Atomic decomposition of characters and crystals

Cristian Lenart

State University of New York at Albany
Fall Southeastern Sectional Meeting of the AMS
"Combinatorial Lie Theory"
University of Florida, Gainesville, November 2019

Joint work with Cédric Lecouvey, University of Tours, France; arXiv:1809. 01262

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.
$R=R^{+} \sqcup R^{-}$root system, P weight lattice, P^{+}dominant weights, W Weyl group.

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.
$R=R^{+} \sqcup R^{-}$root system, P weight lattice, P^{+}dominant weights, W Weyl group.

For $\lambda \in P^{+}$, let $V(\lambda)$ be the irreducible representation with highest weight λ, and $P(\lambda)$ its weights.

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.
$R=R^{+} \sqcup R^{-}$root system, P weight lattice, P^{+}dominant weights, W Weyl group.

For $\lambda \in P^{+}$, let $V(\lambda)$ be the irreducible representation with highest weight λ, and $P(\lambda)$ its weights.

For $\mu \in P(\lambda)$, let $K_{\lambda, \mu}$ be the multiplicity of μ in $V(\lambda)$;

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.
$R=R^{+} \sqcup R^{-}$root system, P weight lattice, P^{+}dominant weights, W Weyl group.

For $\lambda \in P^{+}$, let $V(\lambda)$ be the irreducible representation with highest weight λ, and $P(\lambda)$ its weights.

For $\mu \in P(\lambda)$, let $K_{\lambda, \mu}$ be the multiplicity of μ in $V(\lambda)$; in type A it counts SSYT of shape λ and content μ.

Lie algebras and their representations

Consider a complex semisimple Lie algebra \mathfrak{g}.
$R=R^{+} \sqcup R^{-}$root system, P weight lattice, P^{+}dominant weights, W Weyl group.

For $\lambda \in P^{+}$, let $V(\lambda)$ be the irreducible representation with highest weight λ, and $P(\lambda)$ its weights.

For $\mu \in P(\lambda)$, let $K_{\lambda, \mu}$ be the multiplicity of μ in $V(\lambda)$; in type A it counts SSYT of shape λ and content μ.

Lusztig defined the t-analogue $K_{\lambda, \mu}(t)$, i.e., $K_{\lambda, \mu}(1)=K_{\lambda, \mu}$, via

$$
\frac{\sum_{w \in W^{2}} \operatorname{sgn}(w) x^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in R^{+}}\left(1-t x^{-\alpha}\right)}=\sum_{\mu \in P(\lambda)} K_{\lambda, \mu}(t) x^{\mu}
$$

$K_{\lambda, \mu}(t)$, for λ, μ dominant, is also known as a Kostka-Foulkes polynomial.
$K_{\lambda, \mu}(t)$, for λ, μ dominant, is also known as a Kostka-Foulkes polynomial.

This polynomial has remarkable properties. In particular, it is a special affine Kazhdan-Lusztig polynomial, which implies that it is in $\mathbb{Z}_{\geq 0}[t]$.
$K_{\lambda, \mu}(t)$, for λ, μ dominant, is also known as a Kostka-Foulkes polynomial.

This polynomial has remarkable properties. In particular, it is a special affine Kazhdan-Lusztig polynomial, which implies that it is in $\mathbb{Z}_{\geq 0}[t]$.

We will study another, less understood property: the atomic decomposition (which was only defined in type A by A. Lascoux).
$K_{\lambda, \mu}(t)$, for λ, μ dominant, is also known as a Kostka-Foulkes polynomial.

This polynomial has remarkable properties. In particular, it is a special affine Kazhdan-Lusztig polynomial, which implies that it is in $\mathbb{Z}_{\geq 0}[t]$.

We will study another, less understood property: the atomic decomposition (which was only defined in type A by A. Lascoux). Applications and geometric interpretation.

