Equivariant *K*-theory and tangent spaces to Schubert varieties

William Graham and Victor Kreiman

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Flag varieties

Notation

- ► *G* = simple algebraic group
- B = Borel subgroup, $B^- =$ opposite Borel subgroup
- T =maximal torus contained in B
- ► $B = TU, B^- = TU^-$
- If V is a representation of T, the set of weights of V is denoted Φ(V)
- X = G/B, the flag variety
- 𝔅, 𝔥, 𝔥, 𝑢, 𝑢[−] denote Lie algebras of the corresponding groups.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► *W* = Weyl group, equipped with Bruhat order
- The *T*-fixed points of *X* are xB for $x \in W$.

Tangent spaces to Schubert varieties

There is an open cell in *X* containing *xB* :

- Let $U^-(x) = xU^-x^{-1}$ with Lie algebra $\mathfrak{u}^-(x)$
- $U^{-}(x)xB$ is an open cell C_x containing xB.

Schubert varieties

- X = G/B, $X^w = \overline{B^- \cdot wB}$, Schubert variety, codim $\ell(w)$.
- ► The *T*-fixed point *xB* is in X^w if and only if x ≥ w in the Bruhat order.
- One would like to understand the singularities of *X*^{*w*} at *xB*.
- Write $T_x X^w$ for $T_{xB} X^w$.
- More modest goal: Understand the Zariski tangent space $T_x X^w$, or equivalently, the set of weights $\Phi(T_x X^w)$.

• $\Phi(T_x X^w) \subseteq \Phi(T_x C_x) = x \Phi^-.$

Equivariant K-theory

- ► For classical groups, $\Phi(T_x X^w)$ has been described.
 - The description is complicated except in type *A*.
- Goal: obtain some information about $\Phi(T_x X^w)$ from equivariant *K*-theory.

Motivation

- ► There are ways to do calculations in equivariant *K*-theory which are uniform across types.
- One can obtain information about multiplicities from these calculations but some cancellations are required.
- The set of weights $\Phi(T_x X^w)$ is related to these cancellations.

Generalized flag varieties

- Suppose $P = LU_P \supset B$ is a parabolic subgroup.
- $X_P = G/P$ generalized flag variety.
- $X_P^w = \overline{B^- \cdot wP}$, Schubert variety in G/P.
- ► W^P = minimal coset representatives of W with respect to W_P = Weyl group of L.
- Let $\pi : X \to X_P$. If $w \in W^P$, then $\pi^{-1}(X_P^w) = X^w$.
- ► Because π is a fiber bundle map, if we understand $\Phi(T_x X_P^w)$ then we can understand $\Phi(T_x X^w)$.

Generalized flag varieties

Remark

Sometimes it is useful to take *P* to be the largest parabolic subgroup such that *w* is in W^P , and then study X_P^w .

The simple roots of the Levi factor *L* are the *α* such that *ws_α > w*.

Tangent and normal spaces

- Let $x, w \in W^P$ with $x \ge w$.
- ► The map $xU_p^-x^{-1} \to X_P$, $y \mapsto y \cdot xP$, gives an isomorphism of $xU_p^-x^{-1}$ with an open cell $C_{x,P}$ in X_P containing xP.
- Let $\Phi_{amb} = \Phi(T_x X_P) = x \Phi(\mathfrak{u}_P^-)$. ("Amb" for "ambient".)
- Let $\Phi_{tan} = \Phi(T_x X_P^w)$.
- Let $\Phi_{nor} = \Phi_{amb} \setminus \Phi_{tan}$.

Equivariant K-theory

- If *T* acts on a smooth scheme *M*, *K_T(M*) denotes the Grothendieck group of *T*-equivariant coherent sheaves (or vector bundles) on *M*.
- ► $K_T(M)$ is a module for $K_T(\text{point})$, which equals the representation ring R(T) of T (spanned by e^{λ} for $\lambda \in \hat{T}$).
- ► A *T*-invariant closed subscheme *Y* of *M* has structure sheaf \mathcal{O}_Y , which defines a class $[\mathcal{O}_Y] \in K_T(M)$
- If $i_m : \{m\} \hookrightarrow M$ is the inclusion of a *T*-fixed point, there is a pullback $i_m^* : K_T(M) \to K_T(\{m\}) = R(T)$.

