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General Notation

In this talk Gi = GL(i) for i = 1, . . . , n.

We have chain of inclusions

G1 ⊂ G2 ⊂ . . . ⊂ Gi ⊂ Gi+1 ⊂ G.

Let Gn−1 = K and Gn = G

Bi ⊂ Gi=standard upper triangular Borel sub-

group.

QK = a K-orbit on G/B.

Q = a Bn−1-orbit on G/B.
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Overview of Talk:

1) Discuss combinatorial model involving par-

titions for Bn−1\G/B.

Get e.g.f and explicit formula for |Bn−1\G/B|.

2) Use (1) to develop explicit set of represen-

tatives for Bn−1-orbits in terms of flags.

Can use these representatives to study the weak

order.

3) In progress: Develop second combinatorial

model involving Dyck paths for Bn−1-orbits us-

ing (2) and refined geometric data from first

talk.

2



First combinatorial model of Bn−1\G/B.

Bn−1-orbits on G/B are modeled by PILS.

PILS = partitions into lists.

A list of the set {1, . . . , n} is any ordered non-

empty subset.

Notation: σ = (a1a2 . . . ak).

A PIL of the set {1, . . . , n} is any partition of

the set {1, . . . , n} into lists.

Notation: Σ = {σ1, . . . , σ`}.
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Examples: For n = 2, there are 3 PILS:

{(12)}, {(21)}, {(1), (2)}.

For n = 3, there are 13 PILS.

6 of form {(i1i2i3)}, 6 of form {(i1i2), (i3)},
{(1), (2), (3)}.

For n = 4, there are 73 PILS, and for n = 5,

there are 501 PILS.
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Combinatorial Theorem: There is a one-to-

one correspondence:

PILS ⇔ Bn−1\G/B.

Remarks:

There is a similar correspondence in the or-

thogonal case involving partitions into signed

lists satisfying certain parity conditions depend-

ing on whether G = SO(n) is of type B or type

D.
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Exponential Generating Function for |Bn−1\G/B|.

Corollary:

Let an = |Bn−1\G/B|.

Then

(1) The e.g.f for the sequence {an}∞n=1 is

e
x

1−x.

(2)

an = n!
n−1∑
i=0

(
n−1
i

)
(i+ 1)!

.

The correspondence between PILS and Bn−1-

orbits on G/B is proven using the fibre bundle

structure of these orbits discussed in the last

talk and structure of K-orbits on G/B.
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Notation for Flags and Partial Flags:

Flag:

F := V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ . . . ⊂ Vn = Cn.

with dimVi = i.

Notation: Suppose Vi = span{v1, . . . , vi}, then

write

F := v1 ⊂ v2 ⊂ . . . ⊂ vi ⊂ . . . ⊂ vn.
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Partial Flag:

P = V1 ⊂ V2 ⊂ . . . ⊂ Vj ⊂ . . . ⊂ Vk = Cn

where dimVj = ij.

Notation:

Suppose Vj = span{v1, . . . , vij} for j = 1, . . . , k.

P = {v1, . . . , vi1} ⊂ {vi1+1, . . . , vi2} ⊂ . . . ⊂

⊂ {vi1+...+ik−1+1, . . . , vik}
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Recall:

Q a Bn−1-orbit, Q ⊂ QK = K · b̃:

∃ θ-stable parabolic subgroup, B̃ ⊂ P ⊂ G

such that π : G/B → G/P

endows Q with structure of fibre bundle:

“Q = QP ×Q`”.

BASE: QP = a Bn−1-orbit on partial flag va-

riety K/(K ∩ P ) = πQK of K,

FIBRE: Q` = a B`−1-orbit on G`/B`, ` ≤ n−1.
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Description of K-oribts

Notation:

{e1, . . . , en} = standard basis for Cn.

Cn−1 = span{e1, . . . , en−1}.

For i = 1, . . . , n− 1, êi = ei + en.

n-closed K-orbits:

Qi,c, i = 1, . . . , n.

In this case, Qi,c
∼= K/Bn−1.

Non-closed orbits:

Qi,j = K · Fi,j, 1 ≤ i < j ≤ n

Fi,j :=

e1 ⊂ . . . ⊂ êi︸︷︷︸
i

⊂ . . . ⊂ ej−1 ⊂ en︸︷︷︸
j

⊂ ej ⊂

. . . en−1.
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Suppose: Q ⊂ K · Fi,j

Let Pi,j ⊂ G stabilize partial flag:

Pi,j = e1 ⊂ . . . ⊂ {ei, . . . , ej−1, en} ⊂ ej ⊂ . . . ⊂ en−1.

Note: Fi,j ⊂ Pi,j.

K/(K ∩ Pi,j) = K · (Pi,j ∩ Cn−1)

QPi,j = Bn−1-orbit on K/(K ∩ Pi,j).

Q` ↔ B`−1-orbit on G`/B`, where ` = j − i.
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It follows that:

QPi,j is determined by an s ∈ Sn−1 with s(i) <

s(i+ 1) < . . . < s(j).

QP ↔ (s(1) . . . s(i− 1) n︸︷︷︸
i

s(j) . . . s(n− 1)) .

By induction

Q` ↔ Σ` where Σ` is a unique PIL of the set

{s(i), . . . , s(j − 1)}.