Basic definitions

The dominance order \leq on P^{+}is defined by:

$$
\mu \leq \lambda \text { if } \lambda-\mu \text { is a } \mathbb{Z}_{\geq 0} \text {-combination of simple roots. }
$$

Basic definitions

The dominance order \leq on P^{+}is defined by:

$$
\mu \leq \lambda \text { if } \lambda-\mu \text { is a } \mathbb{Z}_{\geq 0} \text {-combination of simple roots. }
$$

Set

$$
P^{+}(\lambda):=P(\lambda) \cap P^{+}=\left\{\mu \in P^{+} \mid \mu \leq \lambda\right\} .
$$

Basic definitions

The dominance order \leq on P^{+}is defined by:

$$
\mu \leq \lambda \text { if } \lambda-\mu \text { is a } \mathbb{Z}_{\geq 0} \text {-combination of simple roots. }
$$

Set

$$
P^{+}(\lambda):=P(\lambda) \cap P^{+}=\left\{\mu \in P^{+} \mid \mu \leq \lambda\right\} .
$$

Layer sum polynomials:

$$
w_{\mu}^{+}:=\sum_{\nu \in P^{+}(\mu)} x^{\nu}=\sum_{\nu \leq \mu} x^{\nu}
$$

Basic definitions

The dominance order \leq on P^{+}is defined by:

$$
\mu \leq \lambda \text { if } \lambda-\mu \text { is a } \mathbb{Z}_{\geq 0} \text {-combination of simple roots. }
$$

Set

$$
P^{+}(\lambda):=P(\lambda) \cap P^{+}=\left\{\mu \in P^{+} \mid \mu \leq \lambda\right\} .
$$

Layer sum polynomials:

$$
w_{\mu}^{+}:=\sum_{\nu \in P^{+}(\mu)} x^{\nu}=\sum_{\nu \leq \mu} x^{\nu}
$$

Let

$$
\widetilde{K}_{\lambda, \mu}(t):=t^{\left\langle\lambda-\mu, \rho^{\vee}\right\rangle} K_{\lambda, \mu}\left(t^{-1}\right) .
$$

Basic definitions

The dominance order \leq on P^{+}is defined by:

$$
\mu \leq \lambda \text { if } \lambda-\mu \text { is a } \mathbb{Z}_{\geq 0} \text {-combination of simple roots. }
$$

Set

$$
P^{+}(\lambda):=P(\lambda) \cap P^{+}=\left\{\mu \in P^{+} \mid \mu \leq \lambda\right\} .
$$

Layer sum polynomials:

$$
w_{\mu}^{+}:=\sum_{\nu \in P^{+}(\mu)} x^{\nu}=\sum_{\nu \leq \mu} x^{\nu}
$$

Let

$$
\widetilde{K}_{\lambda, \mu}(t):=t^{\left\langle\lambda-\mu, \rho^{\vee}\right\rangle} K_{\lambda, \mu}\left(t^{-1}\right) .
$$

The dominant part of the t-character:

$$
\chi_{\lambda}^{+}(t):=\sum_{\mu \in P^{+}(\lambda)} \widetilde{K}_{\lambda, \mu}(t) x^{\mu} .
$$

The atomic decomposition

Consider the polynomials $A_{\lambda, \mu}(t) \in \mathbb{Z}[t]$, called atomic polynomials, defined by one of the following equivalent relations:

The atomic decomposition

Consider the polynomials $A_{\lambda, \mu}(t) \in \mathbb{Z}[t]$, called atomic polynomials, defined by one of the following equivalent relations:

$$
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+} ;
$$

The atomic decomposition

Consider the polynomials $A_{\lambda, \mu}(t) \in \mathbb{Z}[t]$, called atomic polynomials, defined by one of the following equivalent relations:

$$
\begin{gathered}
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+} \\
\widetilde{K}_{\lambda, \nu}(t)=\sum_{\nu \leq \mu \leq \lambda} A_{\lambda, \mu}(t) \text { for all } \nu \leq \lambda .
\end{gathered}
$$

