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Let Gn = GL(n) or SO(n) over C.

Gn−1 is a subgroup of G = Gn.

For the GL(n) case, Gn−1 is embedded in Gn

as the upper left corner, with 1 in nn entry.

Gn−1 is a factor of the symmetric subgroup

Gn−1 ×G1 of Gn.

For the SO(n) case, Gn−1 is the identity com-

ponent of the fixed set of an involution.

Let B ⊂ Gn and Bn−1 ⊂ Gn−1 be Borel sub-

groups, with B ∩Gn−1 = Bn−1.

Then Bn−1 acts with finitely many orbits on

Gn/B
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Goal of this work is to understand Bn−1-orbits

on Gn/B, closure relations, and how to move

from one orbit to another.

Motivation is to understand (g, Bn−1)-modules

via the Beilinson-Bernstein correspondence.

Further, in study of complex Gelfand-Zeitlin

system, one considers a chain of subalgebras

g1 ⊂ g2 ⊂ . . . ⊂ gn

where gi is the Lie algebra of Gi.

The study of this problem depends on a partial

version.

Quantization of this problem leads to Gelfand-

Zeitlin modules, and (gn, Bn−1)-modules pro-

vide examples of a variant of Gelfand-Zeitlin

modules.
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Previous work

For the GL(n) case, Hashimoto [2004] gives

a parametrization of orbits, but only gives a

partial description of the closure relations. We

give a formally different combinatorial descrip-

tion, and our approach is very different.

Gandini and Pezzini [2018] have general re-

sults on spherical varieties which pertain to this

case, but are not as specific.
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Consider the chain

G1 ⊂ G2 ⊂ . . . ⊂ Gi ⊂ . . . ⊂ Gn−1 = K ⊂ Gn = G,

where in the GL(n) case, Gi = GL(i) is the

“big” part of the symmetric subgroup.

In the SO(n) case, or Gi = SO(i) is the identity

component of a symmetric subgroup.

There is a corresponding chain of Borel sub-

groups:

B1 ⊂ B2 ⊂ . . . ⊂ Bi ⊂ . . . ⊂ Bn−1 ⊂ Bn = B,

where Bi := Gi ∩B is a Borel subgroup of Gi.

Let BM be the flag variety of a connected

group M . Let Bn = Gn/Bn be the flag vari-

ety of Gn. We use these chains to describe

Bn−1-orbits on Bn via an inductive argument.
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K-ORBITS ON Bn

Let K = Gn−1

Theorem 1:

Let QK be a K-orbit on Gn/Bn. Then Gn has

parabolic subgroup P with Levi factor L such

that

(i) K ∩ P is a parabolic subgroup of K, and

Bn ∩ L is a Borel subgroup of L,

(ii) (L,L∩K) has the same semisimple type as

the pair (Gi, Gi−1) for some i ≤ n,

(iii) Consider the projection π : Gn/Bn → Gn/P .

Then π(QK) is a closed K-orbit in K/K ∩ P .

Further, π : QK → K/K ∩ P is a fibre bundle

with fibre isomorphic to the open L ∩ K-orbit

in BL.

We use this result to describe Bn−1 orbits in

QK. To explain this, it is useful to describe the

parabolics P that arise in this theorem, which

we call special parabolics.
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Notation for Flags and Partial Flags:

Let v1, . . . , vn be a basis of Cn.

Let Vi = span{v1, . . . , vi}, and denote the flag

V1 ⊂ V2 ⊂ . . . ⊂ Vn

by

v1 ⊂ v2 ⊂ . . . ⊂ vn

More generally, we denote the partial flag

Vi1 ⊂ Vi2 ⊂ . . . ⊂ Vik

by

{v1, . . . , vi1} ⊂ {vi1+1, . . . , vi2} ⊂ . . .

⊂ {vi1+...+ik−1+1, . . . , vik}
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K-ORBITS IN GL(n) CASE:

The closed orbits are the K-orbits Qi through

the points:

e1 ⊂ . . . ⊂ ei−1 ⊂ en
︸︷︷︸

i

⊂ ei+1 ⊂ . . . ⊂ en−1.

These points are stabilized by a Borel subgroup

of K, and that is the associated parabolic to

the orbit. In this case, the fibre is trivial.

7



The non-closed orbits are the orbits Qi,j = K ·

Fi,j, where Fi,j =

e1 ⊂ . . . ⊂ ei + en
︸ ︷︷ ︸

i

⊂ . . . ⊂ ej−1 ⊂ en
︸︷︷︸

j

⊂ ej ⊂ . . . en−1.

Note that dim(Qi,j) = dim(Qi)+j−i, and Q1,n

is the open K-orbit.

