B_{n-1} -orbits on the flag variety, I

Mark Colarusso, University of South Alabama and Sam Evens, University of Notre Dame

November 2, 2019

Let $G_n = GL(n)$ or SO(n) over \mathbb{C} .

 G_{n-1} is a subgroup of $G = G_n$.

For the GL(n) case, G_{n-1} is embedded in G_n as the upper left corner, with 1 in nn entry. G_{n-1} is a factor of the symmetric subgroup $G_{n-1} \times G_1$ of G_n .

For the SO(n) case, G_{n-1} is the identity component of the fixed set of an involution.

Let $B \subset G_n$ and $B_{n-1} \subset G_{n-1}$ be Borel subgroups, with $B \cap G_{n-1} = B_{n-1}$.

Then B_{n-1} acts with finitely many orbits on G_n/B

Goal of this work is to understand B_{n-1} -orbits on G_n/B , closure relations, and how to move from one orbit to another.

Motivation is to understand (g, B_{n-1}) -modules via the Beilinson-Bernstein correspondence.

Further, in study of complex Gelfand-Zeitlin system, one considers a chain of subalgebras

 $\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset \ldots \subset \mathfrak{g}_n$

where \mathfrak{g}_i is the Lie algebra of G_i .

The study of this problem depends on a partial version.

Quantization of this problem leads to Gelfand-Zeitlin modules, and (g_n, B_{n-1}) -modules provide examples of a variant of Gelfand-Zeitlin modules.

Previous work

For the GL(n) case, Hashimoto [2004] gives a parametrization of orbits, but only gives a partial description of the closure relations. We give a formally different combinatorial description, and our approach is very different.

Gandini and Pezzini [2018] have general results on spherical varieties which pertain to this case, but are not as specific.

Consider the chain

 $G_1 \subset G_2 \subset \ldots \subset G_i \subset \ldots \subset G_{n-1} = K \subset G_n = G$, where in the GL(n) case, $G_i = GL(i)$ is the "big" part of the symmetric subgroup.

In the SO(n) case, or $G_i = SO(i)$ is the identity component of a symmetric subgroup.

There is a corresponding chain of Borel subgroups:

 $B_1 \subset B_2 \subset \ldots \subset B_i \subset \ldots \subset B_{n-1} \subset B_n = B,$

where $B_i := G_i \cap B$ is a Borel subgroup of G_i .

Let \mathcal{B}_M be the flag variety of a connected group M. Let $\mathcal{B}_n = G_n/B_n$ be the flag variety of G_n . We use these chains to describe B_{n-1} -orbits on \mathcal{B}_n via an inductive argument. *K*-ORBITS ON \mathcal{B}_n Let $K = G_{n-1}$

Theorem 1:

Let Q_K be a K-orbit on G_n/B_n . Then G_n has parabolic subgroup P with Levi factor L such that

(i) $K \cap P$ is a parabolic subgroup of K, and $B_n \cap L$ is a Borel subgroup of L,

(ii) $(L, L \cap K)$ has the same semisimple type as the pair (G_i, G_{i-1}) for some $i \leq n$,

(iii) Consider the projection $\pi : G_n/B_n \to G_n/P$. Then $\pi(Q_K)$ is a closed *K*-orbit in $K/K \cap P$. Further, $\pi : Q_K \to K/K \cap P$ is a fibre bundle with fibre isomorphic to the open $L \cap K$ -orbit in \mathcal{B}_L .

We use this result to describe B_{n-1} orbits in Q_K . To explain this, it is useful to describe the parabolics P that arise in this theorem, which we call *special* parabolics.

Notation for Flags and Partial Flags:

Let v_1, \ldots, v_n be a basis of \mathbb{C}^n .

Let
$$V_i = \text{span}\{v_1, \dots, v_i\}$$
, and denote the flag
 $V_1 \subset V_2 \subset \dots \subset V_n$

by

 $v_1 \subset v_2 \subset \ldots \subset v_n$

More generally, we denote the partial flag

$$V_{i_1} \subset V_{i_2} \subset \ldots \subset V_{i_k}$$

by

$$\{v_1, \dots, v_{i_1}\} \subset \{v_{i_1+1}, \dots, v_{i_2}\} \subset \dots$$
$$\subset \{v_{i_1+\dots+i_{k-1}+1}, \dots, v_{i_k}\}$$

6

K-ORBITS IN GL(n) CASE:

The closed orbits are the K-orbits Q_i through the points:

$$e_1 \subset \ldots \subset e_{i-1} \subset \underbrace{e_n}_i \subset e_{i+1} \subset \ldots \subset e_{n-1}.$$

These points are stabilized by a Borel subgroup of K, and that is the associated parabolic to the orbit. In this case, the fibre is trivial.