The atomic decomposition

Consider the polynomials $A_{\lambda, \mu}(t) \in \mathbb{Z}[t]$, called atomic polynomials, defined by one of the following equivalent relations:

$$
\begin{gathered}
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+} \\
\widetilde{K}_{\lambda, \nu}(t)=\sum_{\nu \leq \mu \leq \lambda} A_{\lambda, \mu}(t) \text { for all } \nu \leq \lambda .
\end{gathered}
$$

Definition. The t-character $\chi_{\lambda}^{+}(t)$ (or, equivalently, the Kostka-Foulkes polynomials $\left.K_{\lambda, \nu}(t)\right)$ have a t-atomic decomposition if $A_{\lambda, \mu}(t) \in \mathbb{Z}_{\geq 0}[t]$.

The atomic decomposition

Consider the polynomials $A_{\lambda, \mu}(t) \in \mathbb{Z}[t]$, called atomic polynomials, defined by one of the following equivalent relations:

$$
\begin{gathered}
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+} \\
\widetilde{K}_{\lambda, \nu}(t)=\sum_{\nu \leq \mu \leq \lambda} A_{\lambda, \mu}(t) \text { for all } \nu \leq \lambda .
\end{gathered}
$$

Definition. The t-character $\chi_{\lambda}^{+}(t)$ (or, equivalently, the Kostka-Foulkes polynomials $\left.K_{\lambda, \nu}(t)\right)$ have a t-atomic decomposition if $A_{\lambda, \mu}(t) \in \mathbb{Z}_{\geq 0}[t]$.

The irreducible character χ_{λ} has an atomic decomposition if $A_{\lambda, \mu}(1) \in \mathbb{Z}_{\geq 0}$.

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.
(2) In type A, all t-characters (Kostka-Foulkes polynomials) have t-atomic decompositions

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.
(2) In type A, all t-characters (Kostka-Foulkes polynomials) have t-atomic decompositions - Lascoux, proof by Shimozono based on intricate tableau combinatorics: plactic monoid, cyclage, catabolism

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.
(2) In type A, all t-characters (Kostka-Foulkes polynomials) have t-atomic decompositions - Lascoux, proof by Shimozono based on intricate tableau combinatorics: plactic monoid, cyclage, catabolism
(3) The t-atomic decomposition of Kostka-Foulkes polynomials is a strengthening of their monotonicity:

$$
\widetilde{K}_{\lambda, \nu}(t)-\widetilde{K}_{\lambda, \mu}(t) \in \mathbb{Z}_{\geq 0}[t], \quad \text { for } \nu \leq \mu \leq \lambda
$$

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.
(2) In type A, all t-characters (Kostka-Foulkes polynomials) have t-atomic decompositions - Lascoux, proof by Shimozono based on intricate tableau combinatorics: plactic monoid, cyclage, catabolism
(3) The t-atomic decomposition of Kostka-Foulkes polynomials is a strengthening of their monotonicity:

$$
\widetilde{K}_{\lambda, \nu}(t)-\widetilde{K}_{\lambda, \mu}(t) \in \mathbb{Z}_{\geq 0}[t], \quad \text { for } \nu \leq \mu \leq \lambda
$$

Goal. Simpler, more conceptual approach to the atomic decomposition, which extends beyond type A.

Remarks. (1) Not all irreducible characters have atomic decompositions, but the failures seem limited to small ranks.
(2) In type A, all t-characters (Kostka-Foulkes polynomials) have t-atomic decompositions - Lascoux, proof by Shimozono based on intricate tableau combinatorics: plactic monoid, cyclage, catabolism
(3) The t-atomic decomposition of Kostka-Foulkes polynomials is a strengthening of their monotonicity:

$$
\widetilde{K}_{\lambda, \nu}(t)-\widetilde{K}_{\lambda, \mu}(t) \in \mathbb{Z}_{\geq 0}[t], \quad \text { for } \nu \leq \mu \leq \lambda
$$

Goal. Simpler, more conceptual approach to the atomic decomposition, which extends beyond type A.
Define a combinatorial decomposition, based on crystal graphs.

Kashiwara's crystal graphs

Encode irreducible representations $V(\lambda)$ of the corresponding quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.

