Equivariant K-theory and tangent spaces to Schubert varieties

William Graham and Victor Kreiman

Flag varieties

Notation

- $G=$ simple algebraic group
- $B=$ Borel subgroup, $B^{-}=$opposite Borel subgroup
- $T=$ maximal torus contained in B
- $B=T U, B^{-}=T U^{-}$
- If V is a representation of T, the set of weights of V is denoted $\Phi(V)$
- $X=G / B$, the flag variety
$-\mathfrak{g}, \mathfrak{b}, \mathfrak{t}, \mathfrak{u}, \mathfrak{u}^{-}$denote Lie algebras of the corresponding groups.
- $W=$ Weyl group, equipped with Bruhat order
- The T-fixed points of X are $x B$ for $x \in W$.

Tangent spaces to Schubert varieties

There is an open cell in X containing $x B$:

- Let $U^{-}(x)=x U^{-} x^{-1}$ with Lie algebra $\mathfrak{u}^{-}(x)$
- $U^{-}(x) x B$ is an open cell C_{x} containing $x B$.

Schubert varieties

- $X=G / B, X^{w}=\overline{B^{-} \cdot w B}$, Schubert variety, $\operatorname{codim} \ell(w)$.
- The T-fixed point $x B$ is in X^{w} if and only if $x \geq w$ in the Bruhat order.
- One would like to understand the singularities of X^{w} at $x B$.
- Write $T_{x} X^{w}$ for $T_{x B} X^{w}$.
- More modest goal: Understand the Zariski tangent space $T_{x} X^{w}$, or equivalently, the set of weights $\Phi\left(T_{x} X^{w}\right)$.
- $\Phi\left(T_{x} X^{w}\right) \subseteq \Phi\left(T_{x} C_{x}\right)=x \Phi^{-}$.

Equivariant K-theory

- For classical groups, $\Phi\left(T_{x} X^{w}\right)$ has been described.
- The description is complicated except in type A.
- Goal: obtain some information about $\Phi\left(T_{x} X^{w}\right)$ from equivariant K-theory.

Motivation

- There are ways to do calculations in equivariant K-theory which are uniform across types.
- One can obtain information about multiplicities from these calculations but some cancellations are required.
- The set of weights $\Phi\left(T_{x} X^{w}\right)$ is related to these cancellations.

Generalized flag varieties

- Suppose $P=L U_{P} \supset B$ is a parabolic subgroup.
- $X_{P}=G / P$ generalized flag variety.
- $X_{P}^{w}=\overline{B^{-} \cdot w P}$, Schubert variety in G / P.
- $W^{P}=$ minimal coset representatives of W with respect to $W_{P}=$ Weyl group of L.
- Let $\pi: X \rightarrow X_{P}$. If $w \in W^{P}$, then $\pi^{-1}\left(X_{P}^{w}\right)=X^{w}$.
- Because π is a fiber bundle map, if we understand $\Phi\left(T_{x} X_{P}^{w}\right)$ then we can understand $\Phi\left(T_{x} X^{w}\right)$.

Generalized flag varieties

Remark

Sometimes it is useful to take P to be the largest parabolic subgroup such that w is in W^{P}, and then study X_{P}^{w}.

- The simple roots of the Levi factor L are the α such that $w s_{\alpha}>w$.

Tangent and normal spaces

- Let $x, w \in W^{P}$ with $x \geq w$.
- The map $x U_{p}^{-} x^{-1} \rightarrow X_{P}, y \mapsto y \cdot x P$, gives an isomorphism of $x U_{P}^{-} x^{-1}$ with an open cell $C_{x, P}$ in X_{P} containing $x P$.
- Let $\Phi_{a m b}=\Phi\left(T_{x} X_{P}\right)=x \Phi\left(\mathfrak{u}_{P}^{-}\right)$. ("Amb" for "ambient".)
- Let $\Phi_{t a n}=\Phi\left(T_{x} X_{P}^{w}\right)$.
- Let $\Phi_{\text {nor }}=\Phi_{\text {amb }} \backslash \Phi_{\text {tan }}$.

Equivariant K-theory

- If T acts on a smooth scheme $M, K_{T}(M)$ denotes the Grothendieck group of T-equivariant coherent sheaves (or vector bundles) on M.
- $K_{T}(M)$ is a module for K_{T} (point), which equals the representation ring $R(T)$ of T (spanned by e^{λ} for $\lambda \in \hat{T}$).
- A T-invariant closed subscheme Y of M has structure sheaf \mathcal{O}_{Y}, which defines a class $\left[\mathcal{O}_{Y}\right] \in K_{T}(M)$
- If $i_{m}:\{m\} \hookrightarrow M$ is the inclusion of a T-fixed point, there is a pullback $i_{m}^{*}: K_{T}(M) \rightarrow K_{T}(\{m\})=R(T)$.

