Small Resolutions of Closures of *K*-orbits in Flag Varieties

Scott Larson

Oklahoma State University

What is K?

 $\theta\circ\tau=\tau\circ\theta$

- ► G connected complex reductive algebraic group
- $G_{\mathbb{R}} = G^{\tau}$ fixed point subgroup of antiholomorphic involution τ
- $K = G^{\theta}$ fixed point subgroup of algebraic involution θ
- $\mathcal{K}_{\mathbb{R}} = \mathcal{G}^{ heta}_{\mathbb{R}}$ is a max'l compact subgroup of $\mathcal{G}_{\mathbb{R}}$

Example

- ► $G = GL(n, \mathbb{C})$ and K any of $GL(k, \mathbb{C}) \times GL(n-k, \mathbb{C})$, $O(n, \mathbb{C})$, or $Sp(2n, \mathbb{C})$.
- $\theta(g_1, g_2) = (g_2, g_1)$ involution of $G \times G$ gives $K = \Delta G$.

Theorem (Wolf 1969, Matsuki 1979)

Let B be a Borel subgroup and $B \subseteq P \subseteq G$. Then $G_{\mathbb{R}}$ and K act with finitely many orbits on G/P.

• *B* upper triangular • $G/B = \mathbb{P}^1$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} az + b \\ cz + d \end{bmatrix}$

Whitney stratification:

$$G/B = \prod_{v \in V} \mathcal{Q}_v, \qquad V = K \backslash G/B$$

- Compute local polar varieties/multiplicities (too difficult?).
- Determine (V, \leq) , where $u \leq v$ means $Q_u \subseteq \overline{Q}_v$.
 - Described by, e.g., Richardson-Springer 1994
 - atlas software
- Compute intersection cohomology of Q_v (and local systems).
 - Solved by Lusztig-Vogan 1983, Vogan 1983
 - atlas software: Kazhdan-Lusztig-Vogan polynomials
- Compute characteristic cycles of intersection cohomology.
 - Solved in certain cases, e.g., highest weight Harish-Chandra modules having regular integral infinitesimal character by Zierau 2018

Example (Schubert varieties)

 $\frac{\Delta G \subseteq G \times G \text{ gives } V = W \text{ the Weyl group, and} \\ \overline{\mathcal{Q}_v} \cong G \times^B G_w/B, \text{ where } G_w = \overline{B\dot{w}B} \subseteq G.$

Definition

Let Y and Y be complex algebraic varieties. A resolution of singularities of Y is an algebraic morphism $\xi : \widetilde{Y} \to Y$ such that properties (1)-(3) hold:

- (1) ξ is proper,
- (2) ξ is birational,
- (3) \widetilde{Y} is smooth.

A resolution is often required to satisfy :

(4) ξ is an isomorphism over the smooth locus of *Y*, which we call *strict*.

Example (Demazure 1974, Hansen 1973) Let $(s_{i_1}, \ldots, s_{i_\ell})$ be a reduced word for $w \in W$. Then

$$\mu: B \times^B P_{i_1} \times^B \cdots \times^B P_{i_\ell}/B \to G_w/B$$

is a resolution (but rarely strict).

Definition

Let $\xi : \widetilde{Y} \to Y$ be a resolution of singularities. We say that ξ is *small* if for every r > 0,

 $\dim(Y) - \dim(Y_r) > 2r,$

where $Y_r = \{y \in Y \mid \dim(\xi^{-1}(y)) \ge r\}.$

- If ξ is a small resolution then $\xi_* \underline{\mathbb{Q}}^{\bullet}_{\widetilde{\mathcal{V}}}[\dim(Y)] \cong \mathcal{I}C^{\bullet}_{Y}$.
- If ξ is a small resolution of a normal Y then ξ is strict.

Example (Gelfand-MacPherson 1982) Let I_0, \ldots, I_m be subsets of simple reflections and define

$$\mu: P_{I_0} \times^{R_1} \cdots \times^{R_m} P_{I_m}/R \to G_w/P,$$

where $R \subseteq P_{I_m} \cap P$ and P stabilizes G_w (by right multiplication).

If G = GL(n, C) and P ⊊ G is maximal then there exists a small resolution of G_w/P (Zelevinskiĭ 1983).

K-orbits (Barbasch-Evens 1994)

Theorem (Vogan 1983, Chang 1988)

Let $v \in V$. There exists $v_0 \leq v$ and simple reflections $(s_{i_1}, \ldots, s_{i_m})$ such that

$$\mu: G_{\mathbf{v}_0} \times^B P_{i_1} \times^B \cdots \times^B P_{i_m}/B \to G_{\mathbf{v}}/B,$$

is a resolution of singularities, where $G_v = \overline{K\dot{v}B} \subseteq G$. Here $G_v/B = \overline{Q_v} \subseteq G/B$.