Kashiwara's crystal graphs

Encode irreducible representations $V(\lambda)$ of the corresponding quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators: $e_{i}, f_{i}, i \in I$.

Kashiwara's crystal graphs

Encode irreducible representations $V(\lambda)$ of the corresponding quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.
Kashiwara (crystal) operators are modified versions of the Chevalley generators: $e_{i}, f_{i}, i \in I$.

Fact. $V(\lambda)$ has a crystal basis $B(\lambda)$: in the limit $q \rightarrow 0$ we have

$$
f_{i}, e_{i}: B(\lambda) \rightarrow B(\lambda) \sqcup\{\mathbf{0}\} .
$$

Kashiwara's crystal graphs

Encode irreducible representations $V(\lambda)$ of the corresponding quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.
Kashiwara (crystal) operators are modified versions of the Chevalley generators: $e_{i}, f_{i}, i \in I$.

Fact. $V(\lambda)$ has a crystal basis $B(\lambda)$: in the limit $q \rightarrow 0$ we have

$$
f_{i}, e_{i}: B(\lambda) \rightarrow B(\lambda) \sqcup\{\mathbf{0}\} .
$$

Encode as colored directed graph:

$$
f_{i}(b)=b^{\prime} \Longleftrightarrow b \xrightarrow{i} b^{\prime}
$$

Example. $\mathfrak{g}=\mathfrak{s l}_{4}, \lambda=(3,3,1)$, blue: $\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}$, green: $\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}$, red: $\alpha_{3}=\varepsilon_{3}-\varepsilon_{4}$.

The combinatorial atomic decomposition

Let $B(\lambda)^{+} \subset B(\lambda)$ consist of the vertices with dominant weights.

The combinatorial atomic decomposition

Let $B(\lambda)^{+} \subset B(\lambda)$ consist of the vertices with dominant weights.
Definition. An atomic decomposition of $B(\lambda)$ is a partition

$$
B(\lambda)^{+}=\bigsqcup_{h \in H(\lambda)} B(\lambda, h),
$$

where $H(\lambda) \subset B(\lambda)^{+}, h \in B(\lambda, h)$ is a distinguished vertex, and $B(\lambda, h)$ contains exactly one vertex of dominant weight ν, for $\nu \leq \mathrm{wt}(h)$.

The combinatorial atomic decomposition

Let $B(\lambda)^{+} \subset B(\lambda)$ consist of the vertices with dominant weights.
Definition. An atomic decomposition of $B(\lambda)$ is a partition

$$
B(\lambda)^{+}=\bigsqcup_{h \in H(\lambda)} B(\lambda, h),
$$

where $H(\lambda) \subset B(\lambda)^{+}, h \in B(\lambda, h)$ is a distinguished vertex, and $B(\lambda, h)$ contains exactly one vertex of dominant weight ν, for $\nu \leq \mathrm{wt}(h)$.

In particular, if $\mathrm{wt}(h)=\mu$, then

$$
w_{\mu}^{+}=\sum_{b \in B(\lambda, h)} x^{\mathrm{wt}(b)}
$$

The combinatorial atomic decomposition

Let $B(\lambda)^{+} \subset B(\lambda)$ consist of the vertices with dominant weights.
Definition. An atomic decomposition of $B(\lambda)$ is a partition

$$
B(\lambda)^{+}=\bigsqcup_{h \in H(\lambda)} B(\lambda, h)
$$

where $H(\lambda) \subset B(\lambda)^{+}, h \in B(\lambda, h)$ is a distinguished vertex, and $B(\lambda, h)$ contains exactly one vertex of dominant weight ν, for $\nu \leq \mathrm{wt}(h)$.