Pullbacks of Schubert classes

If Y is a Schubert variety in a flag variety M, the pullback $i_{m}^{*}\left[\mathcal{O}_{Y}\right]$ can be computed.

Notation

- Let $i_{x}:\{x P\} \rightarrow X_{P}$ denote the inclusion.
- $i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}\right]$ denotes the pullback of the Schubert class to $x P$.
- This is the same as the pullback of $\left[\mathcal{O}_{X^{w}}\right]$ to $x B$.

The 0-Hecke algebra

The 0-Hecke algebra arises in the formulas for the K-theory pullbacks.

Definition

The 0-Hecke algebra is a free $R(T)$-algebra with basis H_{w}, for $w \in W$. Multiplication: Let s be a simple reflection.

- $H_{s} H_{w}=H_{s w}$ if $l(s w)>l(w)$
- $H_{s} H_{w}=H_{w}$ if $l(s w)<l(w)$
- $H_{s}^{2}=H_{s}$
- H_{1} is the identity element.

Sequences of reflections

Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ be a sequence of simple reflections.
Define the Demazure product $\delta(\mathbf{s}) \in W$ by the formula

$$
H_{s_{1}} \cdots H_{s_{l}}=H_{\delta(\mathbf{s})}
$$

- $\delta(\mathbf{s}) \geq w$ iff \mathbf{s} contains a subexpression multiplying to w (Knutson-Miller).
- In particular, $\delta(\mathbf{s}) \geq s_{1} s_{2} \cdots s_{l}$, with equality if \mathbf{s} is reduced.

Subsequences

- Let $w \in W$. Define $T_{w, \mathbf{s}}$ to be the set of sequences $\mathbf{t}=\left(i_{1}, \ldots, i_{m}\right)$, where $1 \leq i_{1}<\cdots<i_{m} \leq l$, such that $H_{s_{i_{1}}} \cdots H_{s_{i_{m}}}=H_{w}$.
- Define the length $\ell(\mathbf{t})=m$ and the excess $e(\mathbf{t})=\ell(\mathbf{t})-\ell(w)$.

A pullback formula

Reduced expressions and inversion sets

- Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ be a reduced expression for x.
- Let $\gamma_{i}=s_{1} \cdots s_{i-1}\left(\alpha_{i}\right)$.
- The inversion set $I\left(x^{-1}\right)=\Phi^{+} \cap x \Phi^{-}=\left\{\gamma_{1}, \ldots, \gamma_{l}\right\}$.

The pullback formula
Theorem (G.-Willems)
Let $x, w \in W^{P}, x \geq w$. Then

$$
i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}\right]=\sum_{\mathbf{t} \in T_{w, \mathbf{s}}}(-1)^{e(\mathbf{t})} \prod_{i \in \mathbf{t}}\left(1-e^{-\gamma_{i}}\right) .
$$

Let P_{s} denote the right hand side of this expression.

The expression P_{s}

- The expression P_{s} is a sum of monomials in $1-e^{-\gamma_{1}}, \ldots, 1-e^{-\gamma_{l}}$.
- There is one monomial for each $\mathbf{t} \in T_{w, \mathbf{s}}$, that is, for each subexpression $\mathbf{t}=\left(i_{1}, \ldots, i_{m}\right)$ such that $H_{s_{i_{1}}} \cdots H_{s_{i_{m}}}=H_{w}$.
- That monomial is $\prod_{i \in \mathbf{t}}\left(1-e^{-\gamma_{i}}\right)$ (up to sign).
- We will be interested in the weights γ_{i} such that $1-e^{-\gamma_{i}}$ occurs as a factor in each of these monomials.
- This is equivalent to saying that i lies in every subexpression $\mathbf{t} \in T_{w, \mathbf{s}}$.

Indecomposable elements

Recall that for $x \geq w$ in W^{P}, we defined

- $\Phi_{\text {amb }}=\Phi\left(T_{x} X_{P}\right)=x \Phi\left(\mathfrak{u}_{P}^{-}\right)$. ("Amb" for "ambient".)
- $\Phi_{\text {tan }}=\Phi\left(T_{x} X_{P}^{w}\right)$.
- $\Phi_{\text {nor }}=\Phi_{\text {amb }} \backslash \Phi_{\text {tan }}$.

An element $\alpha \in \Phi_{\text {amb }}$ is called indecomposable if α cannot be written as a positive linear combination of other elements of $\Phi_{a m b}$.

