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G = GL(n,C), G/B = flag variety for G

K = O(n,C), a symmetric subgroup

We look at closures O of K-orbits in G/B and their singularities, which control much of
the infinite-dimensional representation theory of G.

More precisely, we want to understand when an orbit closure O is rationally smooth (with
the same relative cohomology as a smooth variety), or smooth.

Start by meeting our K-orbits O: by work of Richardson and Springer, these are
parametrized by the set In of involutions in the symmetric group Sn. In more detail,
we identify G/B with the variety of complete flags V0 ⊂ V1 ⊂ · · · ⊂ Vn in Cn. The group
K is the isotropy group for a symmetric nondegenerate bilinear from (·, ·) on Cn; a given
flag V0 ⊂ · · · ⊂ Vn lies in the orbit Oπ corresponding to the involution π if and only if
the rank rij of (·, ·) on Vi × Vj equals the cardinality #{k : 1 ≤ k ≤ i, π(k) ≤ j} for all
1 ≤ i, j ≤ n. Thus in particular if (·, ·) is nondegenerate on each Vi (the generic case), then
π = 1 and rij = min(i, j) for all i, j; the opposite extreme occurs when Vbn/2c is totally
isotropic and rii = 2(i − bn/2c) for i > n/2; in this case π = w0, the longest element
of the Weyl group. The standard order relation on orbits (given by containment of their
closures) is given by reverse Bruhat order.



When we investigate orbit closures that fail to be rationally smooth, we find that they
propagate rather than occurring in isolation. To make this precise, we make use of a
definition previously introduced to study Schubert varieties that are not rationally smooth,
but put a new twist on it. Classically, we say that the permutation π1 . . . πn of 1 . . . n in
one-line notation includes the pattern µ1 . . . µk if there are indices n1 < . . . < nk, not
necessarily consecutive, such that πni < πnj if and only if µi < µj . Thus the permutation
41278635 includes the pattern 2143, since the indices 4, 1, 7, 6 in the permutation occur
in that order, matching the relative order of 2, 1, 4, 3. For our purposes, however, we
modify this definition, since we are looking only at involutions including involutions. If
π = π1 . . . πn is an involution, we say that it includes the pattern µ = µ1 . . . µk if there
are indices i1, . . . , ik permuted by π such that πij > πik if and only if µj > µk. Thus µ
is necessarily an involution if π includes it in our sense. By our definition the involution
65872143 does not include the pattern 2143, for even though the indices 2, 1, 4, 3 occur in
that order in π they are not permuted by it. Ultimately this distinction will (conjecturally)
make no difference for us; I will say more about this later. We way that π avoids µ if it
does not include the latter.



For Schubert varieties there are well-known poset- and graph-theoretic criteria for rational
smoothness of Oπ due to Carrell and Peterson. Both of these refer to the order ideal Iπ of
involutions lying below π (so above it in the usual Bruhat order). The poset criterion looks
at the rank generating function of Iπ and asks that it be palindromic as a polynomial. It
holds in many settings closely related to ours but not in our setting. The graph criterion
does hold in our setting and of course requires that we make Iπ into a graph. If n is
even, we do this by joining the involutions µ, ν whenever either ν = tµt 6= µ for some
transposition t or ν = tµ and tµt = µ; in either case we do not insist that t be a simple
reflection. We say that neighbors ν = tµt of µ are of type 1; neighbors ν = tµ are of type
2. For odd n = 2m + 1, we define both the graph and the types of neighbors differently:
the only neighbors of µ take the form tµt 6= µ for some t. They are said to be of type 1
if the transposition t does not involve the middle index m + 1 and of type 2 otherwise.
In either case (i.e. for any n) Oπ is rationally smooth only if the degree of w0, or more
generally any conjugate of w0, is r(π), where r(π) is the rank function

r(π) = bn2/4c −
∑
i<π(i)

(π(i)− i−#{k : i < k < π(i), π(k) < i})



To understand this formula, picture the involution π via its arc diagram: depict the indices
i, lying between 1 and n, as dots in a row, and join the ith dot to the jth one by an arc
if the indices i, j are flipped by π. Then the formula for r(π) amounts to taking the sum
of the lengths of the arcs, subtracting one whenever one arc crosses another, and finally
subtracting the result from bn2/4c. In general the degree of any conjugate of w0 in Iπ is
at least r(π).