In particular, if $\operatorname{wt}(h)=\mu$, then

$$
w_{\mu}^{+}=\sum_{b \in B(\lambda, h)} x^{\mathrm{wt}(b)}
$$

Definition. A t-atomic decomposition of $B(\lambda)$ is an atomic decomposition together with a statistic $\mathrm{c}: H(\lambda) \rightarrow \mathbb{Z}_{\geq 0}$ such that

$$
A_{\lambda, \mu}(t)=\sum_{h \in H(\lambda), \mathrm{wt}(h)=\mu} t^{\mathrm{c}(h)}
$$

Main ingredients for the combinatorial atomic decomposition

- various properties of the dominance order -

Main ingredients for the combinatorial atomic decomposition

- various properties of the dominance order - studied by Stembridge, we derive additional structural properties in classical types;

Main ingredients for the combinatorial atomic decomposition

- various properties of the dominance order - studied by Stembridge, we derive additional structural properties in classical types;
- a modified crystal graph structure on the vertices of $B(\lambda)^{+}$ and its properties.

Modified crystal structure

Consider a classical root system, with its Dynkin diagram labeled in the standard way.

Modified crystal structure

Consider a classical root system, with its Dynkin diagram labeled in the standard way.

Definition. Given any positive root $\alpha \in W \alpha_{1}$, consider $w \in W$ satisfying $w\left(\alpha_{1}\right)=\alpha$ of smallest length, and let

$$
\widehat{f}_{\alpha}:=w f_{1} w^{-1} .
$$

Modified crystal structure

Consider a classical root system, with its Dynkin diagram labeled in the standard way.

Definition. Given any positive root $\alpha \in W \alpha_{1}$, consider $w \in W$ satisfying $w\left(\alpha_{1}\right)=\alpha$ of smallest length, and let

$$
\widehat{f}_{\alpha}:=w f_{1} w^{-1} .
$$

For type B_{n}, also define similarly

$$
\widehat{f}_{w\left(\alpha_{n}\right)}:=w f_{n} w^{-1}
$$

Definition. Endow $B(\lambda)^{+}$with a modified crystal graph structure, by restricting to those arrows

$$
b \rightarrow \widehat{f}_{\alpha}(b) \text { for which } \mathrm{wt}(b) \gtrdot \mathrm{wt}\left(\widehat{f}_{\alpha}(b)\right) \text { is a cocover. }
$$

Definition. Endow $B(\lambda)^{+}$with a modified crystal graph structure, by restricting to those arrows

$$
b \rightarrow \widehat{f}_{\alpha}(b) \text { for which } \operatorname{wt}(b) \gtrdot \operatorname{wt}\left(\widehat{f}_{\alpha}(b)\right) \text { is a cocover. }
$$

We studied relations between \widehat{f}_{α} on $B(\lambda)^{+}$.

Definition. Endow $B(\lambda)^{+}$with a modified crystal graph structure, by restricting to those arrows

$$
b \rightarrow \widehat{f}_{\alpha}(b) \text { for which } \mathrm{wt}(b) \gtrdot \operatorname{wt}\left(\widehat{f}_{\alpha}(b)\right) \text { is a cocover. }
$$

We studied relations between \widehat{f}_{α} on $B(\lambda)^{+}$.
Theorem. (Lecouvey, L.) We have, under certain conditions:

$$
\widehat{f}_{\alpha} \widehat{f}_{\beta}(b)= \begin{cases}\widehat{f}_{\beta} \widehat{f}_{\alpha}(b)=\widehat{f}_{\alpha+\beta}(b) \neq \mathbf{0} & \text { if }(\alpha, \beta) \in W\left(\alpha_{1}, \alpha_{2}\right) \\ \widehat{f}_{\beta} \widehat{f}_{\alpha}(b) \neq \mathbf{0} & \text { if }(\alpha, \beta) \in W\left(\alpha_{1}, \alpha_{3}\right)\end{cases}
$$

Main result

Fix a partition λ - dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$.

Main result

Fix a partition λ - dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$. In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.

Main result

Fix a partition λ - dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$. In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.

Theorem. (Lecouvey, L.) The connected components of $\widehat{B}(\lambda)^{+}$are isomorphic to intervals $[\widehat{0}, \mu]$ in the dominance order, via the projection sending vertices to their weights.

