Divided symmetrization, quasisymmetric functions and Schubert polynomials

Vasu Tewari University of Pennsylvania (joint with Philippe Nadeau, Université Lyon 1)

AMS Sectional Meeting Gainesville, 3rd November 2019

Postnikov's divided symmetrization

Given $f \in \mathbb{C}[x_1, \ldots, x_n]$, the divided symmetrization of f, denoted by $\langle f \rangle_n$, is:

$$\langle f \rangle_n = \sum_{\sigma \in S_n} \sigma \cdot \left(\frac{f}{\prod_{1 \le i \le n-1} (x_i - x_{i+1})} \right).$$

Example

$$\langle 1 \rangle_2 = \frac{1}{x_1 - x_2} + \frac{1}{x_2 - x_1} = 0.$$

$$\langle x_1 \rangle_2 = \frac{x_1}{x_1 - x_2} + \frac{x_2}{x_2 - x_1} = 1.$$

$$\langle x_1^2 x_2 \rangle_3 = \sum_{\sigma \in S_3} \sigma \cdot \left(\frac{x_1^2 x_2}{(x_1 - x_2)(x_2 - x_3)} \right) = x_1 + x_2 + x_3.$$

Some basic observations

$$\langle f \rangle_n = \sum_{\sigma \in S_n} \sigma \cdot \left(\frac{f}{\prod_{1 \le i \le n-1} (x_i - x_{i+1})} \right).$$

⟨f⟩_n is a symmetric polynomial in x₁,...,x_n.
If f = gh where g is symmetric, then ⟨f⟩_n = g⟨h⟩_n.
deg f < n - 1 ⇒ ⟨f⟩_n = 0.
deg f = n - 1 implies ⟨f⟩_n is a scalar!

Some basic observations

$$\langle f \rangle_n = \sum_{\sigma \in S_n} \sigma \cdot \left(\frac{f}{\prod_{1 \le i \le n-1} (x_i - x_{i+1})} \right).$$

⟨f⟩_n is a symmetric polynomial in x₁,..., x_n.
If f = gh where g is symmetric, then ⟨f⟩_n = g⟨h⟩_n.
deg f < n - 1 ⇒ ⟨f⟩_n = 0.
deg f = n - 1 implies ⟨f⟩_n is a scalar!

If $f \in \mathbb{Z}[x_1, \ldots, x_n]$ and deg f = n - 1, does $\langle f \rangle_n$ have a deeper meaning?

Usual permutahedra

Definition (Usual permutahedra)

For $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in \mathbb{R}^n$, the permutahedron \mathcal{P}_{λ} is the convex hull of the S_n -orbit of λ .

 \mathcal{P}_{λ} lies on the hyperplane defined by the sum of the λ_i .

Thus, the dimension of \mathcal{P}_{λ} is at most n-1.

Definition

For a polytope *P* lying in a hyperplane in \mathbb{R}^n , define its volume vol(*P*) as the usual (n - 1)-dimensional volume of the projection of *P* onto $x_n = 0$.

Given $\lambda = (\lambda_1, \ldots, \lambda_n)$, set

 $V(\lambda) \coloneqq \operatorname{vol}(P_{\lambda}).$

Permutahedron \mathcal{P}_{210}

Permutahedron \mathcal{P}_{210}

Theorem (Postnikov'05)

$$(n-1)!V(\lambda) = \langle (\sum_{i=1}^n \lambda_i x_i)^{n-1} \rangle_n$$

Example

In the case n = 3 and $\lambda_3 = 0$, we get

$$2V(\lambda_1, \lambda_2, 0) = \langle \lambda_1^2 x_1^2 + 2\lambda_1 \lambda_2 x_1 x_2 + \lambda_2^2 x_2^2 \rangle_3$$

= $\lambda_1^2 \langle x_1^2 \rangle_3 + 2\lambda_1 \lambda_2 \langle x_1 x_2 \rangle_3 + \lambda_2^2 \langle x_2^2 \rangle_3$
= $\lambda_1^2 + 2\lambda_1 \lambda_2 - 2\lambda_2^2.$

Alex Woo: Compute the class of the Peterson variety in terms of Schubert classes.