Pullbacks of Schubert classes

If *Y* is a Schubert variety in a flag variety *M*, the pullback $i_m^*[\mathcal{O}_Y]$ can be computed.

Notation

- Let $i_x : \{xP\} \to X_P$ denote the inclusion.
- $i_x^*[\mathcal{O}_{X_p^w}]$ denotes the pullback of the Schubert class to *xP*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• This is the same as the pullback of $[\mathcal{O}_{X^w}]$ to *xB*.

The 0-Hecke algebra

The 0-Hecke algebra arises in the formulas for the *K*-theory pullbacks.

Definition

The 0-Hecke algebra is a free R(T)-algebra with basis H_w , for $w \in W$. Multiplication: Let *s* be a simple reflection.

- $H_sH_w = H_{sw}$ if l(sw) > l(w)
- $H_s H_w = H_w$ if l(sw) < l(w)
- ► $H_s^2 = H_s$
- H_1 is the identity element.

Sequences of reflections

Let $\mathbf{s} = (s_1, s_2, \dots, s_l)$ be a sequence of simple reflections. Define the Demazure product $\delta(\mathbf{s}) \in W$ by the formula

 $H_{s_1}\cdots H_{s_l}=H_{\delta(\mathbf{s})}.$

- δ(s) ≥ w iff s contains a subexpression multiplying to w (Knutson-Miller).
- In particular, $\delta(\mathbf{s}) \ge s_1 s_2 \cdots s_l$, with equality if \mathbf{s} is reduced.

Subsequences

- ► Let $w \in W$. Define $T_{w,s}$ to be the set of sequences $\mathbf{t} = (i_1, \ldots, i_m)$, where $1 \le i_1 < \cdots < i_m \le l$, such that $H_{s_{i_1}} \cdots H_{s_{i_m}} = H_w$.
- Define the length $\ell(\mathbf{t}) = m$ and the excess $e(\mathbf{t}) = \ell(\mathbf{t}) \ell(w)$.

A pullback formula

Reduced expressions and inversion sets

- Let $\mathbf{s} = (s_1, s_2, \dots, s_l)$ be a reduced expression for x.
- Let $\gamma_i = s_1 \cdots s_{i-1}(\alpha_i)$.
- The inversion set $I(x^{-1}) = \Phi^+ \cap x\Phi^- = \{\gamma_1, \dots, \gamma_l\}.$

The pullback formula

Theorem (G.-Willems)

Let $x, w \in W^P$, $x \ge w$. Then

$$i_x^*[\mathcal{O}_{X_p^w}] = \sum_{\mathbf{t}\in T_{w,\mathbf{s}}} (-1)^{e(\mathbf{t})} \prod_{i\in \mathbf{t}} (1-e^{-\gamma_i}).$$

Let P_s denote the right hand side of this expression.

The expression P_s

- The expression $P_{\mathbf{s}}$ is a sum of monomials in $1 e^{-\gamma_1}, \dots, 1 e^{-\gamma_l}$.
- ▶ There is one monomial for each $\mathbf{t} \in T_{w,s}$, that is, for each subexpression $\mathbf{t} = (i_1, \ldots, i_m)$ such that $H_{s_{i_1}} \cdots H_{s_{i_m}} = H_w$.
 - That monomial is $\prod_{i \in \mathbf{t}} (1 e^{-\gamma_i})$ (up to sign).
- We will be interested in the weights γ_i such that $1 e^{-\gamma_i}$ occurs as a factor in each of these monomials.

► This is equivalent to saying that *i* lies in every subexpression t ∈ T_{w,s}.

Indecomposable elements

Recall that for $x \ge w$ in W^P , we defined

•
$$\Phi_{amb} = \Phi(T_x X_P) = x \Phi(\mathfrak{u}_P^-)$$
. ("Amb" for "ambient".)
• $\Phi_{tan} = \Phi(T_x X_P^w)$.

•
$$\Phi_{nor} = \Phi_{amb} \setminus \Phi_{tan}$$
.

