisymmetrics

Example

S321 = x21x2 = F21(x1, x2)

= F21(x4)− F2(x4)F1(x3, x4) + F1(x4)F2(x3, x4)− F21(x3, x4).

≡ −x23x4 mod J4

Example

S1×321 = x22x3 + x21x3 + x22x3 + x1x2x3 + x1x
2
2

= F21(x1, x2, x3) + F12(x1, x2)

≡ −x3x24 mod J4

Thus 〈S1×321〉4 = 〈S321〉4 = 1.
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Schuberts modulo quasisymmetrics

Conjecture (Nadeau-T.’19)

For w ∈ Sn satisfying `(w) ≤ n − 1, the polynomial
(−1)`(w)Sw reduced modulo Jn expands positively in the
ABB basis.



Schuberts modulo quasisymmetrics: stable limits

Fix permutation w , let N := `(w) + 1. Consider the sequence of
polynomials obtained by reducing Sw modulo Jm for m ≥ N.

Example

Set w = 2413. For 4 ≤ m ≤ 7, we have the following
representatives for Sw mod Jm

−x23x14 − x13x
2
4 ,

−x23x14 − x13x
2
4 − x23x5 − 2x3x4x5 − x24x5 − x3x

2
5 − x4x

2
5 ,

− F12(x3, x4, x5, x6)− F21(x3, x4, x5, x6)

− F12(x3, x4, x5, x6, x7)− F21(x3, x4, x5, x6, x7).

From the viewpoint of DS, only the first expansion is pertinent.
That said, maybe the limit object has a nicer description and we
can truncate to compute the relevant DS.
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Schuberts modulo QSym: infinitely many variables

Consider the quotient Q[x]/J∞. By work of Aval-Bergeron, this
has a basis indexed by subdiagonal paths.

Conjecture (Nadeau-T.’19)

For a permutation w , the polynomial (−1)`(w)Sw reduced
modulo J∞ expands positively in terms of backstable limits
of summands in the BJS formula.



DS and Peterson

How does divided symmetrization of Schubert polynomials show
up in the Anderson-Tymoczko class of the Peterson variety?

Suppose
∏

j−i>1(xi − xj) =
∑

w∈Sn awSw + G where G ∈ In.

Infer that

Suw0∆(x1, . . . , xn)∏
1≤i≤n−1(xi − xi+1)

=
∑
w∈Sn

awSuw0Sw + GSuw0 .

Antisymmetrize both sides to conclude that

〈Suw0〉n = au.