We translate this question into an equivalent form that involves studying polynomials modulo a specific ideal.

Let $e_k(x_1, \ldots, x_n)$ denote the *k*th elementary symmetric polynomial.

$$e_k(x_1,\ldots,x_n) \coloneqq \sum_{1 \le i_1 < \cdots < i_k \le n} x_{i_1} \cdots x_{i_k}$$

$$I_n = \text{ideal in } \mathbb{Z}[x_1, \ldots, x_n]$$
 generated by the e_k .

The (type A) coinvariant algebra is the quotient $\mathbb{Z}[x_1, \ldots, x_n]/I_n$.

By work of Borel, this quotient is isomorphic to the integer cohomology ring of the complete flag variety.

Theorem (Anderson-Tymoczko'07)

The class of the Peterson variety is represented by

$$\prod_{i=i>1}(x_i-x_j).$$

Theorem (Anderson-Tymoczko'07)

The class of the Peterson variety is represented by

$$\prod_{-i>1}(x_i-x_j).$$

Here is A. Woo's question reformulated:

Reduce the product above mod I_n and expand in terms of representatives of Schubert classes

Theorem (Anderson-Tymoczko'07)

The class of the Peterson variety is represented by

$$\prod_{-i>1}(x_i-x_j).$$

Here is A. Woo's question reformulated:

Reduce the product above mod I_n and expand in terms of representatives of Schubert classes aka Schubert polynomials.

(Reduced) Pipe dreams aka rc-graphs

To build a pipe dream for $w \in S_n$, draw the staircase $(n, \ldots, 1)$, enumerate its rows from 1 through *n* and columns from w(1)through w(n). Fill in the internal squares with crossing tiles \Box or elbow tiles \Box so that

- *i* connects to w(i),
- two strands intersect at most once.

Figure: A reduced pipe dream for w = 1432.

Reduced pipe dreams and associated monomials

Given a reduced pipe dream D, set

$$\mathbf{x}_D \coloneqq \prod_{\text{crossings } c \in D} x_{\text{row}(c)}$$

Figure: A pipe dream D with $\mathbf{x}_D = x_1 x_2 x_3$.

Bottom pipe dreams and codes

The code of $w \in S_n$ is the weak composition (c_1, \ldots, c_n) where

$$c_i = \{j > i | w_i > w_j\}.$$

For instance, if w = 1432, then code(w) = (0, 2, 1, 0).

The bottom pipe dream for w is attached naturally to code(w).

Figure: The bottom pipe dream for w = 1432.

Schubert polynomial (BJS or BB definition)

 $PD(w) := \{ \text{reduced pipe dreams for } w \}.$

Definition For $w \in S_n$, the Schubert polynomial $\mathfrak{S}_w(x_1, \dots, x_n)$ is defined as $\mathfrak{S}_w(x_1, \dots, x_n) \coloneqq \sum_{D \in \mathrm{PD}(w)} \mathbf{x}_D.$

Reduced pipe dreams for w = 1432

$$\mathfrak{S}_{1432} = x_2^2 x_3 + x_1 x_2 x_3 + x_1 x_2^2 + x_1^2 x_3 + x_1^2 x_2$$

Some empirical observations

Henceforth, for $w \in S_n$ with $\ell(w) = n - 1$, set

 $a_w \coloneqq \langle \mathfrak{S}_w \rangle_n.$

Theorem (Nadeau-T.'19)

The a_w give coefficients for Schuberts in the class of the Peterson.