The non-closed orbits are the orbits
$$Q_{i,j} = K \cdot \mathcal{F}_{i,j}$$
, where $\mathcal{F}_{i,j} = e_1 \subset \ldots \subset \underbrace{e_i + e_n}_i \subset \ldots \subset e_{j-1} \subset \underbrace{e_n}_j \subset e_j \subset \ldots e_{n-1}$.

Note that $\dim(Q_{i,j}) = \dim(Q_i) + j - i$, and $Q_{1,n}$ is the open *K*-orbit.

For the $Q_{i,j}$, the associated special parabolic $P_{i,j}$ is the stabilizer of the partial flag $\mathcal{P}_{i,j} = e_1 \subset \ldots \subset \{e_i, \ldots, e_{j-1}, e_n\} \subset e_j \subset \ldots \subset e_{n-1}.$ and $P_{i,j}$ has Levi decomposition LU with $L = GL(j - i + 1) \times GL(1)^{n - (j-i) - 1}$ and $L \cap K = GL(j - i) \times GL(1)^{n - (j-i) - 1}$ *K*-ORBITS FOR SO(n) CASE:

For SO(2n + 1), the *K*-orbits form a linear chain.

The associated special parabolics are standard, i.e., they contain B

and have Levi factor L = SO(2(n-i)+1) times a product of GL(1)'s

and $L \cap K = SO(2(n - i))$ times a product of Levi factors.

This includes the case n = i, where the associated parabolic is B.

For G = SO(2n), the *K*-orbits almost form a linear chain.

The unique closed O(2n)-orbit is a union of two SO(2n)-orbits.

One is stabilized by B and the other is stabilized by a small variant of B.

Otherwise the description is roughly the same, except the odd orthogonal group factors are replaced by even factors. DESCRIPTION OF B_{n-1} -ORBITS IN A K-ORBIT Q_K :

Let P be special parabolic associated to Q_K , and let $\pi : \mathcal{B}_n \to G_n/P$ be the associated projection.

Let $Q \subset Q_K$ be a B_{n-1} -orbit. Then

 $\pi(Q) = B_{n-1}w(K \cap P) \subset \pi(Q_K) = K/K \cap P$ for unique $w \in W_K/W_{K \cap L}$

For $x \in Q$, $Q_K \cap \pi^{-1}\pi(x)$ is isomorphic to the open $K \cap L$ -orbit in \mathcal{B}_L .

Thus, the description of B_{n-1} -orbits reduces to the data:

 (P, w, \mathcal{O}_t) , where P is special, $w \in W_K/W_{K \cap L}$, and \mathcal{O}_t is a $w^{-1}B_{n-1}w \cap L$ -orbit in the open $K \cap L$ -orbit in \mathcal{B}_L . To understand these orbits, we need:

Lemma 1 : $w^{-1}B_{n-1}w \cap L \cong B_{n-1} \cap L$.

Lemma 2 : There is a point in the open *K*-orbit in G_n/B with stabilizer B_{n-2} .

For the GL(n)-case, it follows that the orbit data \mathcal{O}_t from the previous slide are parametrized by:

 B_{m-1} -orbits on $GL(m-1)/B_{m-2}$, where L = GL(m) times a product of GL(1)'s.

These are the same as B_{m-2} -orbits on $GL(m-1)/B_{m-1}$, which is a lower dimensional case of the problem we want to solve.

For the SO(n)-cases, we reduce to a lower dimensional case in a similar way.

Main idea: we can use induction to classify the B_{n-1} -orbits on \mathcal{B}_n .

Remark: there are a lot of them.

 $G_n = GL(2)$, B_1 has 3 orbits on \mathcal{B}_2 .

 $G_n = GL(3)$, B_2 has 13 orbits on \mathcal{B}_3 .

