B_{n-1} -orbits on the flag variety II

Mark Colarusso, University of South Alabama and Sam Evens, University of Notre Dame

November 2, 2019

General Notation

In this talk $G_i = GL(i)$ for i = 1, ..., n.

We have chain of inclusions

 $G_1 \subset G_2 \subset \ldots \subset G_i \subset G_{i+1} \subset G.$

Let $G_{n-1} = K$ and $G_n = G$

 $B_i \subset G_i$ =standard upper triangular Borel subgroup.

 $Q_K = a K$ -orbit on G/B. $Q = a B_{n-1}$ -orbit on G/B.

Overview of Talk:

1) Discuss combinatorial model involving partitions for $B_{n-1} \setminus G/B$.

Get e.g.f and explicit formula for $|B_{n-1} \setminus G/B|$.

2) Use (1) to develop explicit set of representatives for B_{n-1} -orbits in terms of flags.

Can use these representatives to study the weak order.

3) In progress: Develop second combinatorial model involving Dyck paths for B_{n-1} -orbits using (2) and refined geometric data from first talk.

First combinatorial model of $B_{n-1} \setminus G/B$.

 B_{n-1} -orbits on G/B are modeled by PILS.

PILS = partitions into lists.

A list of the set $\{1, \ldots, n\}$ is any ordered nonempty subset.

Notation: $\sigma = (a_1 a_2 \dots a_k)$.

A PIL of the set $\{1, \ldots, n\}$ is any partition of the set $\{1, \ldots, n\}$ into lists.

Notation: $\Sigma = \{\sigma_1, \ldots, \sigma_\ell\}.$

Examples: For n = 2, there are 3 PILS:

 $\{(12)\}, \{(21)\}, \{(1), (2)\}.$

For n = 3, there are 13 PILS.

6 of form $\{(i_1i_2i_3)\}$, 6 of form $\{(i_1i_2), (i_3)\}$, $\{(1), (2), (3)\}$.

For n = 4, there are 73 PILS, and for n = 5, there are 501 PILS.

Combinatorial Theorem: There is a one-toone correspondence:

$PILS \Leftrightarrow B_{n-1} \backslash G/B.$

Remarks:

There is a similar correspondence in the orthogonal case involving partitions into signed lists satisfying certain parity conditions depending on whether G = SO(n) is of type B or type D.

Exponential Generating Function for $|B_{n-1} \setminus G/B|$.

Corollary:

Let $a_n = |B_{n-1} \setminus G/B|$.

Then

(1) The e.g.f for the sequence $\{a_n\}_{n=1}^{\infty}$ is $e^{\frac{x}{1-x}}$.

(2)

$$a_n = n! \sum_{i=0}^{n-1} \frac{\binom{n-1}{i}}{(i+1)!}.$$

The correspondence between PILS and B_{n-1} orbits on G/B is proven using the fibre bundle structure of these orbits discussed in the last talk and structure of K-orbits on G/B.

Notation for Flags and Partial Flags:

Flag:

 $\mathcal{F} := V_1 \subset V_2 \subset \ldots \subset V_i \subset \ldots \subset V_n = \mathbb{C}^n.$ with dim $V_i = i$.

Notation: Suppose $V_i = \text{span}\{v_1, \ldots, v_i\}$, then write

 $\mathcal{F} := v_1 \subset v_2 \subset \ldots \subset v_i \subset \ldots \subset v_n.$

Partial Flag:

 $\mathcal{P}=V_1\subset V_2\subset\ldots\subset V_j\subset\ldots\subset V_k=\mathbb{C}^n$ where $\dim V_j=i_j.$

Notation:

Suppose
$$V_j = \text{span}\{v_1, \dots, v_{i_j}\}$$
 for $j = 1, \dots, k$.
 $\mathcal{P} = \{v_1, \dots, v_{i_1}\} \subset \{v_{i_1+1}, \dots, v_{i_2}\} \subset \dots \subset$
 $\subset \{v_{i_1+\dots+i_{k-1}+1}, \dots, v_{i_k}\}$

Recall:

Q a B_{n-1} -orbit, $Q \subset Q_K = K \cdot \tilde{\mathfrak{b}}$:

 $\exists \ \theta \text{-stable parabolic subgroup, } \tilde{B} \subset P \subset G$

such that $\pi: G/B \to G/P$

endows Q with structure of fibre bundle:

 $"Q = Q_P \times Q_\ell".$

BASE: $Q_P = a B_{n-1}$ -orbit on partial flag variety $K/(K \cap P) = \pi_{Q_K}$ of K,

FIBRE: Q_{ℓ} = a $B_{\ell-1}$ -orbit on G_{ℓ}/B_{ℓ} , $\ell \leq n-1$.

