B_{n-1}-orbits on the flag variety
 II

Mark Colarusso, University of South Alabama and Sam Evens, University of Notre Dame

November 2, 2019

General Notation

In this talk $G_{i}=G L(i)$ for $i=1, \ldots, n$.

We have chain of inclusions
$G_{1} \subset G_{2} \subset \ldots \subset G_{i} \subset G_{i+1} \subset G$.

Let $G_{n-1}=K$ and $G_{n}=G$
$B_{i} \subset G_{i}=$ standard upper triangular Borel subgroup.
$Q_{K}=$ a K-orbit on G / B.
$Q=$ a B_{n-1}-orbit on G / B.

Overview of Talk:

1) Discuss combinatorial model involving partitions for $B_{n-1} \backslash G / B$.

Get e.g.f and explicit formula for $\left|B_{n-1} \backslash G / B\right|$.
2) Use (1) to develop explicit set of representatives for B_{n-1}-orbits in terms of flags.

Can use these representatives to study the weak order.
3) In progress: Develop second combinatorial model involving Dyck paths for B_{n-1}-orbits using (2) and refined geometric data from first talk.

First combinatorial model of $B_{n-1} \backslash G / B$.
B_{n-1}-orbits on G / B are modeled by PILS.

PILS $=$ partitions into lists.

A list of the set $\{1, \ldots, n\}$ is any ordered nonempty subset.

Notation: $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right)$.

A PIL of the set $\{1, \ldots, n\}$ is any partition of the set $\{1, \ldots, n\}$ into lists.

Notation: $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{\ell}\right\}$.

Examples: For $n=2$, there are 3 PILS:
$\{(12)\},\{(21)\},\{(1),(2)\}$.

For $n=3$, there are 13 PILS.

6 of form $\left\{\left(i_{1} i_{2} i_{3}\right)\right\}, 6$ of form $\left\{\left(i_{1} i_{2}\right),\left(i_{3}\right)\right\}$, $\{(1),(2),(3)\}$.

For $n=4$, there are 73 PILS, and for $n=5$, there are 501 PILS.

Combinatorial Theorem: There is a one-toone correspondence:

$$
P I L S \Leftrightarrow B_{n-1} \backslash G / B .
$$

Remarks:

There is a similar correspondence in the orthogonal case involving partitions into signed lists satisfying certain parity conditions depending on whether $G=S O(n)$ is of type B or type D.

Exponential Generating Function for $\left|B_{n-1} \backslash G / B\right|$.

Corollary:

Let $a_{n}=\left|B_{n-1} \backslash G / B\right|$.
Then
(1) The e.g.f for the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is

$$
e^{\frac{x}{1-x}}
$$

(2)

$$
a_{n}=n!\sum_{i=0}^{n-1} \frac{\binom{n-1}{i}}{(i+1)!} .
$$

The correspondence between PILS and $B_{n-1^{-}}$ orbits on G / B is proven using the fibre bundle structure of these orbits discussed in the last talk and structure of K-orbits on G / B.

Notation for Flags and Partial Flags:

Flag:

$$
\mathcal{F}:=V_{1} \subset V_{2} \subset \ldots \subset V_{i} \subset \ldots \subset V_{n}=\mathbb{C}^{n} .
$$

with $\operatorname{dim} V_{i}=i$.

Notation: Suppose $V_{i}=\operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}$, then write

$$
\mathcal{F}:=v_{1} \subset v_{2} \subset \ldots \subset v_{i} \subset \ldots \subset v_{n} .
$$

Partial Flag:

$$
\mathcal{P}=V_{1} \subset V_{2} \subset \ldots \subset V_{j} \subset \ldots \subset V_{k}=\mathbb{C}^{n}
$$

where $\operatorname{dim} V_{j}=i_{j}$.
Notation:

Suppose $V_{j}=\operatorname{span}\left\{v_{1}, \ldots, v_{i_{j}}\right\}$ for $j=1, \ldots, k$.
$\mathcal{P}=\left\{v_{1}, \ldots, v_{i_{1}}\right\} \subset\left\{v_{i_{1}+1}, \ldots, v_{i_{2}}\right\} \subset \ldots \subset$
$\subset\left\{v_{i_{1}+\ldots+i_{k-1}+1}, \ldots, v_{i_{k}}\right\}$

Recall:
Q a B_{n-1}-orbit, $Q \subset Q_{K}=K \cdot \tilde{\mathfrak{b}}$:
$\exists \theta$-stable parabolic subgroup, $\widetilde{B} \subset P \subset G$
such that $\pi: G / B \rightarrow G / P$
endows Q with structure of fibre bundle:
$" Q=Q_{P} \times Q_{\ell} "$.

BASE: $Q_{P}=$ a B_{n-1}-orbit on partial flag variety $K /(K \cap P)=\pi_{Q_{K}}$ of K,

FIBRE: $Q_{\ell}=$ a $B_{\ell-1}$-orbit on $G_{\ell} / B_{\ell}, \ell \leq n-1$.