An element $\alpha \in \Phi_{amb}$ is called indecomposable if α cannot be written as a positive linear combination of other elements of Φ_{amb} .

Weights of the normal space

The main result of the talk is:

Theorem

Let γ_i be indecomposable in Φ_{amb} . Then γ_i is in Φ_{nor} if and only if *i* lies in every subexpression $\mathbf{t} \in T(w, \mathbf{s})$.

Remark

- ► If *i* lies in every subexpression $\mathbf{t} \in T(w, \mathbf{s})$, then $1 e^{-\gamma_i}$ is a factor of $i_x^*[\mathcal{O}_{X_p^w}]$.
- ► To motivate why the theorem might be true, we look at the connection between normal spaces and factors of i^{*}_x[O_{X^w_p}].

Equivariant *K*-theory and tangent spaces

By replacing X_P by the cell $C_{x,P}$, which is isomorphic to a vector space V, and X_P^w by its intersection with the cell, we can assume we are in the following model situation:

- V = representation of T such that all weights Φ(V) lie in an open half-space and all weight spaces are 1-dimensional
- Y = closed T-stable subvariety of V
- The *T*-fixed point is the origin, and i_x corresponds to $i : \{0\} \hookrightarrow V$.
- ► In our model situation, *i*^{*} is an isomorphism in equivariant *K*-theory, so we can simply omit the pullbacks to the origin.

► Let

$$\lambda_{-1}(V^*) = \prod_{\alpha \in \Phi(V)} (1 - e^{-\alpha}).$$

- コン・4回シュービン・4回シューレー

Equivariant *K*-theory and tangent spaces

More definitions

- Let *C* = tangent cone to *Y* at 0; then $C \subset V' = T_0Y$.
- The normal space is V/V'.
- Write $\Phi_{amb} = \Phi(V)$, $\Phi_{tan} = \Phi(V')$, $\Phi_{nor} = \Phi_{amb} \setminus \Phi_{tan}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivariant K-theory and tangent spaces

- ▶ Since $C \subset V'$, we have classes $[\mathcal{O}_C]_{V'} \in K_T(V')$ and $[\mathcal{O}_C]_V \in K_T(V)$.
- We also have $[\mathcal{O}_Y]_V \in K_T(V)$.
 - In our Schubert situation, $[\mathcal{O}_Y]_V$ corresponds to $i_x^*[\mathcal{O}_{X_p^w}] = P_{w,s}$.
- $[\mathcal{O}_C]_V = [\mathcal{O}_Y]_V$, and $[\mathcal{O}_C]_V = \lambda_{-1}((V/V')^*)[\mathcal{O}_C]_{V'}$.
- Conclude: If $\alpha \in \Phi_{nor}$, then $1 e^{-\alpha}$ is a factor of $[\mathcal{O}_Y]_V$.
- One can show that if α is indecomposable in Φ_{amb} , then the converse holds: If $1 e^{-\alpha}$ is a factor of $[\mathcal{O}_Y]_V$ then $\alpha \in \Phi_{nor}$.
- This implies one implication of our main theorem. Suppose γ_i is indecomposable in Φ_{amb}. If *i* is in each subxpression t in T_{w,s}, then 1 − e^{−γ_i} is a factor of i^{*}_x[O_{X^w_p}] = P_{w,s}, so γ_i ∈ Φ_{nor}.

Sketch of the proof of the converse

For the other implication, again suppose γ_i is indecomposable in Φ_{amb} .

- Suppose that there exists some subexpression t in T_{w,s} such that *i* is not in t. We want to show that γ_i is in Φ_{tan}.
- One can describe the set of weights of the coordinate ring C[C] of the tangent cone in terms of the pullback i^{*}_x[O_{X^w_p}].
- ► The hypothesis that *i* is not in some **t**, combined with the formula for $P_{w,s}$, can be used to show that $-\gamma_i$ is a weight of **C**[*C*].
- Since *γ_i* is indecomposable, the weight −*γ_i* must occur in the degree 1 component of the graded ring C[C].
- The weights of this degree 1 component are exactly $-\Phi_{tan}$, so $\gamma_i \in \Phi_{tan}$.