Small Resolutions of Closures of K-orbits in Flag Varieties

Scott Larson

Oklahoma State University

What is K ?

$$
\theta \circ \tau=\tau \circ \theta
$$

- G connected complex reductive algebraic group
- $G_{\mathbb{R}}=G^{\tau}$ fixed point subgroup of antiholomorphic involution τ
- $K=G^{\theta}$ fixed point subgroup of algebraic involution θ
- $K_{\mathbb{R}}=G_{\mathbb{R}}^{\theta}$ is a max'l compact subgroup of $G_{\mathbb{R}}$

Example

- $G=G L(n, \mathbb{C})$ and K any of $G L(k, \mathbb{C}) \times G L(n-k, \mathbb{C})$, $O(n, \mathbb{C})$, or $\operatorname{Sp}(2 n, \mathbb{C})$.
- $\theta\left(g_{1}, g_{2}\right)=\left(g_{2}, g_{1}\right)$ involution of $G \times G$ gives $K=\Delta G$.

Theorem (Wolf 1969, Matsuki 1979)
Let B be a Borel subgroup and $B \subseteq P \subseteq G$. Then $G_{\mathbb{R}}$ and K act with finitely many orbits on G / P.

- B upper triangular
- $G / B=\mathbb{P}^{1}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left[\begin{array}{l}
z \\
1
\end{array}\right]=\left[\begin{array}{l}
a z+b \\
c z+d
\end{array}\right]
$$

$G_{\mathbb{R}} \backslash G / B=$
$K \backslash G / B=$

Whitney stratification:

$$
G / B=\coprod_{v \in V} \mathcal{Q}_{v}, \quad V=K \backslash G / B
$$

- Compute local polar varieties/multiplicities (too difficult?).
- Determine (V, \leq), where $u \leq v$ means $\mathcal{Q}_{u} \subseteq \overline{\mathcal{Q}}_{v}$.
- Described by, e.g., Richardson-Springer 1994
- atlas software
- Compute intersection cohomology of \mathcal{Q}_{V} (and local systems).
- Solved by Lusztig-Vogan 1983, Vogan 1983
- atlas software: Kazhdan-Lusztig-Vogan polynomials
- Compute characteristic cycles of intersection cohomology.
- Solved in certain cases, e.g., highest weight Harish-Chandra modules having regular integral infinitesimal character by Zierau 2018

Example (Schubert varieties)

$\Delta G \subseteq G \times G$ gives $V=W$ the Weyl group, and
$\overline{\mathcal{Q}_{v}} \cong G \times{ }^{B} G_{w} / B$, where $G_{w}=\overline{B \dot{w} B} \subseteq G$.

Definition

Let \widetilde{Y} and Y be complex algebraic varieties. A resolution of singularities of Y is an algebraic morphism $\xi: \widetilde{Y} \rightarrow Y$ such that properties (1)-(3) hold:
(1) ξ is proper,
(2) ξ is birational,
(3) \widetilde{Y} is smooth.

A resolution is often required to satisfy :
(4) ξ is an isomorphism over the smooth locus of Y, which we call strict.

Example (Demazure 1974, Hansen 1973)

Let $\left(s_{i_{1}}, \ldots, s_{i_{\ell}}\right)$ be a reduced word for $w \in W$. Then

$$
\mu: B \times^{B} P_{i_{1}} \times{ }^{B} \cdots \times^{B} P_{i_{\ell}} / B \rightarrow G_{w} / B
$$

is a resolution (but rarely strict).

Definition

Let $\xi: \widetilde{Y} \rightarrow Y$ be a resolution of singularities. We say that ξ is small if for every $r>0$,

$$
\operatorname{dim}(Y)-\operatorname{dim}\left(Y_{r}\right)>2 r
$$

where $Y_{r}=\left\{y \in Y \mid \operatorname{dim}\left(\xi^{-1}(y)\right) \geq r\right\}$.

- If ξ is a small resolution then $\xi_{*} \mathbb{Q}_{\tilde{Y}}^{\bullet}[\operatorname{dim}(Y)] \cong \mathcal{I} C_{\dot{Y}}^{\bullet}$.
- If ξ is a small resolution of a normal Y then ξ is strict.

Example (Gelfand-MacPherson 1982)

Let I_{0}, \ldots, I_{m} be subsets of simple reflections and define

$$
\mu: P_{I_{0}} \times{ }^{R_{1}} \cdots \times^{R_{m}} P_{I_{m}} / R \rightarrow G_{w} / P
$$

where $R \subseteq P_{I_{m}} \cap P$ and P stabilizes G_{w} (by right multiplication).

- If $G=G L(n, \mathbb{C})$ and $P \subsetneq G$ is maximal then there exists a small resolution of G_{w} / P (Zelevinskiĭ 1983).

K-orbits (Barbasch-Evens 1994)

Theorem (Vogan 1983, Chang 1988) Let $v \in V$. There exists $v_{0} \leq v$ and simple reflections $\left(s_{i_{1}}, \ldots, s_{i_{m}}\right)$ such that

$$
\mu: G_{v_{0}} \times{ }^{B} P_{i_{1}} \times{ }^{B} \cdots \times{ }^{B} P_{i_{m}} / B \rightarrow G_{v} / B
$$

is a resolution of singularities, where $G_{v}=\overline{K \dot{v} B} \subseteq G$. Here $G_{v} / B=\overline{\mathcal{Q}_{v}} \subseteq G / B$.