Description of K-oribts

Notation:
$\left\{e_{1}, \ldots, e_{n}\right\}=$ standard basis for \mathbb{C}^{n}.
$\mathbb{C}^{n-1}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-1}\right\}$.
For $i=1, \ldots, n-1, \hat{e}_{i}=e_{i}+e_{n}$.
n-closed K-orbits:
$Q_{i, c}, i=1, \ldots, n$.
In this case, $Q_{i, c} \cong K / B_{n-1}$.
Non-closed orbits:
$Q_{i, j}=K \cdot \mathcal{F}_{i, j}, 1 \leq i<j \leq n$
$\mathcal{F}_{i, j}:=$
$e_{1} \subset \ldots \subset \underbrace{\hat{e}_{i}}_{i} \subset \ldots \subset e_{j-1} \subset \underbrace{e_{n}}_{j} \subset e_{j} \subset$ $\ldots e_{n-1}$.

Suppose: $Q \subset K \cdot \mathcal{F}_{i, j}$

Let $P_{i, j} \subset G$ stabilize partial flag:
$\mathcal{P}_{i, j}=e_{1} \subset \ldots \subset\left\{e_{i}, \ldots, e_{j-1}, e_{n}\right\} \subset e_{j} \subset \ldots \subset e_{n-1}$.

Note: $\mathcal{F}_{i, j} \subset \mathcal{P}_{i, j}$.
$K /\left(K \cap P_{i, j}\right)=K \cdot\left(\mathcal{P}_{i, j} \cap \mathbb{C}^{n-1}\right)$
$Q_{P_{i, j}}=B_{n-1}$-orbit on $K /\left(K \cap P_{i, j}\right)$.
$Q_{\ell} \leftrightarrow B_{\ell-1}$-orbit on G_{ℓ} / B_{ℓ}, where $\ell=j-i$.

It follows that:
$Q_{P_{i, j}}$ is determined by an $s \in \mathcal{S}_{n-1}$ with $s(i)<$ $s(i+1)<\ldots<s(j)$.
$Q_{P} \leftrightarrow(s(1) \ldots s(i-1) \underbrace{n}_{i} s(j) \ldots s(n-1))$.
By induction
$Q_{\ell} \leftrightarrow \Sigma_{\ell}$ where Σ_{ℓ} is a unique PIL of the set $\{s(i), \ldots, s(j-1)\}$.

Conclusion:
$Q \leftrightarrow\{(s(1) \ldots s(i-1) \underbrace{n}_{i} s(j) \ldots s(n-1)), \Sigma_{\ell}\}$.

Example:

$V=\mathbb{C}^{4}$ and $G=G L(4)$.
Consider B_{3}-orbit:
$Q=B_{3} \cdot\left(\hat{e}_{3} \subset \hat{e}_{1} \subset e_{4} \subset e_{2}\right)$.
$Q \subset Q_{1,3}=K \cdot\left(\hat{e}_{1} \subset e_{2} \subset e_{4} \subset e_{3}\right) ; \ell=2$
$G / P=G \cdot\left(\left\{e_{1}, e_{2}, e_{4}\right\} \subset e_{3}\right)=\operatorname{Gr}\left(3, \mathbb{C}^{4}\right)$.
$K /\left(K \cap P_{1,3}\right)=K \cdot\left(\left\{e_{1}, e_{2}\right\} \subset e_{3}\right)=\operatorname{Gr}\left(2, \mathbb{C}^{3}\right)$.
$Q_{P_{1,3}}=B_{3} \cdot\left(\left\{e_{1}, e_{3}\right\} \subset e_{2}\right) \leftrightarrow s=s_{\epsilon_{2}-\epsilon_{3}}$.
$Q_{P} \leftrightarrow(42)$.
$Q_{2} \leftrightarrow$ is open $B_{1}=\mathbb{C}^{\times}$-orbit on flag variety of $\mathbb{C}^{2}=\operatorname{span}\left\{e_{1}, e_{3}\right\}$.
$Q_{2} \leftrightarrow(1)(3)$.
$Q=Q_{P} \times Q_{2} \leftrightarrow\{(42),(1)(3)\}$.

Minimal Elements in the weak order.

Ultimate Goal: Understand strong order (i.e. closure relations) $B_{n-1} \backslash G / B$

As a step in this direction, we prove:

Theorem: Any B_{n-1}-orbit Q which is minimal in the weak order is closed.

Remark: This is not true for orbits of a general spherical H on G / B.

To prove this, we use the theory of PILS to develop a canonical set of representatives for $B_{n-1} \backslash G / B$.

We can then use these representative to understand the Richardson-Springer monoid action.

Standard Form for a flag in G / B

Definition: A flag in \mathbb{C}^{n}

$$
\mathcal{F}:=v_{1} \subset \ldots \subset v_{j} \subset \ldots \subset v_{n} .
$$

with $v_{j}=\hat{e}_{i_{j}}$ or $v_{j}=e_{i_{j}}$ is in standard form
if
(1) If $v_{k}=e_{n}$, then $v_{j}=e_{i_{j}}$ for $j>k$.
(2) If $k<j$ and $v_{k}=\hat{e}_{i_{k}}$ and $v_{j}=\hat{e}_{i_{j}}$, then $i_{k}>i_{j}$.