Some empirical observations

Henceforth, for $w \in S_n$ with $\ell(w) = n - 1$, set

 $a_w \coloneqq \langle \mathfrak{S}_w \rangle_n.$

Theorem (Nadeau-T.'19)

The a_w give coefficients for Schuberts in the class of the Peterson.

Geometry says $a_w \ge 0$.

Some empirical observations

Henceforth, for $w \in S_n$ with $\ell(w) = n - 1$, set

 $a_w \coloneqq \langle \mathfrak{S}_w \rangle_n.$

Theorem (Nadeau-T.'19)

The a_w give coefficients for Schuberts in the class of the Peterson.

Geometry says $a_w \ge 0$. In fact

- $a_w > 0$ conjecturally. Also conjectured by Harada et al.
- $a_w = a_{w^{-1}}$ conjecturally.
- $a_w = a_{w_0 w w_0}$. Straightforward to establish.

We need to reduce

$$\prod_{j-i>1}(x_i-x_j)=x_1-x_3$$

modulo ideal generated by $x_1 + x_2 + x_3$, $x_1x_2 + x_1x_3 + x_2x_3$, and $x_1x_2x_3$.

We need to reduce

$$\prod_{j-i>1}(x_i-x_j)=x_1-x_3$$

modulo ideal generated by $x_1 + x_2 + x_3$, $x_1x_2 + x_1x_3 + x_2x_3$, and $x_1x_2x_3$.

$$x_1 - x_3 \equiv x_1 + (x_1 + x_2) = 1\mathfrak{S}_{213} + 1\mathfrak{S}_{132}.$$

We need to reduce

$$\prod_{j-i>1}(x_i-x_j)=x_1-x_3$$

modulo ideal generated by $x_1 + x_2 + x_3$, $x_1x_2 + x_1x_3 + x_2x_3$, and $x_1x_2x_3$.

$$x_1 - x_3 \equiv x_1 + (x_1 + x_2) = 1\mathfrak{S}_{213} + 1\mathfrak{S}_{132}.$$

$$\langle \mathfrak{S}_{231} \rangle_3 = \langle x_1 x_2 \rangle_3 = 1 \langle \mathfrak{S}_{312} \rangle_3 = \langle x_1^2 \rangle_3 = 1.$$

Find a manifestly positive combinatorial rule for a_w . Bonus points if it reflects invariance under inverses and/or conjugation by w_0 .

Find a manifestly positive combinatorial rule for a_w . Bonus points if it reflects invariance under inverses and/or conjugation by w_0 .

Naive idea: Use divided symmetrization of monomials and BJS expansion of Schuberts.

Results in a signed formula, and yet instructive.

Figure: The bottom pipe dream for w = 24153.

Figure: The bottom pipe dream for w = 24153.

Figure: The bottom pipe dream for w = 24153.

Figure: The bottom pipe dream for w = 24153.

Figure: The bottom pipe dream for w = 24153.

Theorem (Nadeau-T.'19)

If $w \in S_n$ is Catalan, then

$$\langle \mathfrak{S}_w \rangle_n = |\mathrm{PD}(w)| = \mathfrak{S}_w(1^n).$$

Theorem (Nadeau-T.'19)

If $w \in S_n$ is Catalan, then

$$\langle \mathfrak{S}_w \rangle_n = |\mathrm{PD}(w)| = \mathfrak{S}_w(1^n).$$

If w is Catalan then so is w^{-1} , and so $\langle \mathfrak{S}_w \rangle_n = \langle \mathfrak{S}_{w^{-1}} \rangle_n$ says that $\operatorname{PD}(w) = \operatorname{PD}(w^{-1})$.

Schuberts of grassmannian permutations (Schurs)

Given partition $\lambda = (\lambda_1 \leq \cdots \leq \lambda_k)$, a semistandard Young tableau T of shape λ is a filling of the Young diagram of λ so that rows increase weakly and columns increase strictly.