Then our main result is

Theorem 1 There is a list of 23 bad patterns such that if π includes any pattern in the
list, then some conjugate of w0 has degree larger than r(π). The same holds if π includes
the pattern 2143, provided there are an even number of fixed indices between 21 and 43
(e.g. π = 21354687, but not 2134576.)

The patterns range in length from 4 to 8; the list will be given later. The presence of an
extra condition on fixed points for the pattern 2143 is unprecedented in the pattern avoid-
ance literature; by now many modifications of the classical notion of avoidance, motivated
by a number of applications, have been considered, but not this one. Moreover, we have



Theorem 2 If π avoids all bad patterns in the list, then Oπ is rationally smooth; thus
Oπ is rationally smooth if and only if w0 and all of its conjugates have degree r(π). If n
is even, then Oπ is rationally smooth if and only if just w0 has degree r(π).

For Oπ to be smooth, π should avoid the pattern 1324 as well. (Here neither the graph nor
the poset criterion applies, but a direct computation of the Jacobian matrix shows that
avoiding this pattern is necessary for smoothness.)



To put this result in context, let me discuss orbit closures of different subgroups of G on
G/B for which pattern avoidance criteria for rational smoothness are known. Here the or-
bits are not always parametrized by permutations. For example, if G−GL(p+ q,C),K =
GL(p,C) × GL(q,C) then K-orbits are parametrized by involutions in Sp+q whose fixed
points are labelled + or −, with the condition that the umber of pairs plus the number of +
signs equals p. If we label each such involution by a clan, that is, a sequence (c1, . . . , cp+q
with each ci either a sign or a natural number, with every natural number occurring either
exactly twice or not at all among the ci, then the bad patterns for rational smoothness are
(1,+,−, 1), (1,−,+, 1), (1, 2, 1, 2), (1,+, 2, 2, 1), (1,−, 2, 2, 1), (1, 2, 2,+, 1), (1, 2, 2,−, 1),
(1, 2, 2, 3, 3, 1); smoothness and rational smoothness are equivalent for such orbit closures.
Here the appropriate notion of pattern inclusion pays attention only to which pairs of
numbers are equal, not to the sizes of the numbers, so that for example (3, 4,+,−, 3, 4)
contains the pattern (1, 2,+, 1, 2). Also, whenever rational smoothness fails, some vertex
corresponding to a closed orbit (there is no single bottom vertex in this case) has the wrong
degree.



For G = Sp(2p + 2q,C),K = Sp(2p,C)×Sp(2q,C), n = p + q, orbits are parametrized by
clans (c1, . . . , c2n) that are symmetric in the sense that if ci is a sign, then c2n+1−i is the
same sign; if ci, cj are a pair of equal numbers, then j 6= 2n + 1 − i and c2n+1−i, c2n+1−j
are also a pair of equal numbers. Here the bad patterns are the same as in the previous
case, *except* that we allow a middle segment (ci, . . . , c2n+1−i) of a symmetric sequence
c = (c1, . . . , c2n) to parametrize the open orbit for the appropriate symplectic group;
the orbit corresponding to c ha rationally smooth closure if the initial and final segments
(c1, . . . , ci−1), (c2n+2−i, . . . , c2n) avoid the bad patterns, even if c as a whole does not. Once
again; this kind of “dispensation” for pattern avoidance has not been seen in the pattern
avoidance literature. Smoothness and rational smoothness are again equivalent in this
setting. A similar situation (thus again with a dispensation) holds for G = SO(2n,C),K =
GL(n,C).



Now we come to an example much closer to our main one. If G = GL(2n,C),K = Sp(2n,C)
then orbits Oπ are parametrized by fixed-point-free involutions in S2n, once again with
the reverse Bruhat order. Defining pattern avoidance as above, there is a list of 17 bad
patterns such that Oπ is rationally smooth if and only if π avoids these patterns. The
patterns are

351624, 64827153, 57681324, 53281764, 43218765, 65872143, 21654387, 21563487
34127856, 43217856, 34128765, 36154287, 21754836, 63287154, 54821763, 46513287
21768435

and smoothness and rational smoothness are equivalent. Moreover an orbit closure Ōπ is
rationally smooth if and only if the bottom vertex w0 has the right degree r(π). I proved
this result in 2009, with an assist from Axel Hultman; here the rank symmetry condition
on Iπ holds whenever Oπ is rationally smooth. The proof uses a factorization of the rank
generating function whenever the bad patterns are avoided, similar to one used by Sara
Billey for Schubert varieties of classical type. It also constructs the tangent space directly
if the bottom vertex has the right degree, showing that smoothness holds.



