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General Notation

In this talk G; = GL(i) fori=1,...,n.
We have chain of inclusions
G1CGrC...CG;CG;41 CQG.

Let G,,_1 = K and G, =G

B, C G;=standard upper triangular Borel sub-
group.

Qi = a K-orbit on G/B.

Q = a B,_i1-orbit on G/B.



Overview of Talk:

1) Discuss combinatorial model involving par-
titions for B,,_1\G/B.

Get e.g.f and explicit formula for |B,,_1\G/B|.

2) Use (1) to develop explicit set of represen-
tatives for B,,_1-orbits in terms of flags.

Can use these representatives to study the weak
order.

3) In progress: Develop second combinatorial
model involving Dyck paths for B,,_1-orbits us-
ing (2) and refined geometric data from first
talk.



First combinatorial model of B,_1\G/B.
B,,_1-orbits on G/B are modeled by PILS.
PILS = partitions into lists.

A list of the set {1,...,n} is any ordered non-
empty subset.

Notation: ¢ = (ajas...ax).

A PIL of the set {1,...,n} is any partition of
the set {1,...,n} into lists.

Notation: ¥~ = {o1,...,0p}.



Examples: For n = 2, there are 3 PILS:

{(12)}, {21}, {(1), (D}

For n = 3, there are 13 PILS.

6 of form {(i1i2i3)}, 6 of form {(i1i2), (i3)},
{(1),(2),(3)}.

For n = 4, there are 73 PILS, and for n = 5,
there are 501 PILS.



Combinatorial Theorem: There is a one-to-
one correspondence:

PILS < B,,_1\G/B.

Remarks:

There is a similar correspondence in the or-
thogonal case involving partitions into signed
lists satisfying certain parity conditions depend-
ing on whether G = SO(n) is of type B or type
D.



Exponential Generating Function for |B,,_1\G/B|.
Corollary:

Let ap = |B,,_1\G/B|.

Then

(1) The e.g.f for the sequence {an} 2 is

(2)

The correspondence between PILS and B,,_1-
orbits on G/B is proven using the fibre bundle
structure of these orbits discussed in the last
talk and structure of K-orbits on G/B.



Notation for Flags and Partial Flags:

Flag:
F=VCVWC...CV,C...CVp,=0C"

with dimV; = s.

Notation: Suppose V; = span{vq,...,v;}, then

write

F =vi CvoC...Cuv; C...C vp.



Partial Flag:

P=ViCcVWC...CV,C...CcV,=C"

where dimV; = i;.
Notation:
Suppose V; = span{vl,...,vij} forj=1,...,k.

P:{’Ula"'avil}c{Ui1—|—17"'7v’i2}c"'C

CAvig 4.4y 415 Vig )



Recall:

Q a B,,_j-orbit, Q C Qx = K - b:

3 §-stable parabolic subgroup, Bc P C G
such that = : G/B — G/P

endows @ with structure of fibre bundle:
‘Q=QpxQ".

BASE: Qp = a B,,_1-orbit on partial flag va-
riety K/(K N P)=mg, of K,

FIBRE: Q) = a By_qj-orbiton Gy/By, £t <n—1.



Description of K-oribts

Notation:

{e1,...,en} = standard basis for C".
cr~1 =span{es,...,e,_1}.
For:=1,....n—1, ¢, =¢; + en.

n-closed K-orbits:

Qicr t=1,...,n.

In this case, Q; .= K/B,_1.
Non-closed orbits:

Qii=K Fi; 1<i<j<n

Fig =
ep C ... C ¢ C ... Ce_1 C en Ce C
0 J
Cn—1
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Suppose: Q C K - F; ;

Let P, ; C (G stabilize partial flag:

P;j=e1C...CHej...,ej_1,en} Cej C...Cep_1q.
Note: .7:7;’]' C 777;7]'.
K/(KNP;)=K- (P ;nC 1)
QPz'j = B,,_1-orbit on K/(K M Pz,j)

Q¢ < By_q-orbit on Gy/By, where £ = j — .
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It follows that:

sz.j is determined by an s € §,,_1 with s(7) <
s(i4+1) <...<s(j).

Qp <« (s(1)...s5(i — 1)\7?,,_/8(]')...8(77,— 1)) .

1

By induction

Qy < 2y where >, is a unique PIL of the set

(s(i),...,s(j — 1)}.

Conclusion:

Q<+ {(s(1)...s(i — 1)\77;/3(3) ..s(n—1)),3>,}.

1
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Example:

V =C* and G = GL(4).

