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Credits

Based on the 2013 PhD thesis of Jennifer Koonz. Available
through MathSciNet.

Subsequent joint work with Koonz, in progress.
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Kahzdan-Lusztig polynomials

W is a finite Weyl group.

For x , y ∈W , get polynomial

px ,y (q) ∈ N[q].

Defined in 1979 paper of Kazhdan and Lusztig.

Zero, unless x ≤ y in Bruhat order.
Otherwise, constant term is 1.
Any such polynomial is possible (Polo, 1999).
Positivity in Weyl group case due to KL. Also affine Weyl group.
General Coxeter case due to Elias-Williamson (2012).
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Geometric interpretation

Take Schubert variety Xy ⊂ G/B, flag variety.

Ordinary cohomology of Xy has Poincare polynomial∑
x≤y

q2`(x).

But Xy may be singular and local intersection cohomology captures
some of that story:

q2`(x)px ,y (q2)

is the Poincare polynomial of local intersection cohomology of Xy at x .

So if Xy smooth, all nonzero px ,y are equal to 1.
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Examples

W = W (A3) and y = srts where r , s, t simple reflections with r , t
commute.

Then Xs ⊂ Xy is the singular locus.

p1,y = ps,y = 1 + q.

W = W (E8) and y is a certain element of length 75.

The coefficients of p1,y (q) are
1,8,35,109,271,573,1068,1787,2705,3720,4665,5348,
5601,5346,4644,3668,2623,1689,978,509,236,96,34,10,2.

5



Algebraic definition

H Hecke algebra for W with standard basis Tw over Z[v , v−1]:

Definition
TsTw = Tsw if `(sw) = `(w) + 1.
T 2

s = (v − v−1)Ts + 1

T−1
s = Ts + (v−1 − v)

Involution i(v) = v−1, i(Ts) = T−1
s .

Theorem
There exists unique Cy which is:

invariant under involution i
Cy = Ty +

∑
x<y v−1N[v−1]Tx

KL polynomial is defined by v−`(y)+`(x)px ,y (v2) being coefficient of Tx .

Note: degree px ,y <
`(y)−`(x)

2 when x < y .
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Finding KL elements

First, Cs = Ts + v−1 for simple reflection s ∈W .

Let W = W (A2) with simple refls r , s.

Crs = Cr Cs = Trs + v−1Tr + v−1Ts + v−2.

On the other hand,
Cr CsCr = CrsCr =
Trsr + v−1T 2

r + v−1Tsr + v−2Tr + v−1(Trs + v−1Tr + v−1Ts + v−2)

Bad term: v−1((v − v−1)Tr + 1) = (1− v−2)Tr + v−1.

Then Crsr = Cr CsCr − Cr by correcting the constant in v term.

So all KL polys here are 1.

Makes sense since Xrsr is smooth.
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Better way

Let WJ′ ⊂WJ be a parabolic subgroups.

Let dJ be the number of positive roots supported on J.

Definition
Let M ⊂WJ be the set of minimal length left coset reps of WJ′ in WJ .
Define

CJ′,J =
∑
w∈M

v `(w)−dJ+dJ′Tw .

CJ′,J is not invariant unless J ′ = ∅. But

Theorem (Koonz, S-)

If C ∈ H is invariant and satisfies TsC = vC for all s ∈ J ′, then

CJ′,JC

is invariant.

8



Finding KL elements

If C = Cy , then Cy satisfies the theorem for the left descent set of y .
Call this J ′.

Then we study
CJ′,JCy

for any J containing J ′, and correct lower order terms.

This will give the KL element for wJ′,Jy , where wJ′,J is longest minimal
coset representative.

For example, instead of Cr CsCr , we use

C{r},{r ,s}Cr ,

and this is the KL element for rsr = (rs)r

Summary: to find KL element, it is more efficient to consider these
generalized factorizations that use longest coset representatives.
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Geometric meaning

Usual factorizations give rise to Bott-Samelson resolutions Zw of Xw .
Inductively:

Zs y = Ps ×B Zy if sy > y .