Description of *K***-oribts**

Notation:

 $\{e_1,\ldots,e_n\}$ = standard basis for \mathbb{C}^n .

 $\mathbb{C}^{n-1} = \operatorname{span}\{e_1, \ldots, e_{n-1}\}.$

For i = 1, ..., n - 1, $\hat{e}_i = e_i + e_n$.

n-closed *K*-orbits:

$$Q_{i,c}, i=1,\ldots,n.$$

In this case, $Q_{i,c} \cong K/B_{n-1}$.

Non-closed orbits:

$$Q_{i,j} = K \cdot \mathcal{F}_{i,j}, \ 1 \le i < j \le n$$

 $\mathcal{F}_{i,j} :=$

$$e_1 \subset \ldots \subset \underbrace{\widehat{e}_i}_i \subset \ldots \subset e_{j-1} \subset \underbrace{e_n}_j \subset e_j \subset \ldots = e_{n-1}.$$

Suppose: $Q \subset K \cdot \mathcal{F}_{i,j}$

Let $P_{i,j} \subset G$ stabilize partial flag: $\mathcal{P}_{i,j} = e_1 \subset \ldots \subset \{e_i, \ldots, e_{j-1}, e_n\} \subset e_j \subset \ldots \subset e_{n-1}.$

Note: $\mathcal{F}_{i,j} \subset \mathcal{P}_{i,j}$.

 $K/(K \cap P_{i,j}) = K \cdot (\mathcal{P}_{i,j} \cap \mathbb{C}^{n-1})$

 $Q_{P_{i,j}} = B_{n-1}$ -orbit on $K/(K \cap P_{i,j})$.

 $Q_{\ell} \leftrightarrow B_{\ell-1}$ -orbit on G_{ℓ}/B_{ℓ} , where $\ell = j - i$.

It follows that:

 $Q_{P_{i,j}}$ is determined by an $s \in S_{n-1}$ with $s(i) < s(i+1) < \ldots < s(j)$.

 $Q_P \leftrightarrow (s(1) \dots s(i-1) \underbrace{n}_i s(j) \dots s(n-1))$.

By induction

 $Q_{\ell} \leftrightarrow \Sigma_{\ell}$ where Σ_{ℓ} is a unique PIL of the set $\{s(i), \ldots, s(j-1)\}.$

Conclusion:

$$Q \leftrightarrow \{(s(1)\ldots s(i-1)\underbrace{n}_{i}s(j)\ldots s(n-1)), \Sigma_{\ell}\}.$$

Example:

$$V = \mathbb{C}^4$$
 and $G = GL(4)$.

Consider B_3 -orbit:

 $Q = B_3 \cdot (\hat{e}_3 \subset \hat{e}_1 \subset e_4 \subset e_2).$

 $Q \subset Q_{1,3} = K \cdot (\hat{e}_1 \subset e_2 \subset e_4 \subset e_3.); \ell = 2$

 $G/P = G \cdot (\{e_1, e_2, e_4\} \subset e_3) = Gr(3, \mathbb{C}^4).$

 $K/(K \cap P_{1,3}) = K \cdot (\{e_1, e_2\} \subset e_3) = Gr(2, \mathbb{C}^3).$

 $Q_{P_{1,3}} = B_3 \cdot (\{e_1, e_3\} \subset e_2) \leftrightarrow s = s_{\epsilon_2 - \epsilon_3}.$ $Q_P \leftrightarrow (42).$

 $Q_2 \leftrightarrow$ is open $B_1 = \mathbb{C}^{\times}$ -orbit on flag variety of $\mathbb{C}^2 = \operatorname{span}\{e_1, e_3\}.$

 $Q_2 \leftrightarrow (1)(3).$

 $Q = Q_P \times Q_2 \leftrightarrow \{(42), (1)(3)\}.$

Minimal Elements in the weak order.

Ultimate Goal: Understand strong order (i.e. closure relations) $B_{n-1}\backslash G/B$

As a step in this direction, we prove:

Theorem: Any B_{n-1} -orbit Q which is minimal in the weak order is closed.

Remark: This is not true for orbits of a general spherical H on G/B.

To prove this, we use the theory of PILS to develop a canonical set of representatives for $B_{n-1}\backslash G/B$.

We can then use these representative to understand the Richardson-Springer monoid action.

Standard Form for a flag in G/B

Definition: A flag in \mathbb{C}^n

 $\mathcal{F} := v_1 \subset \ldots \subset v_j \subset \ldots \subset v_n.$

with $v_j = \hat{e}_{i_j}$ or $v_j = e_{i_j}$ is in standard form

if

(1) If
$$v_k = e_n$$
, then $v_j = e_{i_j}$ for $j > k$.