Consider B3-orbit:

Q =Bz -(é3Cé1 Ceq Cep).
QCQRI3=K- (61 CexCeqCez.);£=2
G/P=G-({e1,es,eq} C e3) = Gr(3,C*).
K/(KNP13) =K ({e1,e2} Ce3) = Gr(2,C3).
Qp, 3 = B3-({e1,e3} Ce2) ¢ s =56;—¢s-

Qp < (42).

Qo <+ is open By = C*-orbit on flag variety of
C2 = span{ej,e3}.

Q2 <> (1)(3).
Q= Qp x Q2+ {(42),(1)(3)}.
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Minimal Elements in the weak order.

Ultimate Goal: Understand strong order (i.e.
closure relations) B,,_1\G/B

As a step in this direction, we prove:

Theorem: Any B, _i-orbit Q which is minimal
in the weak order is closed.

Remark: This is not true for orbits of a gen-
eral spherical H on G/B.

To prove this, we use the theory of PILS to
develop a canonical set of representatives for
Bn—l\G/B'

We can then use these representative to under-
stand the Richardson-Springer monoid action.
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Standard Form for a flag in G/B

Definition: A flag in C"

JFi=v1C...Cuv; C...Cvn.

with v; = ¢;. or v; = e;  is in standard form
J J

it

(1) If v = en, then Vj = € for 7 > k.

(2) If k < j and v, = ¢;, and v; = éz-j, then
(3 >ij.
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Example:

For V = C?, the flag

e1 C eq C ez C eg C en.

IS in standard form.

But the flag

e1 Ce3z Ceq Ces Cen

IS not.
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Combinatorial Theorem 2: There is a 1-1
correspondence

{PILS} +— {Flags in standard form}.

(This is proven purely combinatorially; no ge-
ometry involved.)

Using above theorem and an inductive argu-
ment using B,,_q1-orbits on Gr(£,C"), we can
show:

Prop: Every B, _1-orbit ¢ contains a unique
flag in standard form F.
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To prove theorem about the weak order:

QCQg, @=QpXxQy.

Geometry: RS Monoid action is compatible
with fibre bundle structure =

QC Sw Ql

Qc = B,,_1-orbit closed in Q.
Combinatorics: An easy computation with
standard forms and PILS and induction shows

that QL <y Qc,

Q.. closed in G/B.
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A second more refined combinatorial model:
Labelled Dyck Paths

Problem: Given two flags F and F’ in stan-
dard form it's hard to tell if the corresponding
B,,_1-orbits are related in weak (strong) order.

Solution: Connect the combinatorics of the
standard form to the geometry of the fibre
bundle structure of B, _i-orbits to develop a
more sophisticated combinatorial model in terms
of labelled Dyck paths.
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First step: Iterate fibre bundle characteriza-
tion of a B,,_1-orbit ) to assign to @ the fol-
lowing data:

Q — [(do, Qig,jg>50), (d1, Qiy 1 51) - - - (di, Qs gy » SK)]-
with dg=n>dq >do > ... > d;.

Qiyj, = @ Gg,—1-orbit on Ggy,/By,

s¢ = shortest coset rep of 5,54, ; in Sdﬁ_l/SdHl.

Key Idea: Data corresponds to a labelled
Dyck path of length 2n.

Labels determined by “Weyl group data” (sp,...,sk).

Path determined by “K-orbit data” (Q;g jgs---> Qi j.)-
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How does this work?
Take Q a B,,_1-orbit.

Q C Qg

If Qg = Q¢ is closed, then @ is a B,,_1-orbit on
K/B,_1 and therefore given by sg € S,,_1 and
the iteration stops.

If Qg = Q;; then let ig (= 14, jo = j and
d1 = jo — 10-

Then Q =Qp, , X Qu;.
sz.o’jo = a B,_1-orbit on K/(KNPF;, ;,) and so

determined by sg € S;,—1/S5q; -

Qq,= @ Bg,_1-orbit on Gy,/By,.
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THUS, le - Qilajl’ a Gdl_l-Ol’bit on Gdl/Bdl'

Let do = 51 — 17.

SO Qg = Wp,. . X Qq,-

1:J1

CONTINUE until reach a Gy, 1 -orbit @y, j,
which is closed in G4, /By, .



Current State of Afrairs:

We have an easy algorithm to read off “K-
orbit data” from unique flag in standard from
in B,,_q1-orbit  and produce unlabelled Dyck
path.

In Progress:

Develop algorithm to read off “Weyl group
data” from standard form.

Conjectures:

1) Weyl group data+K-orbit data determines
the orbit Q completely.

2) Weak (strong) order on B,_1\G/B can be
understood in terms on a natural ordering on
labelled Dyck paths.

22