Fibers are Ps/B ' P1.

These factorizations give rise to generalized resolutions. If sy < y for
all s ∈ J ′ and sy > y for all s ∈ J − J ′, then inductively:

ZwJ′,J y = PJ ×PJ′ Zy

Fibers are PJ/P ′J , partial flag manifolds.
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Connection to KL elements

Fact
Such a resolution of Xy is small if and only if the corresponding product
of the CwJ′,J is equal to Cy .

These resolutions also have the analog of the paving mentioned in
Mihalcea’s talk and of Deodhar’s result on using subwords of the
factorization.

In particular, the Euler characteristic of the fiber above Xx is the
number of subwords that multiply to x .

So we don’t actually multiply in the Hecke algebra, just track subwords.
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Generalized Bott-Samelson resolutions

These resolutions have shown up before.

Scott Larson’s talk yesterday

Type A, Xy smooth

There exists factorization with Xy = Zy (Wolpert, Ryan). Presents
Xy as tower of Pk -bundles.

Simply-laced: Xy smooth
There exists factorization with Xy = Zy (Billey-Postnikov)

Appears in the work of Gelfand-MacPherson, Zelevinsky,
Sankaran-Vanchinathan

Used by Polo for his result:
Every possible polynomial is a type A Kazhdan-Lusztig polynomial
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Which resolution to choose?

There are many choices for resolutions. Which ones are best?

Let I(x) = Φ− ∩ x(Φ+) be the inversion set for x .

For α ∈ Φ+ and S a set of positive roots, we define the height of α
relative to S to be the maximal way to write α as a sum of elements of
S.

Usual height if S includes the simple roots.

Definition
We say the factorization

y = wJ′,Jx

preserves heights if all α ∈ I(x) have same modified height whether
computed with S = I(x) or S = I(y).

We seek y where we can completely factor and preserve heights at
each step
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Preserving heights

Fact
Resolution is small implies the factorization preserves heights.

In A3 every element can be completely factored and preserve heights
at each step. In A4, for y = 45312 has no such factorizations.

Fact
But not every factorization that preserves heights is small.

Billey-Warrington studied the cases (in this language) where the usual
Bott-Samelson preserves heights. This just means y is 321 avoiding.
They classified the non-small cases, called ‘hexagon permutations’.

The non-small cases in A7 are on Williamson’s list of Xy with torsion in
intersection cohomology.
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Torsion in A7 and D4

Analogous result for generalized Bott-Samelson resolutions.

Theorem
Among the factorizations in A7 and D4 that preserves height, but do
not give small resolutions, are exactly the cases Williamson found that
have torsion in IC.

There is a pattern in A6 = W (S7) which preserves heights and is
not small. If we avoid this pattern, then there are 38 elements in
S8 = W (A7) which preserve height and are not small.
The maximal torsion points are maximal non-small points.
They are all codimension 8 and all semi-small. So we get fiber of
dimension 4, with Poincare polynomials

1 + 7v + 13v2 + 7v3 + v4,

1 + 8v + 15v2 + 8v3 + v4,

1 + 9v + 18v2 + 9v3 + v4,etc

(fibers suggest smoothness, but need not even be irreducible)
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Computing KL polynomials

We used these resolutions to compute KL polynomials. Wrote
program in C.
Take resolution that is closest to preserving heights and compute
the corresponding product of the CwJ′,J .
Correct maximal terms where resolution is not small.
Optimizations:

Efficient encoding of Weyl group elements
Hash tables for Weyl groups elements and polynomials (using
uthash)
Parabolic speed-up which is basically the same thing as noticed by
Lubeck and Scott-Sprowl in their work on the affine Weyl group.
Don’t forget ’gcc -03’.

Considerably faster than Coxeter (which is now part of atlas) and
Greg Warrington’s program for Sn.

16


