# On cyclic quiver parabolic Kostka-Shoji polynomials 

Daniel Orr* Mark Shimozono

AMS Southeastern Sectional Meeting
University of Florida

November 3, 2019

## Lusztig's $t$-analog of weight multiplicity

$G$ complex reductive group
$X^{+}(G) \subset X(G)$ (dominant) integral $G$-weights with respect to $B \subset G$
Two bases of $R(G)[t]=(\mathbb{Z}[t] X(G))^{W} \cong$ spherical AHA:
(1) $s_{\lambda}=\operatorname{ch} V(\lambda)$
(2) $\quad P_{\mu}=$ Macdonald spherical function (Hall-Littlewood polynomial)
$s_{\lambda}=\sum_{\mu \leq \lambda} K_{\lambda \mu}(t) P_{\mu}$

Theorem (Lusztig)
$K_{\lambda \mu}(t) \in \mathbb{Z}_{\geq 0}[t]$ for any $\lambda, \mu \in X^{+}(G)$.
$K_{\lambda \mu}(1)=\operatorname{dim} V(\lambda)_{\mu}$

## "Dual" approach [Broer, R. Brylinski, Hesselink]

$\mathcal{L}_{\mu}=G \times{ }^{B_{-}} \mathbb{C}_{\mu}$ line bundle on $X=G / B_{-}$
$\pi: T^{*} X \rightarrow X$

Definition (Hall-Littlewood series)
$\chi_{\mu}=\chi_{G \times \mathbb{C} \times}\left(\pi^{*} \mathcal{L}_{\mu}\right) \in R(G)[[t]]$

Theorem
$\chi_{\mu}=\sum_{\lambda \geq \mu} K_{\lambda \mu}(t) s_{\lambda}$ for any $\lambda, \mu \in X^{+}(G)$.

Theorem [Broer]
For $\mu \in X^{+}(G)$, one has $H^{p}\left(T^{*} X, \pi^{*} \mathcal{L}_{\mu}\right)=0$ for all $p>0$.

## Lascoux-Schützenberger formula

$G=G L_{n}$
For $\lambda, \mu \in X_{\text {pol }}^{+}(G)$ polynomial weights (partitions with at most $n$ parts), the $K_{\lambda \mu}(t)$ are Kostka-Foulkes polynomials.

Theorem [Lascoux-Schützenberger]
$K_{\lambda \mu}(t)=\sum_{T} t^{\text {charge }(T)}$ where $T$ runs over all semistandard Young tableaux of shape $\lambda$ and weight $\mu$.

## Quiver generalization [OS]

$Q=(I, \Omega)$ quiver

- $\mathbf{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in I^{\ell}$
- $\mathbf{a}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}$
- $d=d(\mathbf{i}, \mathbf{a})=\left(d_{i}\right)_{i \in I} \in \mathbb{Z}_{\geq 0}^{I}$ given by $d_{i}=\sum_{i_{k}=i} a_{k}$


## Definition [Lusztig]

$Z_{\mathbf{i}, \mathbf{a}}=$ set of all pairs $\left(F_{\bullet}, x\right)$ where $x \in \operatorname{Rep}^{d}(Q)$ and

$$
\oplus_{i \in I} \mathbb{C}^{d_{i}}=F_{1} \supset F_{2} \supset \cdots \supset F_{\ell} \supset F_{\ell+1}=0
$$

is a flag of $I$-graded subspaces such that $x\left(F_{k}\right) \subset F_{k+1}$ and $F_{k} / F_{k+1}$ has dimension $a_{k}$ at $i_{k}$ and zero elsewhere.
$Z_{\mathbf{i}, \mathbf{a}} \xrightarrow{\pi} X_{\mathbf{i}, \mathbf{a}}$ is a $G=\prod_{i \in I} G L_{d_{i}}$-equivariant vector bundle over a product of partial flag varieties $X_{\mathbf{i}, \mathbf{a}}$.