Figure: A semistandard Young tableau of shape (1, 2, 3).

$$s_{\lambda}(x_1,\ldots,x_m) \coloneqq \sum_{\mathcal{T} \in \mathrm{SSYT}_{\leq m}(\lambda)} \mathbf{x}^{\mathrm{cont}(\mathcal{T})}.$$

A standard Young tableau of shape λ is one where all numbers from 1 through $|\lambda|$ are used precisely once.

A descent in a standard Young tableau is an entry i such that i + 1 occupies a row strictly above.

Figure: An SYT with descent set $\{2, 3, 5, 8\}$.

DS of Schur polynomials

Theorem (Nadeau-T.'19)

$$\langle s_{\lambda}(x_1, \dots, x_k) \rangle_n = \#\{ SYTs \text{ of shape } \lambda \text{ with } k-1 \text{ descents} \}$$

Descents showing up is a hint that quasisymmetric functions are in the background.

Quasisymmetric functions and their truncations

 $\mathbf{x} \coloneqq \{x_1, x_2, \dots\}.$

The ring of quasisymmetric functions QSym is the \mathbb{Z} -linear span of M_{α} defined as

$$M_{(\alpha_1,\ldots,\alpha_k)} \coloneqq \sum_{i_1 < \cdots < i_k} x_{i_1}^{\alpha_1} \cdots x_{i_k}^{\alpha_k}.$$

The fundamental quasisymmetric function F_{α} is defined as

$$F_{\alpha} := \sum_{\beta \preccurlyeq \alpha} M_{\beta}.$$

$$\begin{split} M_{312} &= x_1^3 x_2^1 x_3^2 + x_1^3 x_3^1 x_4^2 + x_2^3 x_3^1 x_4^2 + \cdots, \\ F_{311} &= M_{311} + M_{1211} + M_{2111} + M_{11111}. \end{split}$$

If we set $x_i = 0$ for all i > m in a quasisymmetric function, we obtain a quasisymmetric polynomial in $\mathbf{x}_m = \{x_1, \dots, x_m\}$.

Theorem (Nadeau-T.'19)

Given $\alpha \vDash n-1$ and $m \le n$, we have

$$\langle F_{\alpha}(\mathbf{x}_m) \rangle_n = \delta_{m,\ell(\alpha)}.$$

The divided symmetrization for Schur polynomials follows from the well-known expansion of Schur functions into fundamental quasisymmetrics.

$$s_{\lambda} = \sum_{T \in \mathrm{SYT}(\lambda)} F_{\mathrm{comp}(\mathrm{des}(T))}$$

$$J_n = \langle F_\alpha(x_1, \ldots, x_n) \text{ where } |\alpha| \ge 1 \rangle.$$

Note that the coinvariant ideal $I_n \subset J_n$.

Theorem (Nadeau-T.'19)

For $f \in J_n$ homogeneous of degree n - 1,

$$\langle f \rangle_n = 0.$$

$$J_n = \langle F_\alpha(x_1, \ldots, x_n) \text{ where } |\alpha| \ge 1 \rangle.$$

Note that the coinvariant ideal $I_n \subset J_n$.

Theorem (Nadeau-T.'19)

For $f \in J_n$ homogeneous of degree n - 1,

$$\langle f \rangle_n = 0.$$

Upshot: Computing $\langle f \rangle_n$ could be facilitated by expanding f mod J_n in a DS-friendly basis for the quotient $\mathbb{Q}[x_1, \ldots, x_n]/J_n$.

Theorem (Aval-Bergeron-Bergeron'04)

We have the following monomial basis \mathcal{B}_n for $\mathbb{Q}[x_1, \ldots, x_n]/J_n$:

 $\mathcal{B}_n = \{\mathbf{x}_P \text{ where } P \text{ is } (n-1,k)\text{-subdiagonal for some } k\}.$

Figure: The ABB monomial basis for $\mathbb{Q}[x_1, x_2, x_3]/J_3$.

$$|\mathcal{B}_n| = \operatorname{Cat}_n.$$

Call degree n-1 monomials in \mathcal{B}_n as anti-Catalan monomials. Their DS is $(-1)^{n-1}$.