Main result

Fix a partition λ-dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$. In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.

Theorem. (Lecouvey, L.) The connected components of $\widehat{B}(\lambda)^{+}$are isomorphic to intervals $[\widehat{0}, \mu]$ in the dominance order, via the projection sending vertices to their weights.

This is a t-atomic decomposition of $B(\lambda)$ in type A_{n-1}, and an atomic decomposition in types B_{n}, C_{n}, and D_{n}.

Main result

Fix a partition λ-dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$. In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.

Theorem. (Lecouvey, L.) The connected components of $\widehat{B}(\lambda)^{+}$are isomorphic to intervals $[\widehat{0}, \mu]$ in the dominance order, via the projection sending vertices to their weights.

This is a t-atomic decomposition of $B(\lambda)$ in type A_{n-1}, and an atomic decomposition in types B_{n}, C_{n}, and D_{n}.

Idea of proof:

- Consider the "small intervals" of the dominance order (rhombi, pentagons, or hexagons).

Main result

Fix a partition λ - dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$.
In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.
Theorem. (Lecouvey, L.) The connected components of $\widehat{B}(\lambda)^{+}$are isomorphic to intervals $[\widehat{0}, \mu]$ in the dominance order, via the projection sending vertices to their weights.

This is a t-atomic decomposition of $B(\lambda)$ in type A_{n-1}, and an atomic decomposition in types B_{n}, C_{n}, and D_{n}.

Idea of proof:

- Consider the "small intervals" of the dominance order (rhombi, pentagons, or hexagons).
- Verify the commutation of the modified crystal operators on these intervals.

Main result

Fix a partition λ - dominant weight in types $A_{n-1}, B_{n}, C_{n}, D_{n}$.
In types B_{n}, C_{n}, and D_{n}, assume that n is in a certain stable range.
Theorem. (Lecouvey, L.) The connected components of $\widehat{B}(\lambda)^{+}$are isomorphic to intervals $[\widehat{0}, \mu]$ in the dominance order, via the projection sending vertices to their weights.

This is a t-atomic decomposition of $B(\lambda)$ in type A_{n-1}, and an atomic decomposition in types B_{n}, C_{n}, and D_{n}.

Idea of proof:

- Consider the "small intervals" of the dominance order (rhombi, pentagons, or hexagons).
- Verify the commutation of the modified crystal operators on these intervals.
- Use this property to iteratively lift the structure of the dominance order to that of the modified crystal poset.

Example

$B(\lambda)^{+}$for $\lambda=(3,2,1)$ in type A_{3}, as SSYT of partition content:

Example

$$
B(\lambda)^{+} \text {for } \lambda=(3,2,1) \text { in type } A_{3} \text {, as SSYT of partition content: }
$$

Example

$B(\lambda)^{+}$for $\lambda=(3,2,1)$ in type A_{3}, as SSYT of partition content:

We get the following atomic decomposition of the character:

$$
\chi_{\lambda}^{+}=w_{(3,2,1)}^{+}+w_{(2,2,2)}^{+}+w_{(3,1,1,1)}^{+}+w_{(2,2,1,1)}^{+} .
$$

Geometric interpretation: the geometric Satake correspondence

Given a reductive group G, this gives a geometric realization of $V(\lambda)$ for G^{\vee}, as the intersection cohomology $I H^{*}\left(\overline{G r_{\lambda}}\right)$ of a Schubert variety in the affine Grassmannian Gr_{G}.

Combinatorics of the geometric Satake correspondence

$I H^{*}\left(\overline{G r^{\lambda}}\right)$ has the truncation filtration, which starts with $H^{*}\left(\overline{G r^{\lambda}}\right)$.

$$
I H^{*}\left(\overline{G r^{\lambda}}\right) \simeq H^{*}\left(\overline{G r^{\lambda}}\right) \oplus \text { other summands } .
$$

Combinatorics of the geometric Satake correspondence

$I H^{*}\left(\overline{G r^{\lambda}}\right)$ has the truncation filtration, which starts with $H^{*}\left(\overline{G r^{\lambda}}\right)$.

$$
I H^{*}\left(\overline{G r^{\lambda}}\right) \simeq H^{*}\left(\overline{G r^{\lambda}}\right) \oplus \text { other summands } .
$$

The truncation filtration gives the $K_{\lambda, \mu}(t)$ when restricted to the weight spaces.

