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Flag varieties

Notation

I G = simple algebraic group
I B = Borel subgroup, B− = opposite Borel subgroup
I T = maximal torus contained in B
I B = TU, B− = TU−

I If V is a representation of T, the set of weights of V is
denoted Φ(V)

I X = G/B, the flag variety
I g, b, t, u, u− denote Lie algebras of the corresponding

groups.
I W = Weyl group, equipped with Bruhat order
I The T-fixed points of X are xB for x ∈W.



Tangent spaces to Schubert varieties

There is an open cell in X containing xB :

I Let U−(x) = xU−x−1 with Lie algebra u−(x)

I U−(x)xB is an open cell Cx containing xB.

Schubert varieties

I X = G/B, Xw = B− · wB, Schubert variety, codim `(w).
I The T-fixed point xB is in Xw if and only if x ≥ w in the

Bruhat order.
I One would like to understand the singularities of Xw at xB.
I Write TxXw for TxBXw.
I More modest goal: Understand the Zariski tangent space

TxXw, or equivalently, the set of weights Φ(TxXw).
I Φ(TxXw) ⊆ Φ(TxCx) = xΦ−.



Equivariant K-theory

I For classical groups, Φ(TxXw) has been described.
I The description is complicated except in type A.

I Goal: obtain some information about Φ(TxXw) from
equivariant K-theory.

Motivation

I There are ways to do calculations in equivariant K-theory
which are uniform across types.

I One can obtain information about multiplicities from these
calculations but some cancellations are required.

I The set of weights Φ(TxXw) is related to these cancellations.



Generalized flag varieties

I Suppose P = LUP ⊃ B is a parabolic subgroup.
I XP = G/P generalized flag variety.
I Xw

P = B− · wP, Schubert variety in G/P.
I WP = minimal coset representatives of W with respect to

WP = Weyl group of L.
I Let π : X→ XP. If w ∈WP, then π−1(Xw

P ) = Xw.
I Because π is a fiber bundle map, if we understand Φ(TxXw

P )
then we can understand Φ(TxXw).



Generalized flag varieties

Remark

Sometimes it is useful to take P to be the largest parabolic
subgroup such that w is in WP, and then study Xw

P .

I The simple roots of the Levi factor L are the α such that
wsα > w.

Tangent and normal spaces

I Let x,w ∈WP with x ≥ w.
I The map xU−P x−1 → XP, y 7→ y · xP, gives an isomorphism

of xU−P x−1 with an open cell Cx,P in XP containing xP.
I Let Φamb = Φ(TxXP) = xΦ(u−P ). (“Amb” for “ambient”.)
I Let Φtan = Φ(TxXw

P ).
I Let Φnor = Φamb \ Φtan.



Equivariant K-theory

I If T acts on a smooth scheme M, KT(M) denotes the
Grothendieck group of T-equivariant coherent sheaves (or
vector bundles) on M.

I KT(M) is a module for KT(point), which equals the
representation ring R(T) of T (spanned by eλ for λ ∈ T̂).

I A T-invariant closed subscheme Y of M has structure sheaf
OY, which defines a class [OY] ∈ KT(M)

I If im : {m} ↪→M is the inclusion of a T-fixed point, there is
a pullback i∗m : KT(M)→ KT({m}) = R(T).



Pullbacks of Schubert classes

If Y is a Schubert variety in a flag variety M, the pullback i∗m[OY]
can be computed.

Notation

I Let ix : {xP} → XP denote the inclusion.

I i∗x[OXw
P
] denotes the pullback of the Schubert class to xP.

I This is the same as the pullback of [OXw ] to xB.



The 0-Hecke algebra

The 0-Hecke algebra arises in the formulas for the K-theory
pullbacks.

Definition
The 0-Hecke algebra is a free R(T)-algebra with basis Hw, for
w ∈W. Multiplication: Let s be a simple reflection.

I HsHw = Hsw if l(sw) > l(w)

I HsHw = Hw if l(sw) < l(w)

I H2
s = Hs

I H1 is the identity element.



Sequences of reflections

Let s = (s1, s2, . . . , sl) be a sequence of simple reflections.

Define the Demazure product δ(s) ∈W by the formula

Hs1 · · ·Hsl = Hδ(s).

I δ(s) ≥ w iff s contains a subexpression multiplying to w
(Knutson-Miller).

I In particular, δ(s) ≥ s1s2 · · · sl, with equality if s is reduced.

