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What is K?
G

GR K

KR

τ θ

θ τ

θ ◦ τ = τ ◦ θ

I G connected complex reductive algebraic group

I GR = G τ fixed point subgroup of antiholomorphic involution τ

I K = G θ fixed point subgroup of algebraic involution θ

I KR = G θ
R is a max’l compact subgroup of GR

Example

I G = GL(n,C) and K any of GL(k,C)× GL(n − k ,C),
O(n,C), or Sp(2n,C).

I θ(g1, g2) = (g2, g1) involution of G × G gives K = ∆G .



Theorem (Wolf 1969, Matsuki 1979)

Let B be a Borel subgroup and B ⊆ P ⊆ G . Then GR and K act
with finitely many orbits on G/P.

Example SL(2,C)

SL(2,R) SO(2,C)
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I B upper triangular
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Whitney stratification:

G/B =
∐
v∈V
Qv , V = K\G/B

I Compute local polar varieties/multiplicities (too difficult?).

I Determine (V ,≤), where u ≤ v means Qu ⊆ Qv .
I Described by, e.g., Richardson-Springer 1994
I atlas software

I Compute intersection cohomology of Qv (and local systems).
I Solved by Lusztig-Vogan 1983, Vogan 1983
I atlas software: Kazhdan-Lusztig-Vogan polynomials

I Compute characteristic cycles of intersection cohomology.
I Solved in certain cases, e.g., highest weight Harish-Chandra

modules having regular integral infinitesimal character by
Zierau 2018

Example (Schubert varieties)

∆G ⊆ G × G gives V = W the Weyl group, and
Qv
∼= G ×B Gw/B, where Gw = BẇB ⊆ G .



Definition
Let Ỹ and Y be complex algebraic varieties. A resolution of
singularities of Y is an algebraic morphism ξ : Ỹ → Y such that
properties (1)-(3) hold:

(1) ξ is proper,

(2) ξ is birational,

(3) Ỹ is smooth.

A resolution is often required to satisfy :

(4) ξ is an isomorphism over the smooth locus of Y ,

which we call strict.

Example (Demazure 1974, Hansen 1973)

Let (si1 , . . . , si`) be a reduced word for w ∈W . Then

µ : B ×B Pi1 ×B · · · ×B Pi`/B → Gw/B

is a resolution (but rarely strict).



Definition
Let ξ : Ỹ → Y be a resolution of singularities. We say that ξ is
small if for every r > 0,

dim(Y )− dim(Yr ) > 2r ,

where Yr =
{
y ∈ Y | dim(ξ−1(y)) ≥ r

}
.

I If ξ is a small resolution then ξ∗Q•
Ỹ

[dim(Y )] ∼= IC •Y .

I If ξ is a small resolution of a normal Y then ξ is strict.

Example (Gelfand-MacPherson 1982)

Let I0, . . . , Im be subsets of simple reflections and define

µ : PI0 ×
R1 · · · ×Rm PIm/R → Gw/P,

where R ⊆ PIm ∩ P and P stabilizes Gw (by right multiplication).

I If G = GL(n,C) and P ( G is maximal then there exists a
small resolution of Gw/P (Zelevinskĭı 1983).



K -orbits (Barbasch-Evens 1994)

Theorem (Vogan 1983, Chang 1988)

Let v ∈ V . There exists v0 ≤ v and simple reflections (si1 , . . . , sim)
such that

µ : Gv0 ×B Pi1 ×B · · · ×B Pim/B → Gv/B,

is a resolution of singularities, where Gv = Kv̇B ⊆ G . Here
Gv/B = Qv ⊆ G/B.

Theorem (Barbasch-Evens 1994)

Let v ∈ V such that P stablizes Gv . If G = GL(n,C) and P ( G
is maximal then there exists v0 ≤ v and R ⊆ P such that

µ : Gv0/R → Gv/P

is a resolution of singularities (any K ).

I If K = GL(k ,C)× GL(n − k ,C) then there exists a small µ.



Sp(2n,R)

I G = Sp(2n,C) (defined by some ω) and K = GL(n,C)

I C2n = Cn + C−n, Λ± : C2n → C±n

I If 1 ≤ k ≤ n then Qa,b,c ⊆ Gr0k(C2n) (isotropic subspaces) by

dim(Cn ∩ E k) = a, dim(C−n ∩ E k) = b, dim(rad(ε)) = c

where ε(x , y) = ω(Λ+(x),Λ−(y)) symmetric bilinear form on
E k .

Theorem
Let v ∈ V such that P stabilizes Gv . If P ( G is maximal then
there exists v0 ≤ v and R ⊆ PI1 ∩ P such that

µ : Gv0 ×R1 PI1/R → Gv/P

is a resolution of singularities.



Example

Let n = 4 and k = 2. If c = 0 then we write (a, b, c) = (a, b).
Then µ is small, e.g., for G(a,b)/P when k ≤ n

2 .

I (0, 0), (2, 0), (1, 1), (0, 2) are smooth.

I µ is small for (1, 0), (0, 1), (0, 0, 2).

I µ′ is small for (1, 0, 1) and (0, 1, 1).



Main construction
Let v0 ∈ V and for 1 ≤ i ≤ m, let wi ∈W . Suppose

µ : Gv0 ×R1 Gw1 ×R2 · · · ×Rm Gwm/B → Gv/B

is a resolution of singularities.

I We write v = v0 ? w1 ? · · · ? wm (the monoid (W , ?) action).

I For 0 ≤ i ≤ m, let vi = v0 ? w1 ? · · · ? wi . If µ is small then
v0 < v1 < · · · < vm = v all have small resolutions.

Theorem
If W is simply laced then there exists I1, . . . , Ih such that

Gv0 ×R1 Gw1 ×R2 · · · ×Rm Gwm/B Gv/B

Gv0 ×R1 PI1 ×R′2 · · · ×R′h PIh/B

µ

∼=
µ′

commutes.



Example

If V = W is simply laced and Gw/B is smooth then there exists
I0, . . . , Im such that

µ : PI0 ×
R1 · · · ×Rm PIm/B → Gw/B

is an isomorphism.

Example

If G = GL(n,C) and K = GL(k,C)× GL(n − k ,C) then

(k , n − k) 1 2 3 4

1 1
2 1 1
3 1 .9818 .9767
4 1 .9583 .9429 .9217

shows ratio of v ∈ V admitting small resolutions of the form µ.



Resolution of singularities for (Sp(2n,C),GL(n,C)) revisited

Consider (a, b, c) ∈ V k̂
n .

C2n

F k+c

F a+b+2c E k

0

I F • isotropic in C2n

I dim(Cn ∩ F a+b+2c) = a + c

I dim(C−n ∩ F a+b+2c) = b + c

Then pr(F a+b+2c ,F k+c ,E k) = E k projects to G(a,b,c)/Pk̂ and is
isomorphic to the resolution µ.
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