Theorem (Barbasch-Evens 1994)

Let $v \in V$ such that P stablizes G_v . If $G = GL(n, \mathbb{C})$ and $P \subsetneq G$ is maximal then there exists $v_0 \leq v$ and $R \subseteq P$ such that

$$\mu: G_{\nu_0}/R \to G_{\nu}/P$$

is a resolution of singularities (any K).

• If $K = GL(k, \mathbb{C}) \times GL(n-k, \mathbb{C})$ then there exists a small μ .

 $Sp(2n, \mathbb{R})$

• $G = Sp(2n, \mathbb{C})$ (defined by some ω) and $K = GL(n, \mathbb{C})$

•
$$\mathbb{C}^{2n} = \mathbb{C}^n + \mathbb{C}^{-n}$$
, $\Lambda^{\pm} : \mathbb{C}^{2n} \to \mathbb{C}^{\pm n}$

▶ If $1 \le k \le n$ then $\mathcal{Q}_{a,b,c} \subseteq \operatorname{Gr}^0_k(\mathbb{C}^{2n})$ (isotropic subspaces) by

$$\dim(\mathbb{C}^n \cap E^k) = a, \ \dim(\mathbb{C}^{-n} \cap E^k) = b, \ \dim(\mathrm{rad}(\varepsilon)) = c$$

where $\varepsilon(x, y) = \omega(\Lambda^+(x), \Lambda^-(y))$ symmetric bilinear form on E^k .

Theorem

Let $v \in V$ such that P stabilizes G_v . If $P \subsetneq G$ is maximal then there exists $v_0 \leq v$ and $R \subseteq P_{l_1} \cap P$ such that

$$\mu: G_{v_0} \times^{R_1} P_{I_1}/R \to G_v/P$$

is a resolution of singularities.

Example

Let n = 4 and k = 2. If c = 0 then we write (a, b, c) = (a, b). Then μ is small, e.g., for $G_{(a,b)}/P$ when $k \leq \frac{n}{2}$.

- ▶ (0,0), (2,0), (1,1), (0,2) are smooth.
- μ is small for (1,0), (0,1), (0,0,2).
- μ' is small for (1,0,1) and (0,1,1).

Main construction

Let $v_0 \in V$ and for $1 \leq i \leq m$, let $w_i \in W$. Suppose

$$\mu: G_{v_0} \times^{R_1} G_{w_1} \times^{R_2} \cdots \times^{R_m} G_{w_m}/B \to G_v/B$$

is a resolution of singularities.

- We write $v = v_0 \star w_1 \star \cdots \star w_m$ (the monoid (W, \star) action).
- For $0 \le i \le m$, let $v_i = v_0 \star w_1 \star \cdots \star w_i$. If μ is small then $v_0 < v_1 < \cdots < v_m = v$ all have small resolutions.

Theorem

If W is simply laced then there exists I_1, \ldots, I_h such that

$$\begin{array}{c} G_{v_0} \times^{R_1} G_{w_1} \times^{R_2} \cdots \times^{R_m} G_{w_m} / B \xrightarrow{\mu} G_{v} / B \\ \cong \downarrow & & \\ G_{v_0} \times^{R_1} P_{l_1} \times^{R'_2} \cdots \times^{R'_h} P_{l_h} / B \end{array}$$

commutes.

Example

If V = W is simply laced and G_w/B is smooth then there exists I_0, \ldots, I_m such that

$$\mu: P_{I_0} \times^{R_1} \cdots \times^{R_m} P_{I_m} / B \to G_w / B$$

is an isomorphism.

Example

If $G = GL(n,\mathbb{C})$ and $K = GL(k,\mathbb{C}) imes GL(n-k,\mathbb{C})$ then

shows ratio of $v \in V$ admitting small resolutions of the form μ .

Resolution of singularities for $(Sp(2n, \mathbb{C}), GL(n, \mathbb{C}))$ revisited Consider $(a, b, c) \in V_n^{\hat{k}}$. \mathbb{C}^{2n} | F^{k+c} $\blacktriangleright F^{\bullet}$ isotropic in \mathbb{C}^{2n}

$$im(\mathbb{C}'' \cap F^{a+b+2c}) = a+c$$

• dim
$$(\mathbb{C}^{-n} \cap F^{a+b+2c}) = b+c$$

Then $pr(F^{a+b+2c}, F^{k+c}, E^k) = E^k$ projects to $G_{(a,b,c)}/P_{\hat{k}}$ and is isomorphic to the resolution μ .

F^k