Conclusion:

Q↔ {(s(1) . . . s(i− 1) n︸︷︷︸
i

s(j) . . . s(n− 1)),Σ`}.
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Example:

V = C4 and G = GL(4).

Consider B3-orbit:

Q = B3 · (ê3 ⊂ ê1 ⊂ e4 ⊂ e2).

Q ⊂ Q1,3 = K · (ê1 ⊂ e2 ⊂ e4 ⊂ e3.); ` = 2

G/P = G · ({e1, e2, e4} ⊂ e3) = Gr(3,C4).

K/(K ∩ P1,3) = K · ({e1, e2} ⊂ e3) = Gr(2,C3).

QP1,3
= B3 · ({e1, e3} ⊂ e2)↔ s = sε2−ε3.

QP ↔ (42).

Q2 ↔ is open B1 = C×-orbit on flag variety of
C2 = span{e1, e3}.

Q2 ↔ (1)(3).

Q = QP ×Q2 ↔ {(42), (1)(3)}.
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Minimal Elements in the weak order.

Ultimate Goal: Understand strong order (i.e.

closure relations) Bn−1\G/B

As a step in this direction, we prove:

Theorem: Any Bn−1-orbit Q which is minimal

in the weak order is closed.

Remark: This is not true for orbits of a gen-

eral spherical H on G/B.

To prove this, we use the theory of PILS to

develop a canonical set of representatives for

Bn−1\G/B.

We can then use these representative to under-

stand the Richardson-Springer monoid action.
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Standard Form for a flag in G/B

Definition: A flag in Cn

F := v1 ⊂ . . . ⊂ vj ⊂ . . . ⊂ vn.

with vj = êij or vj = eij is in standard form

if

(1) If vk = en, then vj = eij for j > k.

(2) If k < j and vk = êik and vj = êij, then

ik > ij.
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Example:

For V = C5, the flag

e1 ⊂ ê4 ⊂ ê3 ⊂ e5 ⊂ e2.

is in standard form.

But the flag

e1 ⊂ ê3 ⊂ ê4 ⊂ e5 ⊂ ê2

is not.
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Combinatorial Theorem 2: There is a 1-1

correspondence

{PILS} ←→ {Flags in standard form}.

(This is proven purely combinatorially; no ge-

ometry involved.)

Using above theorem and an inductive argu-

ment using Bn−1-orbits on Gr(`,Cn), we can

show:

Prop: Every Bn−1-orbit Q contains a unique

flag in standard form F.
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To prove theorem about the weak order:

Q ⊂ QK, Q = QP ×Q`.

Geometry: RS Monoid action is compatible

with fibre bundle structure ⇒

Qc ≤w Q,

Qc = Bn−1-orbit closed in QK.

Combinatorics: An easy computation with

standard forms and PILS and induction shows

that Q′c ≤w Qc,

Q′c closed in G/B.
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A second more refined combinatorial model:

Labelled Dyck Paths

Problem: Given two flags F and F ′ in stan-

dard form it’s hard to tell if the corresponding

Bn−1-orbits are related in weak (strong) order.

Solution: Connect the combinatorics of the

standard form to the geometry of the fibre

bundle structure of Bn−1-orbits to develop a

more sophisticated combinatorial model in terms

of labelled Dyck paths.
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First step: Iterate fibre bundle characteriza-

tion of a Bn−1-orbit Q to assign to Q the fol-

lowing data:

Q→ [(d0, Qi0,j0, s0), (d1, Qi1,j1, s1), . . . , (dk, Qik,jk, sk)].

with d0 = n > d1 > d2 > . . . > dk.

Qi`,j` = a Gd`−1-orbit on Gd`/Bd`

s` = shortest coset rep of s`Sd`+1
in Sd`−1/Sd`+1

.

Key Idea: Data corresponds to a labelled

Dyck path of length 2n.

Labels determined by “Weyl group data” (s0, . . . , sk).

Path determined by “K-orbit data” (Qi0,j0, . . . , Qik,jk).
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How does this work?

Take Q a Bn−1-orbit.

Q ⊂ QK

If QK = Qc is closed, then Q is a Bn−1-orbit on

K/Bn−1 and therefore given by s0 ∈ Sn−1 and

the iteration stops.

If QK = Qi,j then let i0 := i, j0 := j and

d1 = j0 − i0.

Then Q = QPi0,j0
×Qd1

,

QPi0,j0
= a Bn−1-orbit on K/(K∩Pi0,j0) and so

determined by s0 ∈ Sn−1/Sd1
.

Qd1
= a Bd1−1-orbit on Gd1

/Bd1
.
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THUS, Qd1
⊂ Qi1,j1, a Gd1−1-orbit on Gd1

/Bd1
.

Let d2 = j1 − i1.

So Qd1
= QPi1,j1

×Qd2
.

CONTINUE until reach a Gdk−1 -orbit Qik,jk
which is closed in Gdk/Bdk.



Current State of Affairs:

We have an easy algorithm to read off “K-

orbit data” from unique flag in standard from

in Bn−1-orbit Q and produce unlabelled Dyck

path.

In Progress:

Develop algorithm to read off “Weyl group

data” from standard form.

Conjectures:

1) Weyl group data+K-orbit data determines

the orbit Q completely.

2) Weak (strong) order on Bn−1\G/B can be

understood in terms on a natural ordering on

labelled Dyck paths.
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