Sketch of proof of Theorems 1,2: first show that if π contains a bad pattern, then Ōπ
is rationally singular. Easy to check for the patterns π themselves: degree of w0 is too
large in all cases. Considerably trickier than you might expect to extend to involutions
including π, since e.g. if n is odd, the vertex w0 need not have the wrong degree. Instead,
we check inductively, by adding fixed points and transpositions to π one at a time, that
some conjugate of w0 (so having only one fixed point, if n is odd) always has the wrong
degree.

Now we have to prove that if π avoids all the bad patterns then Oπ is rationally smooth.
Assume first that π is fixed-point-free. We exploit the earlier list of 17 patterns which if
avoided by a fixed-point-free involution π guarantees that w0 has the right number of type
1 neighbors. (The list of bad patterns in Theorem 1 captures the earlier list and the rank
functions are the same.) The proof that smoothness holds if the bottom vertex has the
right degree if K =Sp(2n,C) does *not* carry over to our setting, but one can construct a
slice (in the sense of Brion) of the orbit closure, whose smoothness or singularity matches
that of the closure, and then use a three-part criterion of Brion to show that rational
smoothness holds.



What about involutions π that are not fixed-point-free? Following a suggestion of Axel
Hultman, we first show that that there is a unique smallest fixed-point-free involution f(π)
above π in the usual Bruhat order, for n even. This is constructed by a bumping algorithm
similar to RSK. If π is not fixed-point-free, then it must have evenly many fixed points; let
these points be i1, . . . , i2k in increasing order. For every j between 1 and k, enumerate the
pairs of indices flipped by π between i2j−1 and i2j not encapsulating another such a pair as
(ell1, `

′
1), . . . , .(`m, `

′
m). Replace the leftmost fixed point i2j−1 in the one-line notation of

π by `1, `1 by `2 . . . , `m by i2j , changing the other indices as necessary to make the result
an involution. (Thus for example if π = 16573248, then f(π) = 56781234.) Then a type 1
neighbor of w0 lying below π in the reverse Bruhat order is the same as one lying below
f(π). We know how to count neighbors of this type if f(π) avoids all patterns in the list of
17; if f(π) includes one of these last patterns, then there is at least one more such neighbor.
The number of neighbors so far is typically less than r(π), as f(π) typically has smaller
rank than π. Now we have to count the type 2 neighbors lying below π; this is easily read
off from the one-line notation of π. In more detail, one looks for the smallest index i such
that π(i) ≤ i and likewise the smallest index j such that π(2m+ 1− j) ≥ 2m+ 1− j; the
number of type 2 neighbors is then n+1−max(i, j). Now we can compute the degree of w0

in Iπ. If this is too large, then either π is fixed-point-free already and w0 has too many type
1 neighbors, or the number of type 2 neighbors picked up by w0 is larger than the number
of type 1 neighbors lost when passing from π to f(π). If this occurs, we can “localize”
the occurrence, arguing that it must also occur for at most eight indices permuted by π,
forcing π to include a bad involution of length at most eight. Such involutions can be
checked directly and it can be verified that all contain a bad pattern, whence so does π.



If n = 2m + 1 is odd, then a similar but more complicated argument shows that for any
involution π there is a unique smallest one f(π) lying above π in the usual Bruhat order
and fixing only the middle index m + 1; to construct it we first replace π by a higher
involution fixing at least m+ 1, then by one fixing only m+ 1. For example, if π = 12435,
then this involution is replaced first by 14325, and then finally by 45312. In this way we
show that any involution π avoiding all the bad patterns has w0 of the right degree r(π)
in Iπ.



Our list of bad patterns, in order of increasing length:

2143

14325, 21543, 32154

154326, 124356, 351624, 132546, 426153 153624, 351426, 216543, 432165

1324657, 5271643, 5472163, 1657324, 4651327

57681324, 65872143, 34127856, 64827153, 13247856, 34125768

Notice that our first (half)-bad pattern 2143, together with the bad one 1324 for smooth-
ness, are exactly the reverses of the bad patterns 3412, 4231 for rational smoothness of
Schubert varieties in type A (Lakshmibai-Sandhya); they are reversed because the order
for containment of closures is the reverse of the Bruhat order. Finally, one last conjecture:
an involution π contains one of the above patterns in my sense if and only if it does so in
the usual sense (omitting the condition that the indices in the bad pattern be permuted
by the involution.) This has been checked up to rank 12.