Example:

For $V=\mathbb{C}^{5}$, the flag

$$
e_{1} \subset \hat{e}_{4} \subset \hat{e}_{3} \subset e_{5} \subset e_{2} .
$$

is in standard form.

But the flag

$$
e_{1} \subset \hat{e}_{3} \subset \hat{e}_{4} \subset e_{5} \subset \hat{e}_{2}
$$

is not.

Combinatorial Theorem 2: There is a $1-1$ correspondence

$\{P I L S\} \longleftrightarrow$ \{Flags in standard form $\}.$
(This is proven purely combinatorially; no geometry involved.)

Using above theorem and an inductive argument using B_{n-1}-orbits on $\operatorname{Gr}\left(\ell, \mathbb{C}^{n}\right)$, we can show:

Prop: Every B_{n-1}-orbit Q contains a unique flag in standard form \mathcal{F}.

To prove theorem about the weak order:
$Q \subset Q_{K}, Q=Q_{P} \times Q_{\ell}$.

Geometry: RS Monoid action is compatible with fibre bundle structure \Rightarrow
$Q_{c} \leq{ }_{w} Q$,
$Q_{c}=B_{n-1}$-orbit closed in Q_{K}.

Combinatorics: An easy computation with standard forms and PILS and induction shows that $Q_{c}^{\prime} \leq_{w} Q_{c}$,
Q_{c}^{\prime} closed in G / B.

A second more refined combinatorial model: Labelled Dyck Paths

Problem: Given two flags \mathcal{F} and \mathcal{F}^{\prime} in standard form it's hard to tell if the corresponding B_{n-1}-orbits are related in weak (strong) order.

Solution: Connect the combinatorics of the standard form to the geometry of the fibre bundle structure of B_{n-1}-orbits to develop a more sophisticated combinatorial model in terms of labelled Dyck paths.

First step: Iterate fibre bundle characterization of a B_{n-1}-orbit Q to assign to Q the following data:
$Q \rightarrow\left[\left(d_{0}, Q_{i_{0}, j_{0}}, s_{0}\right),\left(d_{1}, Q_{i_{1}, j_{1}}, s_{1}\right), \ldots,\left(d_{k}, Q_{i_{k}, j_{k}}, s_{k}\right)\right]$.
with $d_{0}=n>d_{1}>d_{2}>\ldots>d_{k}$.
$Q_{i_{\ell}, j_{\ell}}=$ a $G_{d_{\ell}-1^{-}}$-orbit on $G_{d_{\ell}} / B_{d_{\ell}}$
$s_{\ell}=$ shortest coset rep of $s_{\ell} S_{d_{\ell+1}}$ in $S_{d_{\ell}-1} / S_{d_{\ell+1}}$.
Key Idea: Data corresponds to a labelled Dyck path of length 2 n .

Labels determined by "Weyl group data" $\left(s_{0}, \ldots, s_{k}\right)$.

Path determined by " K-orbit data" $\left(Q_{i_{0}, j_{0}}, \ldots, Q_{i_{k}, j_{k}}\right)$.

How does this work?

Take Q a B_{n-1}-orbit.
$Q \subset Q_{K}$

If $Q_{K}=Q_{c}$ is closed, then Q is a B_{n-1}-orbit on K / B_{n-1} and therefore given by $s_{0} \in S_{n-1}$ and the iteration stops.

If $Q_{K}=Q_{i, j}$ then let $i_{0}:=i, j_{0}:=j$ and $d_{1}=j_{0}-i_{0}$.

Then $Q=Q_{P_{i_{0}, j_{0}}} \times Q_{d_{1}}$,
$Q_{P_{i_{0}, j_{0}}}=$ a B_{n-1}-orbit on $K /\left(K \cap P_{i_{0}, j_{0}}\right)$ and so determined by $s_{0} \in S_{n-1} / S_{d_{1}}$.
$Q_{d_{1}}=$ a $B_{d_{1}-1}$-orbit on $G_{d_{1}} / B_{d_{1}}$.

THUS, $Q_{d_{1}} \subset Q_{i_{1}, j_{1}}$, a $G_{d_{1}-1}$-orbit on $G_{d_{1}} / B_{d_{1}}$.

Let $d_{2}=j_{1}-i_{1}$.

So $Q_{d_{1}}=Q_{P_{i_{1}, j_{1}}} \times Q_{d_{2}}$.
CONTINUE until reach a $G_{d_{k}-1}$-orbit $Q_{i_{k}, j_{k}}$ which is closed in $G_{d_{k}} / B_{d_{k}}$.

Current State of Affairs:

We have an easy algorithm to read off " K orbit data" from unique flag in standard from in B_{n-1}-orbit Q and produce unlabelled Dyck path.

In Progress:

Develop algorithm to read off "Weyl group data" from standard form.

Conjectures:

1) Weyl group data+ K-orbit data determines the orbit Q completely.
2) Weak (strong) order on $B_{n-1} \backslash G / B$ can be understood in terms on a natural ordering on labelled Dyck paths.
