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Lie algebras and their representations

Consider a complex semisimple Lie algebra g.

R = R+ t R− root system, P weight lattice, P+ dominant
weights, W Weyl group.

For λ ∈ P+, let V (λ) be the irreducible representation with
highest weight λ, and P(λ) its weights.

For µ ∈ P(λ), let Kλ,µ be the multiplicity of µ in V (λ); in type A
it counts SSYT of shape λ and content µ.

Lusztig defined the t-analogue Kλ,µ(t), i.e., Kλ,µ(1) = Kλ,µ, via∑
w∈W sgn(w) xw(λ+ρ)−ρ∏

α∈R+(1− tx−α)
=

∑
µ∈P(λ)

Kλ,µ(t) xµ .
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Kλ,µ(t), for λ, µ dominant, is also known as a Kostka-Foulkes
polynomial.

This polynomial has remarkable properties. In particular, it is a
special affine Kazhdan-Lusztig polynomial, which implies that it is
in Z≥0[t].

We will study another, less understood property: the atomic
decomposition (which was only defined in type A by A. Lascoux).
Applications and geometric interpretation.
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Basic definitions
The dominance order ≤ on P+ is defined by:

µ ≤ λ if λ− µ is a Z≥0-combination of simple roots.

Set
P+(λ) := P(λ) ∩ P+ = {µ ∈ P+ | µ ≤ λ} .

Layer sum polynomials:

w+
µ :=

∑
ν∈P+(µ)

xν =
∑
ν≤µ

xν .

Let
K̃λ,µ(t) := t〈λ−µ,ρ

∨〉Kλ,µ(t−1) .

The dominant part of the t-character:

χ+
λ (t) :=

∑
µ∈P+(λ)

K̃λ,µ(t) xµ .
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The atomic decomposition

Consider the polynomials Aλ,µ(t) ∈ Z[t], called atomic
polynomials, defined by one of the following equivalent relations:

χ+
λ (t) =

∑
µ∈P+(λ)

Aλ,µ(t)w+
µ ;

K̃λ,ν(t) =
∑

ν≤µ≤λ
Aλ,µ(t) for all ν ≤ λ .

Definition. The t-character χ+
λ (t) (or, equivalently, the

Kostka-Foulkes polynomials Kλ,ν(t)) have a t-atomic
decomposition if Aλ,µ(t) ∈ Z≥0[t].

The irreducible character χλ has an atomic decomposition if
Aλ,µ(1) ∈ Z≥0.
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Remarks. (1) Not all irreducible characters have atomic
decompositions, but the failures seem limited to small ranks.

(2) In type A, all t-characters (Kostka-Foulkes polynomials) have
t-atomic decompositions − Lascoux, proof by Shimozono based on
intricate tableau combinatorics: plactic monoid, cyclage, catabolism

(3) The t-atomic decomposition of Kostka-Foulkes polynomials is
a strengthening of their monotonicity:

K̃λ,ν(t)− K̃λ,µ(t) ∈ Z≥0[t] , for ν ≤ µ ≤ λ .

Goal. Simpler, more conceptual approach to the atomic
decomposition, which extends beyond type A.

Define a combinatorial decomposition, based on crystal graphs.
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Kashiwara’s crystal graphs

Encode irreducible representations V (λ) of the corresponding
quantum group Uq(g) as q → 0.

Kashiwara (crystal) operators are modified versions of the
Chevalley generators: ei , fi , i ∈ I .

Fact. V (λ) has a crystal basis B(λ): in the limit q → 0 we have

fi , ei : B(λ)→ B(λ) t {0} .

Encode as colored directed graph:

fi (b) = b′ ⇐⇒ b
i−→ b′ .
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Example. g = sl4, λ = (3, 3, 1), blue: α1 = ε1 − ε2,
green: α2 = ε2 − ε3, red: α3 = ε3 − ε4.



The combinatorial atomic decomposition
Let B(λ)+ ⊂ B(λ) consist of the vertices with dominant weights.

Definition. An atomic decomposition of B(λ) is a partition

B(λ)+ =
⊔

h∈H(λ)

B(λ, h) ,

where H(λ) ⊂ B(λ)+, h ∈ B(λ, h) is a distinguished vertex, and
B(λ, h) contains exactly one vertex of dominant weight ν, for
ν ≤ wt(h).