Weights of the normal space

The main result of the talk is:

Theorem
Let γ_{i} be indecomposable in $\Phi_{\text {amb }}$. Then γ_{i} is in $\Phi_{\text {nor }}$ if and only if i lies in every subexpression $\mathbf{t} \in T(w, \mathbf{s})$.

Remark

- If i lies in every subexpression $\mathbf{t} \in T(w, \mathbf{s})$, then $1-e^{-\gamma_{i}}$ is a factor of $i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}^{w}\right]$.
- To motivate why the theorem might be true, we look at the connection between normal spaces and factors of $i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}\right]$.

Equivariant K-theory and tangent spaces

By replacing X_{P} by the cell $C_{x, P}$, which is isomorphic to a vector space V, and X_{P}^{w} by its intersection with the cell, we can assume we are in the following model situation:

- $V=$ representation of T such that all weights $\Phi(V)$ lie in an open half-space and all weight spaces are 1-dimensional
- $Y=$ closed T-stable subvariety of V
- The T-fixed point is the origin, and i_{x} corresponds to $i:\{0\} \hookrightarrow V$.
- In our model situation, i^{*} is an isomorphism in equivariant K-theory, so we can simply omit the pullbacks to the origin.
- Let

$$
\lambda_{-1}\left(V^{*}\right)=\prod_{\alpha \in \Phi(V)}\left(1-e^{-\alpha}\right) .
$$

Equivariant K-theory and tangent spaces

More definitions

- Let $C=$ tangent cone to Y at 0 ; then $C \subset V^{\prime}=T_{0} Y$.
- The normal space is V / V^{\prime}.
- Write $\Phi_{a m b}=\Phi(V), \Phi_{t a n}=\Phi\left(V^{\prime}\right), \Phi_{\text {nor }}=\Phi_{a m b} \backslash \Phi_{t a n}$.

Equivariant K-theory and tangent spaces

- Since $C \subset V^{\prime}$, we have classes $\left[\mathcal{O}_{C}\right]_{V^{\prime}} \in K_{T}\left(V^{\prime}\right)$ and $\left[\mathcal{O}_{C}\right]_{V} \in K_{T}(V)$.
- We also have $\left[\mathcal{O}_{Y}\right]_{V} \in K_{T}(V)$.
- In our Schubert situation, $\left[\mathcal{O}_{Y}\right]_{V}$ corresponds to $i_{x}^{*}\left[\mathcal{O}_{X_{p}^{w}}\right]=P_{w, \mathbf{s}}$.
- $\left[\mathcal{O}_{C}\right]_{V}=\left[\mathcal{O}_{Y}\right]_{V}$, and $\left[\mathcal{O}_{C}\right]_{V}=\lambda_{-1}\left(\left(V / V^{\prime}\right)^{*}\right)\left[\mathcal{O}_{C}\right]_{V^{\prime}}$.
- Conclude: If $\alpha \in \Phi_{n o r}$, then $1-e^{-\alpha}$ is a factor of $\left[\mathcal{O}_{Y}\right]_{V}$.
- One can show that if α is indecomposable in $\Phi_{a m b}$, then the converse holds: If $1-e^{-\alpha}$ is a factor of $\left[\mathcal{O}_{Y}\right]_{V}$ then $\alpha \in \Phi_{\text {nor }}$.
- This implies one implication of our main theorem. Suppose γ_{i} is indecomposable in $\Phi_{a m b}$. If i is in each subxpression \mathbf{t} in $T_{w, \mathbf{s}}$, then $1-e^{-\gamma_{i}}$ is a factor of $i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}\right]=P_{w, \mathbf{s}}$, so $\gamma_{i} \in \Phi_{\text {nor }}$.

Sketch of the proof of the converse

For the other implication, again suppose γ_{i} is indecomposable in $\Phi_{a m b}$.

- Suppose that there exists some subexpression \mathbf{t} in $T_{w, \mathbf{s}}$ such that i is not in \mathbf{t}. We want to show that γ_{i} is in $\Phi_{\text {tan }}$.
- One can describe the set of weights of the coordinate ring $\mathrm{C}[\mathrm{C}]$ of the tangent cone in terms of the pullback $i_{x}^{*}\left[\mathcal{O}_{X_{P}^{w}}\right]$.
- The hypothesis that i is not in some \mathbf{t}, combined with the formula for $P_{w, \mathbf{s}}$, can be used to show that $-\gamma_{i}$ is a weight of $\mathbf{C}[C]$.
- Since γ_{i} is indecomposable, the weight $-\gamma_{i}$ must occur in the degree 1 component of the graded ring $\mathbf{C}[C]$.
- The weights of this degree 1 component are exactly $-\Phi_{t a n}$, so $\gamma_{i} \in \Phi_{t a n}$.