## Quiver generalization [OS] (cont'd)

$\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ where $\mu_{k} \in X\left(G L_{a_{k}}\right)$ for all $k$
$\rightsquigarrow G$-equivariant vector bundle $W_{\mu}$ on $X_{\mathbf{i}, \mathbf{a}}$

## Definition [OS]

- Quiver Hall-Littlewood series

$$
\chi_{\boldsymbol{\mu}}^{\mathbf{i , a}}=\chi_{G \times \mathbb{C}^{\times}}\left(Z_{\mathbf{i}, \mathbf{a}}, \pi^{*} W_{\mu}\right) \in R(G)[[t]]
$$

- Quiver Kostka-Shoji polynomials

$$
\chi_{\boldsymbol{\mu}}^{\mathbf{i}, \mathbf{a}}=\sum_{\lambda} K_{\lambda, \boldsymbol{\mu}}^{\mathbf{i}, \mathbf{a}}(t) s_{\lambda} \quad\left(\lambda=\left(\lambda_{i}\right)_{i \in I} \in X_{\mathrm{pol}}^{+}(G)\right)
$$

## Special cases of quiver Kostka-Shoji polynomials

- Jordan quiver: (parabolic) Kostka-Foulkes polynomials
- Cyclic quiver (affine type $A$ ): Kostka polynomials for complex reflection groups defined by Shoji (limit symbol case); intersection cohomology of enhanced nilpotent cone [Achar-Henderson]
- Directed path (type A): truncated Littlewood-Richardson coefficients [W. Craig]


## Higher vanishing conjecture

## Conjecture [OS]

If $\boldsymbol{\mu}$ concatenates to a dominant $G$-weight, then $H^{p}\left(Z_{\mathbf{i}, \mathbf{a}}, \pi^{*} W_{\boldsymbol{\mu}}\right)=0$ for all $p>0$.

## Known cases

- Jordan quiver, $a_{k} \equiv 1$ [Broer]
- Cyclic quiver, $a_{k} \equiv 1$ [Panyushev, Finkelberg-lonov]
- Any quiver, sufficiently dominant $\boldsymbol{\mu}$ [Panyushev]


## Combinatorial positivity

We say that combinatorial positivity holds for $(\mathbf{i}, \mathbf{a}, \boldsymbol{\mu})$ if

$$
K_{\lambda, \boldsymbol{\mu}}^{\mathbf{i}, \mathbf{a}}(t) \in \mathbb{Z}_{\geq 0}[t]
$$

for all $\lambda \in X^{+}(G)$.

For the Jordan quiver, combinatorial positivity is known when $\boldsymbol{\mu}$ is a sequence of rectangles [Shimozono]. The parabolic Kostka polynomials count graded multiplicites in:

- Kirillov-Reshetikhin modules
- (twisted) functions on nilpotent orbit closures

Cyclic quiver, rectangles at a single vertex
$I=\mathbb{Z} / r \mathbb{Z} \quad \Omega=\{(i, i+1): i \in I\}$
$\left\{\begin{array}{c|cccc|cccc}\mathbf{i} & 0 & \cdots & r-2 & r-1 & 0 & \cdots & r-2 & r-1 \\ \mathbf{a} & \eta_{1} & \cdots & \eta_{1} & \eta_{1} & \eta_{2} & \cdots & \eta_{2} & \eta_{2} \\ \boldsymbol{\mu} & 0 & \cdots & 0 & \nu_{1}^{\eta_{1}} & 0 & \cdots & 0 & \nu_{2}^{\eta_{2}}\end{array}\right.$
$\eta=\left(\eta_{1}, \ldots, \eta_{s}\right)$ arbitrary heights
$\nu=\left(\nu_{1} \geq \cdots \geq \nu_{s}\right)$ decreasing widths

## Theorem [OS]

Combinatorial positivity holds for (i, a, $\boldsymbol{\mu}$ ) above. For any $\lambda \in X^{+}(G)$,

$$
K_{\lambda, \boldsymbol{\mu}}^{\mathbf{i}, \mathbf{\mu}}(t)=\sum_{T} t^{\text {charge }(T)}
$$

where $T=\left(T_{i}\right)_{i \in I}$ runs over "Littlewood-Richardson multitableaux" of shape $\lambda=\left(\lambda_{i}\right)_{i \in I}$.

## Related results, observations, and conjectures

(1) If the rectangles are columns, i.e., $\nu=(1, \ldots, 1)$ and $\eta$ dominant: quiver Kostka-Shoji polynomials give irreducible multiplicites in graded induction from $S_{n}$ to $\Gamma_{n}=(\mathbb{Z} / r \mathbb{Z})^{n} \rtimes S_{n}$ of Garsia-Procesi $S_{n}$-module $R_{\eta}(n=|\eta|)$.
(2) In the setting of (1), quiver Hall-Littlewood functions arise from $q=0$ specialization of Haiman's wreath Macdonald function $H_{\eta}(q, t)$.
(3) For cyclic quivers and any (i, a, $\boldsymbol{\mu})$ satisfying dominance, we conjecture a positive combinatorial "charge" formula for $K_{\lambda, \boldsymbol{\mu}}^{\mathbf{i}, \mathbf{a}}(t)$ over "catabolizable tableaux."