In particular, if wt(h) = µ, then

w+
µ =

∑
b∈B(λ,h)

xwt(b) .

Definition. A t-atomic decomposition of B(λ) is an atomic
decomposition together with a statistic c : H(λ)→ Z≥0 such that

Aλ,µ(t) =
∑

h∈H(λ),wt(h)=µ

tc(h) .
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Main ingredients for the combinatorial atomic
decomposition

I various properties of the dominance order −

studied by
Stembridge, we derive additional structural properties in
classical types;

I a modified crystal graph structure on the vertices of B(λ)+

and its properties.
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Modified crystal structure

Consider a classical root system, with its Dynkin diagram labeled
in the standard way.

Definition. Given any positive root α ∈Wα1, consider w ∈W
satisfying w(α1) = α of smallest length, and let

f̂α := wf1w
−1 .

For type Bn, also define similarly

f̂w(αn) := wfnw
−1 .
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Definition. Endow B(λ)+ with a modified crystal graph structure,
by restricting to those arrows

b → f̂α(b) for which wt(b) m wt(f̂α(b)) is a cocover .

We studied relations between f̂α on B(λ)+.

Theorem. (Lecouvey, L.) We have, under certain conditions:

f̂αf̂β(b) =

{
f̂β f̂α(b) = f̂α+β(b) 6= 0 if (α, β) ∈W (α1, α2)

f̂β f̂α(b) 6= 0 if (α, β) ∈W (α1, α3) .
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Main result
Fix a partition λ − dominant weight in types An−1, Bn, Cn, Dn.

In types Bn, Cn, and Dn, assume that n is in a certain stable range.

Theorem. (Lecouvey, L.) The connected components of B̂(λ)+ are
isomorphic to intervals [0̂, µ] in the dominance order, via the
projection sending vertices to their weights.

This is a t-atomic decomposition of B(λ) in type An−1, and an
atomic decomposition in types Bn, Cn, and Dn.

Idea of proof:

I Consider the “small intervals” of the dominance order
(rhombi, pentagons, or hexagons).

I Verify the commutation of the modified crystal operators on
these intervals.

I Use this property to iteratively lift the structure of the
dominance order to that of the modified crystal poset.
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Example
B(λ)+ for λ = (3, 2, 1) in type A3, as SSYT of partition content:

1 1 1
2 2
3

(1,3)

��

(2,4)

��

1 1 3
2 2
3

(3,4)
��

1 1 1
2 4
3

(1,2)
��

1 1 4
2 2
3

1 1 2
2 3
3

(3,4)
��

1 1 1
2 3
4

(1,2)
��

1 1 3
2 2
4

1 1 2
2 4
3

1 1 2
2 3
4

We get the following atomic decomposition of the character:

χ+
λ = w+

(3,2,1) + w+
(2,2,2) + w+

(3,1,1,1) + w+
(2,2,1,1) .
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Geometric interpretation: the geometric Satake
correspondence

Given a reductive group G , this gives a geometric realization of
V (λ) for G∨, as the intersection cohomology IH∗(Grλ) of a
Schubert variety in the affine Grassmannian GrG .



Combinatorics of the geometric Satake correspondence

IH∗(Grλ) has the truncation filtration, which starts with H∗(Grλ).

IH∗(Grλ) ' H∗(Grλ)⊕ other summands .

The truncation filtration gives the Kλ,µ(t) when restricted to the
weight spaces.

H∗(Grλ) has a basis of classes of Schubert varieties inside Grλ,
which are indexed by µ ∈ P(λ).

Interpretation. The atomic decomposition

χ+
λ (t) =

∑
µ∈P+(λ)

Aλ,µ(t)w+
µ , where w+

µ :=
∑

ν∈P+(µ)

xν ,

says that there is a refinement of the truncation filtration, whose
successive quotients are isomorphic to H∗(Grµ) for µ ∈ P+(λ).
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Future work

I Extend the results to the affine classical types for t = 1 (with
C. Lecouvey, K. Roy, and A. Schultze).

I Defining on B(λ+) a statistic computing Kλ,µ(t). This is
constructed recursively on the components, starting from its
value on the minimal vertex (determined in previous work with
C. Lecouvey).
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