Subsequences

I Let w ∈W. Define Tw,s to be the set of sequences
t = (i1, . . . , im), where 1 ≤ i1 < · · · < im ≤ l, such that
Hsi1
· · ·Hsim

= Hw.
I Define the length `(t) = m and the excess e(t) = `(t)− `(w).



A pullback formula

Reduced expressions and inversion sets

I Let s = (s1, s2, . . . , sl) be a reduced expression for x.
I Let γi = s1 · · · si−1(αi).
I The inversion set I(x−1) = Φ+ ∩ xΦ− = {γ1, . . . , γl}.

The pullback formula

Theorem (G.-Willems)

Let x,w ∈WP, x ≥ w. Then

i∗x[OXw
P
] =

∑
t∈Tw,s

(−1)e(t)
∏
i∈t

(1− e−γi).

Let Ps denote the right hand side of this expression.



The expression Ps

I The expression Ps is a sum of monomials in
1− e−γ1 , . . . , 1− e−γl .

I There is one monomial for each t ∈ Tw,s, that is, for each
subexpression t = (i1, . . . , im) such that Hsi1

· · ·Hsim
= Hw.

I That monomial is
∏

i∈t(1− e−γi) (up to sign).

I We will be interested in the weights γi such that 1− e−γi

occurs as a factor in each of these monomials.
I This is equivalent to saying that i lies in every

subexpression t ∈ Tw,s.



Indecomposable elements

Recall that for x ≥ w in WP, we defined

I Φamb = Φ(TxXP) = xΦ(u−P ). (“Amb” for “ambient”.)
I Φtan = Φ(TxXw

P ).
I Φnor = Φamb \ Φtan.

An element α ∈ Φamb is called indecomposable if α cannot be
written as a positive linear combination of other elements of
Φamb.



Weights of the normal space

The main result of the talk is:

Theorem
Let γi be indecomposable in Φamb. Then γi is in Φnor if and only if i
lies in every subexpression t ∈ T(w, s).

Remark

I If i lies in every subexpression t ∈ T(w, s), then 1− e−γi is a
factor of i∗x[OXw

P
].

I To motivate why the theorem might be true, we look at the
connection between normal spaces and factors of i∗x[OXw

P
].



Equivariant K-theory and tangent spaces

By replacing XP by the cell Cx,P, which is isomorphic to a vector
space V, and Xw

P by its intersection with the cell, we can assume
we are in the following model situation:

I V = representation of T such that all weights Φ(V) lie in an
open half-space and all weight spaces are 1-dimensional

I Y = closed T-stable subvariety of V
I The T-fixed point is the origin, and ix corresponds to

i : {0} ↪→ V.
I In our model situation, i∗ is an isomorphism in equivariant

K-theory, so we can simply omit the pullbacks to the origin.
I Let

λ−1(V∗) =
∏

α∈Φ(V)

(1− e−α).



Equivariant K-theory and tangent spaces

More definitions

I Let C = tangent cone to Y at 0; then C ⊂ V′ = T0Y.

I The normal space is V/V′.

I Write Φamb = Φ(V), Φtan = Φ(V′), Φnor = Φamb \ Φtan.



Equivariant K-theory and tangent spaces

I Since C ⊂ V′, we have classes [OC]V′ ∈ KT(V′) and
[OC]V ∈ KT(V).

I We also have [OY]V ∈ KT(V).
I In our Schubert situation, [OY]V corresponds to

i∗x [OXw
P
] = Pw,s.

I [OC]V = [OY]V, and [OC]V = λ−1((V/V′)∗)[OC]V′ .

I Conclude: If α ∈ Φnor, then 1− e−α is a factor of [OY]V.
I One can show that if α is indecomposable in Φamb, then the

converse holds: If 1− e−α is a factor of [OY]V then α ∈ Φnor.
I This implies one implication of our main theorem.

Suppose γi is indecomposable in Φamb. If i is in each
subxpression t in Tw,s, then 1− e−γi is a factor of
i∗x[OXw

P
] = Pw,s, so γi ∈ Φnor.



Sketch of the proof of the converse

For the other implication, again suppose γi is indecomposable
in Φamb.

I Suppose that there exists some subexpression t in Tw,s such
that i is not in t. We want to show that γi is in Φtan.

I One can describe the set of weights of the coordinate ring
C[C] of the tangent cone in terms of the pullback i∗x[OXw

P
].

I The hypothesis that i is not in some t, combined with the
formula for Pw,s, can be used to show that −γi is a weight
of C[C].

I Since γi is indecomposable, the weight −γi must occur in
the degree 1 component of the graded ring C[C].

I The weights of this degree 1 component are exactly −Φtan,
so γi ∈ Φtan.