 $G_n = GL(4)$, B_3 has 73 orbits on \mathcal{B}_4 .

 $G_n = GL(5)$, B_4 has 501 orbits on \mathcal{B}_5 .

SUMMARIZE:

Theorem :

 B_{n-1} -orbits on \mathcal{B}_n correspond to triples (P, w, \mathcal{O}_t) where (i) P is a special parabolic, (ii) $w \in W_K/W_{K\cap L}$, and (iii) \mathcal{O}_t is parametrized by B_{m-1} -orbits on \mathcal{B}_m for some m < n determined by the parabolic P.

NOTATION: Given orbit datum (P, w, \mathcal{O}_t) , let Q_{P,w,\mathcal{O}_t} denote the corresponding orbit.

Mark will explain a much better description.

Note that Q_{P,w,\mathcal{O}_t} fibres over $B_{n-1}wK\cap P/K\cap P$ with fibre isomorphic to \mathcal{O}_t

MONOID ACTION

Let H be a reductive group with flag variety \mathcal{B}_H .

Let α be a simple root for H,

and let \mathcal{P}_{α} be the variety of parabolics of type α .

Let $p: \mathcal{B}_H \to \mathcal{P}_{\alpha}$ be the associated \mathbb{P}_1 -bundle.

Let $R \subset H$ be a subgroup which acts on \mathcal{B}_H with finitely many orbits.

Then for $Q \subset \mathcal{B}_H$ a *R*-orbit, and $x \in Q$ there is a unique *R*-orbit $m(s_\alpha)(Q)$ whose intersection with $p^{-1}p(x)$ is open in $p^{-1}p(x)$. The operations $m(s_{\alpha})$ generate a monoid action, and these operators satisfy braid relations.

For *K*-orbits, one can describe the type of an orbit for a simple root, and we can do something similar here.

Let $K_{\Delta} := \{(x, x) \in G_{n-1} \times G_n : x \in G_{n-1}\}$

Note: K_{Δ} -orbits on $\mathcal{B}_{n-1} \times \mathcal{B}_n$ correspond to B_{n-1} -orbits on \mathcal{B}_n .

This is by a general fact: let A be a group with subgroups B, C, and D.

Then *C*-orbits on $C/D \times A/B$ correspond to *D*-orbits on A/B.

Since the monoid $M(G_{n-1} \times G_n)$ acts on K_{Δ} orbits on $\mathcal{B}_{n-1} \times \mathcal{B}_n$, $M(G_{n-1} \times G_n)$ acts on B_{n-1} -orbits on \mathcal{B}_n .

Thus, one gets monoidal operations coming both from simple roots of G_{n-1} and from simple roots of G_n .

We generate a weak order on the B_{n-1} -orbits on \mathcal{B}_n by taking the order relation generated by requiring $Q \leq m(s_\alpha)(Q)$.

This order relation will play a role in Mark's talk.

We prove some compatibility results for the monoid action with the fibre bundle structure in our theorem:

(i) Let Q be a B_{n-1} -orbit in \mathcal{B}_n contained in a K-orbit Q_K in \mathcal{B}_n .

If α is a simple root of G_{n-1} , then $m(s_{\alpha})(Q) \subset Q_{K}$.

 $m(s_{\alpha})(Q_{P,w,\mathcal{O}_t})$ is computed explicitly, and is given by a monoid action on at most one of the base data w or the fibre data \mathcal{O}_t .

(ii) Let Q be a B_{n-1} -orbit in \mathcal{B}_n contained in a K-orbit Q_K in \mathcal{B}_n .

If α is a simple root of G_n , then $m(s_\alpha)(Q) \subset m(s_\alpha)(Q_K)$.

If $m(s_{\alpha})(Q_K) = Q_K$, and $Q_{P,w,\mathcal{O}_t} \subset Q_K$, then $m(s_{\alpha})(Q_{P,w,\mathcal{O}_t})$ is computed explicitly, and is given by a monoid action on at most one of the base data w or the fibre data \mathcal{O}_t .

Mark will explain the combinatorial aspects of our results.

We hope to use these to:

(1) Understand the category of (\mathfrak{g}, B_{n-1}) -modules with fixed central character.

(2) Use category of (\mathfrak{g}, B_{n-1}) -modules to construct new Gelfand-Zeitlin modules.