Theorem (Nadeau-T.'19)

Given homogeneous f of degree n - 1, express it as g + h where $h \in J_n$ and g is a linear combination of anti-Catalan monomials. Then

$$\langle f \rangle_n = (-1)^{n-1} g(1^n).$$

Theorem (Nadeau-T.'19)

$$\sum_{\substack{w\in \mathcal{S}_n\ \ell(w)=n-1}}\mathfrak{S}_{ww_0}(1^n)\langle\mathfrak{S}_w
angle_n=n^{n-2}.$$

Proof involves:

- Cauchy identity of double Schuberts;
- LHS is the constant term in $\langle \prod_{1 \le i \le n} (1 + x_i)^{n-i} \rangle_n$;
- Eventually need to count lattice points in the permutahedron $P_{(n-2,...,1,0,0)}$, which equals the volume of the standard permutahedron $P_{(n-1,...,1,0)}$.

Thank you for listening!

Given nonnegative integers $k \le n$, a lattice path from (0,0) to (n,k) is called (n,k)-subdiagonal if it stays below the line y = x.

Figure: A (5,2)-subdiagonal path P.

Given nonnegative integers $k \le n$, a lattice path from (0,0) to (n,k) is called (n,k)-subdiagonal if it stays below the line y = x.

Figure: A (5,2)-subdiagonal path P.

Given nonnegative integers $k \le n$, a lattice path from (0,0) to (n,k) is called (n,k)-subdiagonal if it stays below the line y = x.

Figure: A (5,2)-subdiagonal path P.

Given nonnegative integers $k \le n$, a lattice path from (0,0) to (n,k) is called (n,k)-subdiagonal if it stays below the line y = x.

Figure: A (5,2)-subdiagonal path P.

The monomial \mathbf{x}_P attached to P is x_3x_5 .

Schuberts modulo quasisymmetrics

Example

$$\begin{split} \mathfrak{S}_{321} &= x_1^2 x_2 = F_{21}(x_1, x_2) \\ &= F_{21}(\mathbf{x}_4) - F_2(\mathbf{x}_4) F_1(x_3, x_4) + F_1(\mathbf{x}_4) F_2(x_3, x_4) - F_{21}(x_3, x_4). \\ &\equiv -x_3^2 x_4 \mod J_4 \end{split}$$

Schuberts modulo quasisymmetrics

Example

$$\begin{split} \mathfrak{S}_{321} &= x_1^2 x_2 = F_{21}(x_1, x_2) \\ &= F_{21}(\mathbf{x}_4) - F_2(\mathbf{x}_4) F_1(x_3, x_4) + F_1(\mathbf{x}_4) F_2(x_3, x_4) - F_{21}(x_3, x_4). \\ &\equiv -x_3^2 x_4 \mod J_4 \end{split}$$

Example

$$\mathfrak{S}_{1\times 321} = x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2 x_3 + x_1 x_2^2$$

= $F_{21}(x_1, x_2, x_3) + F_{12}(x_1, x_2)$
 $\equiv -x_3 x_4^2 \mod J_4$

Schuberts modulo quasisymmetrics

Example

$$\begin{split} \mathfrak{S}_{321} &= x_1^2 x_2 = F_{21}(x_1, x_2) \\ &= F_{21}(\mathbf{x}_4) - F_2(\mathbf{x}_4) F_1(x_3, x_4) + F_1(\mathbf{x}_4) F_2(x_3, x_4) - F_{21}(x_3, x_4). \\ &\equiv -x_3^2 x_4 \mod J_4 \end{split}$$

Example

$$\mathfrak{S}_{1\times 321} = x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2 x_3 + x_1 x_2^2$$

= $F_{21}(x_1, x_2, x_3) + F_{12}(x_1, x_2)$
 $\equiv -x_3 x_4^2 \mod J_4$

Thus $\langle \mathfrak{S}_{1\times 321}\rangle_4=\langle \mathfrak{S}_{321}\rangle_4=1.$

Conjecture (Nadeau-T.'19)

For $w \in S_n$ satisfying $\ell(w) \leq n-1$, the polynomial $(-1)^{\ell(w)}\mathfrak{S}_w$ reduced modulo J_n expands positively in the ABB basis.