(2) If k < j and $v_k = \hat{e}_{i_k}$ and $v_j = \hat{e}_{i_j}$, then $i_k > i_j$.

Example:

For $V = \mathbb{C}^5$, the flag

$$e_1 \subset \hat{e}_4 \subset \hat{e}_3 \subset e_5 \subset e_2.$$

is in standard form.

But the flag

$$e_1 \subset \hat{e}_3 \subset \hat{e}_4 \subset e_5 \subset \hat{e}_2$$

is not.

Combinatorial Theorem 2: There is a 1-1 correspondence

 $\{PILS\} \longleftrightarrow \{Flags in standard form\}.$

(This is proven purely combinatorially; no geometry involved.)

Using above theorem and an inductive argument using B_{n-1} -orbits on $Gr(\ell, \mathbb{C}^n)$, we can show:

Prop: Every B_{n-1} -orbit Q contains a unique flag in standard form \mathcal{F} .

To prove theorem about the weak order:

 $Q \subset Q_K, \ Q = Q_P \times Q_\ell.$

Geometry: RS Monoid action is compatible with fibre bundle structure \Rightarrow

 $Q_c \leq_w Q$,

 $Q_c = B_{n-1}$ -orbit closed in Q_K .

Combinatorics: An easy computation with standard forms and PILS and induction shows that $Q'_c \leq_w Q_c$,

 Q'_c closed in G/B.

A second more refined combinatorial model: Labelled Dyck Paths

Problem: Given two flags \mathcal{F} and \mathcal{F}' in standard form it's hard to tell if the corresponding B_{n-1} -orbits are related in weak (strong) order.

Solution: Connect the combinatorics of the standard form to the geometry of the fibre bundle structure of B_{n-1} -orbits to develop a more sophisticated combinatorial model in terms of labelled Dyck paths.

First step: Iterate fibre bundle characterization of a B_{n-1} -orbit Q to assign to Q the following data:

 $Q \to [(d_0, Q_{i_0, j_0}, s_0), (d_1, Q_{i_1, j_1}, s_1), \dots, (d_k, Q_{i_k, j_k}, s_k)].$ with $d_0 = n > d_1 > d_2 > \dots > d_k.$ $Q_{i_{\ell}, j_{\ell}} = a \ G_{d_{\ell}-1}$ -orbit on $G_{d_{\ell}}/B_{d_{\ell}}$ $s_{\ell} = \text{shortest coset rep of } s_{\ell}S_{d_{\ell}+1} \text{ in } S_{d_{\ell}-1}/S_{d_{\ell}+1}.$

Key Idea: Data corresponds to a labelled Dyck path of length 2n.

Labels determined by "Weyl group data" (s_0, \ldots, s_k) .

Path determined by "K-orbit data" $(Q_{i_0,j_0},\ldots,Q_{i_k,j_k})$.

How does this work?

Take Q a B_{n-1} -orbit.

 $Q \subset Q_K$

If $Q_K = Q_c$ is closed, then Q is a B_{n-1} -orbit on K/B_{n-1} and therefore given by $s_0 \in S_{n-1}$ and the iteration stops.

If $Q_K = Q_{i,j}$ then let $i_0 := i$, $j_0 := j$ and $d_1 = j_0 - i_0$.

Then $Q = Q_{P_{i_0,j_0}} \times Q_{d_1}$,

 $Q_{P_{i_0,j_0}} = a B_{n-1}$ -orbit on $K/(K \cap P_{i_0,j_0})$ and so determined by $s_0 \in S_{n-1}/S_{d_1}$.

 Q_{d_1} = a B_{d_1-1} -orbit on G_{d_1}/B_{d_1} .

THUS, $Q_{d_1} \subset Q_{i_1,j_1}$, a G_{d_1-1} -orbit on G_{d_1}/B_{d_1} .

Let
$$d_2 = j_1 - i_1$$
.

So
$$Q_{d_1} = Q_{P_{i_1,j_1}} \times Q_{d_2}$$
.

CONTINUE until reach a G_{d_k-1} -orbit Q_{i_k,j_k} which is closed in G_{d_k}/B_{d_k} .

Current State of Affairs:

We have an easy algorithm to read off "Korbit data" from unique flag in standard from in B_{n-1} -orbit Q and produce unlabelled Dyck path.

In Progress:

Develop algorithm to read off "Weyl group data" from standard form.

Conjectures:

1) Weyl group data+K-orbit data determines the orbit Q completely.

2) Weak (strong) order on $B_{n-1}\setminus G/B$ can be understood in terms on a natural ordering on labelled Dyck paths.