Combinatorics of the geometric Satake correspondence

$I H^{*}\left(\overline{G r^{\lambda}}\right)$ has the truncation filtration, which starts with $H^{*}\left(\overline{G r^{\lambda}}\right)$.

$$
I H^{*}\left(\overline{G r^{\lambda}}\right) \simeq H^{*}\left(\overline{G r^{\lambda}}\right) \oplus \text { other summands } .
$$

The truncation filtration gives the $K_{\lambda, \mu}(t)$ when restricted to the weight spaces.
$H^{*}\left(\overline{G r^{\lambda}}\right)$ has a basis of classes of Schubert varieties inside $\overline{G r_{\lambda}}$, which are indexed by $\mu \in P(\lambda)$.

Combinatorics of the geometric Satake correspondence

$I H^{*}\left(\overline{G r^{\lambda}}\right)$ has the truncation filtration, which starts with $H^{*}\left(\overline{G r^{\lambda}}\right)$.

$$
I H^{*}\left(\overline{G r^{\lambda}}\right) \simeq H^{*}\left(\overline{G r^{\lambda}}\right) \oplus \text { other summands } .
$$

The truncation filtration gives the $K_{\lambda, \mu}(t)$ when restricted to the weight spaces.
$H^{*}\left(\overline{G r^{\lambda}}\right)$ has a basis of classes of Schubert varieties inside $\overline{G r_{\lambda}}$, which are indexed by $\mu \in P(\lambda)$.

Interpretation. The atomic decomposition

$$
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+}, \quad \text { where } \quad w_{\mu}^{+}:=\sum_{\nu \in P^{+}(\mu)} x^{\nu},
$$

Combinatorics of the geometric Satake correspondence

$I H^{*}\left(\overline{G r^{\lambda}}\right)$ has the truncation filtration, which starts with $H^{*}\left(\overline{G r^{\lambda}}\right)$.

$$
I H^{*}\left(\overline{G r^{\lambda}}\right) \simeq H^{*}\left(\overline{G r^{\lambda}}\right) \oplus \text { other summands. }
$$

The truncation filtration gives the $K_{\lambda, \mu}(t)$ when restricted to the weight spaces.
$H^{*}\left(\overline{G r^{\lambda}}\right)$ has a basis of classes of Schubert varieties inside $\overline{G r \lambda_{\lambda}}$, which are indexed by $\mu \in P(\lambda)$.
Interpretation. The atomic decomposition

$$
\chi_{\lambda}^{+}(t)=\sum_{\mu \in P^{+}(\lambda)} A_{\lambda, \mu}(t) w_{\mu}^{+}, \quad \text { where } \quad w_{\mu}^{+}:=\sum_{\nu \in P^{+}(\mu)} x^{\nu},
$$

says that there is a refinement of the truncation filtration, whose successive quotients are isomorphic to $H^{*}\left(\overline{G r^{\mu}}\right)$ for $\mu \in P^{+}(\lambda)$.

Future work

- Extend the results to the affine classical types for $t=1$ (with C. Lecouvey, K. Roy, and A. Schultze).

Future work

- Extend the results to the affine classical types for $t=1$ (with C. Lecouvey, K. Roy, and A. Schultze).
- Defining on $B\left(\lambda^{+}\right)$a statistic computing $K_{\lambda, \mu}(t)$.

Future work

- Extend the results to the affine classical types for $t=1$ (with C. Lecouvey, K. Roy, and A. Schultze).
- Defining on $B\left(\lambda^{+}\right)$a statistic computing $K_{\lambda, \mu}(t)$. This is constructed recursively on the components, starting from its value on the minimal vertex (determined in previous work with C. Lecouvey).