Schuberts modulo quasisymmetrics: stable limits

Fix permutation w, let $N := \ell(w) + 1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_w modulo J_m for $m \ge N$.

Schuberts modulo quasisymmetrics: stable limits

Fix permutation w, let $N := \ell(w) + 1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_w modulo J_m for $m \ge N$.

Example

Set w = 2413. For $4 \le m \le 7$, we have the following representatives for $\mathfrak{S}_w \mod J_m$

$$\begin{aligned} &-x_3^2 x_4^1 - x_3^1 x_4^2, \\ &-x_3^2 x_4^1 - x_3^1 x_4^2 - x_3^2 x_5 - 2 x_3 x_4 x_5 - x_4^2 x_5 - x_3 x_5^2 - x_4 x_5^2, \\ &-F_{12}(x_3, x_4, x_5, x_6) - F_{21}(x_3, x_4, x_5, x_6) \\ &-F_{12}(x_3, x_4, x_5, x_6, x_7) - F_{21}(x_3, x_4, x_5, x_6, x_7). \end{aligned}$$

Schuberts modulo quasisymmetrics: stable limits

Fix permutation w, let $N := \ell(w) + 1$. Consider the sequence of polynomials obtained by reducing \mathfrak{S}_w modulo J_m for $m \ge N$.

Example

Set w = 2413. For $4 \le m \le 7$, we have the following representatives for $\mathfrak{S}_w \mod J_m$

$$\begin{aligned} &-x_3^2 x_4^1 - x_3^1 x_4^2, \\ &-x_3^2 x_4^1 - x_3^1 x_4^2 - x_3^2 x_5 - 2 x_3 x_4 x_5 - x_4^2 x_5 - x_3 x_5^2 - x_4 x_5^2, \\ &-F_{12}(x_3, x_4, x_5, x_6) - F_{21}(x_3, x_4, x_5, x_6) \\ &-F_{12}(x_3, x_4, x_5, x_6, x_7) - F_{21}(x_3, x_4, x_5, x_6, x_7). \end{aligned}$$

From the viewpoint of DS, only the first expansion is pertinent. That said, maybe the limit object has a nicer description and we can truncate to compute the relevant DS. Consider the quotient $\mathbb{Q}[\mathbf{x}]/J_{\infty}$. By work of Aval-Bergeron, this has a basis indexed by subdiagonal paths.

Conjecture (Nadeau-T.'19)

For a permutation w, the polynomial $(-1)^{\ell(w)}\mathfrak{S}_w$ reduced modulo J_∞ expands positively in terms of backstable limits of summands in the BJS formula.

How does divided symmetrization of Schubert polynomials show up in the Anderson-Tymoczko class of the Peterson variety?

- Suppose $\prod_{j=i>1} (x_i x_j) = \sum_{w \in S_n} a_w \mathfrak{S}_w + G$ where $G \in I_n$.
- Infer that

$$\frac{\mathfrak{S}_{uw_0}\Delta(x_1,\ldots,x_n)}{\prod_{1\leq i\leq n-1}(x_i-x_{i+1})}=\sum_{w\in S_n}a_w\mathfrak{S}_{uw_0}\mathfrak{S}_w+G\mathfrak{S}_{uw_0}.$$

• Antisymmetrize both sides to conclude that

 $\langle \mathfrak{S}_{uw_0} \rangle_n = a_u.$