Theorem (Barbasch-Evens 1994)
Let $v \in V$ such that P stablizes G_{v}. If $G=G L(n, \mathbb{C})$ and $P \subsetneq G$ is maximal then there exists $v_{0} \leq v$ and $R \subseteq P$ such that

$$
\mu: G_{v_{0}} / R \rightarrow G_{v} / P
$$

is a resolution of singularities (any K).

- If $K=G L(k, \mathbb{C}) \times G L(n-k, \mathbb{C})$ then there exists a small μ.
$\operatorname{Sp}(2 n, \mathbb{R})$
- $G=\operatorname{Sp}(2 n, \mathbb{C})$ (defined by some ω) and $K=G L(n, \mathbb{C})$
- $\mathbb{C}^{2 n}=\mathbb{C}^{n}+\mathbb{C}^{-n}, \Lambda^{ \pm}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{ \pm n}$
- If $1 \leq k \leq n$ then $\mathcal{Q}_{a, b, c} \subseteq \operatorname{Gr}_{k}^{0}\left(\mathbb{C}^{2 n}\right)$ (isotropic subspaces) by $\operatorname{dim}\left(\mathbb{C}^{n} \cap E^{k}\right)=a, \operatorname{dim}\left(\mathbb{C}^{-n} \cap E^{k}\right)=b, \operatorname{dim}(\operatorname{rad}(\varepsilon))=c$ where $\varepsilon(x, y)=\omega\left(\Lambda^{+}(x), \Lambda^{-}(y)\right)$ symmetric bilinear form on E^{k}.

Theorem
Let $v \in V$ such that P stabilizes G_{v}. If $P \subsetneq G$ is maximal then there exists $v_{0} \leq v$ and $R \subseteq P_{l_{1}} \cap P$ such that

$$
\mu: G_{v_{0}} \times{ }^{R_{1}} P_{l_{1}} / R \rightarrow G_{v} / P
$$

is a resolution of singularities.

Example

Let $n=4$ and $k=2$. If $c=0$ then we write $(a, b, c)=(a, b)$. Then μ is small, e.g., for $G_{(a, b)} / P$ when $k \leq \frac{n}{2}$.

- $(0,0),(2,0),(1,1),(0,2)$ are smooth.
- μ is small for $(1,0),(0,1),(0,0,2)$.
- μ^{\prime} is small for $(1,0,1)$ and $(0,1,1)$.

Main construction
Let $v_{0} \in V$ and for $1 \leq i \leq m$, let $w_{i} \in W$. Suppose

$$
\mu: G_{v_{0}} \times{ }^{R_{1}} G_{w_{1}} \times{ }^{R_{2}} \cdots \times{ }^{R_{m}} G_{w_{m}} / B \rightarrow G_{v} / B
$$

is a resolution of singularities.

- We write $v=v_{0} \star w_{1} \star \cdots \star w_{m}$ (the monoid (W, \star) action).
- For $0 \leq i \leq m$, let $v_{i}=v_{0} \star w_{1} \star \cdots \star w_{i}$. If μ is small then $v_{0}<v_{1}<\cdots<v_{m}=v$ all have small resolutions.

Theorem
If W is simply laced then there exists I_{1}, \ldots, I_{h} such that

$$
\begin{gathered}
G_{v_{0}} \times \times^{R_{1}} G_{w_{1}} \times{ }^{R_{2}} \cdots \times \times^{R_{m}} G_{w_{m}} / B \xrightarrow[\mu^{\prime}]{\mu} G_{v} / B \\
\quad \cong \\
G_{v_{0}} \times{ }^{R_{1}} P_{I_{1}} \times{ }^{R_{2}^{\prime}} \cdots \times{ }_{h}^{R_{h}^{\prime}} P_{I_{h}} / B
\end{gathered}
$$

commutes.

Example

If $V=W$ is simply laced and G_{w} / B is smooth then there exists I_{0}, \ldots, I_{m} such that

$$
\mu: P_{I_{0}} \times{ }^{R_{1}} \cdots \times{ }^{R_{m}} P_{I_{m}} / B \rightarrow G_{w} / B
$$

is an isomorphism.

Example

If $G=G L(n, \mathbb{C})$ and $K=G L(k, \mathbb{C}) \times G L(n-k, \mathbb{C})$ then

$(k, n-k)$	1	2	3	4
1	1			
2	1	1		
3	1	.9818	.9767	
4	1	.9583	.9429	.9217

shows ratio of $v \in V$ admitting small resolutions of the form μ.

Resolution of singularities for $(S p(2 n, \mathbb{C}), G L(n, \mathbb{C}))$ revisited Consider $(a, b, c) \in V_{n}^{\hat{k}}$.

- F^{\bullet} isotropic in $\mathbb{C}^{2 n}$
- $\operatorname{dim}\left(\mathbb{C}^{n} \cap F^{a+b+2 c}\right)=a+c$
- $\operatorname{dim}\left(\mathbb{C}^{-n} \cap F^{a+b+2 c}\right)=b+c$

Then $\operatorname{pr}\left(F^{a+b+2 c}, F^{k+c}, E^{k}\right)=E^{k}$ projects to $G_{(a, b, c)} / P_{\hat{k}}$ and is isomorphic to the resolution μ.