For the Qi,j, the associated special parabolic

Pi,j is the stabilizer of the partial flag

Pi,j = e1 ⊂ . . . ⊂ {ei, . . . , ej−1, en} ⊂ ej ⊂ . . . ⊂ en−1.

and Pi,j has Levi decomposition LU with

L = GL(j − i+1)×GL(1)n−(j−i)−1 and

L ∩K = GL(j − i)×GL(1)n−(j−i)−1
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K-ORBITS FOR SO(n) CASE:

For SO(2n + 1), the K-orbits form a linear

chain.

The associated special parabolics are standard,

i.e., they contain B

and have Levi factor L = SO(2(n−i)+1) times

a product of GL(1)′s

and L ∩ K = SO(2(n − i)) times a product of

Levi factors.

This includes the case n = i, where the asso-

ciated parabolic is B.

For G = SO(2n), the K-orbits almost form a

linear chain.

The unique closed O(2n)-orbit is a union of

two SO(2n)-orbits.

One is stabilized by B and the other is stabi-

lized by a small variant of B.

Otherwise the description is roughly the same,

except the odd orthogonal group factors are

replaced by even factors.

9



DESCRIPTION OF Bn−1-ORBITS IN A K-

ORBIT QK:

Let P be special parabolic associated to QK,

and let π : Bn → Gn/P be the associated pro-

jection.

Let Q ⊂ QK be a Bn−1-orbit. Then

π(Q) = Bn−1w(K ∩ P ) ⊂ π(QK) = K/K ∩ P

for unique w ∈ WK/WK∩L

For x ∈ Q, QK ∩ π−1π(x) is isomorphic to the

open K ∩ L-orbit in BL.

Thus, the description of Bn−1-orbits reduces

to the data:

(P,w,Ot), where P is special, w ∈ WK/WK∩L,

and Ot is a w−1Bn−1w ∩ L-orbit in the open

K ∩ L-orbit in BL.
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To understand these orbits, we need:

Lemma 1 : w−1Bn−1w ∩ L ∼= Bn−1 ∩ L.

Lemma 2 : There is a point in the open

K-orbit in Gn/B with stabilizer Bn−2.

For the GL(n)-case, it follows that the orbit

data Ot from the previous slide are parametrized

by:

Bm−1-orbits on GL(m− 1)/Bm−2,

where L = GL(m) times a product of GL(1)′s.

These are the same as Bm−2-orbits on

GL(m−1)/Bm−1, which is a lower dimensional

case of the problem we want to solve.

For the SO(n)-cases, we reduce to a lower di-

mensional case in a similar way.
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Main idea: we can use induction to classify the

Bn−1-orbits on Bn.

Remark: there are a lot of them.

Gn = GL(2), B1 has 3 orbits on B2.

Gn = GL(3), B2 has 13 orbits on B3.

Gn = GL(4), B3 has 73 orbits on B4.

Gn = GL(5), B4 has 501 orbits on B5.
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SUMMARIZE:

Theorem :

Bn−1-orbits on Bn correspond to triples (P,w,Ot)

where (i) P is a special parabolic,

(ii) w ∈ WK/WK∩L, and

(iii) Ot is parametrized by Bm−1-orbits on Bm

for some m < n determined by the parabolic

P .

NOTATION: Given orbit datum (P,w,Ot),

let QP,w,Ot
denote the corresponding orbit.

Mark will explain a much better description.

Note that QP,w,Ot
fibres over Bn−1wK∩P/K∩P

with fibre isomorphic to Ot
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MONOID ACTION

Let H be a reductive group with flag variety

BH.

Let α be a simple root for H,

and let Pα be the variety of parabolics of type

α.

Let p : BH → Pα be the associated P1-bundle.

Let R ⊂ H be a subgroup which acts on BH

with finitely many orbits.

Then for Q ⊂ BH a R-orbit, and x ∈ Q

there is a unique R-orbit m(sα)(Q) whose in-

tersection with p−1p(x) is open in p−1p(x).

14



The operations m(sα) generate a monoid ac-

tion, and these operators satisfy braid rela-

tions.

For K-orbits, one can describe the type of an

orbit for a simple root, and we can do some-

thing similar here.
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Let K∆ := {(x, x) ∈ Gn−1 ×Gn : x ∈ Gn−1}

Note: K∆-orbits on Bn−1 × Bn correspond to
Bn−1-orbits on Bn.

This is by a general fact: let A be a group with
subgroups B, C, and D.

Then C-orbits on C/D × A/B correspond to
D-orbits on A/B.

Since the monoid M(Gn−1 ×Gn) acts on K∆-
orbits on Bn−1 × Bn,
M(Gn−1 ×Gn) acts on Bn−1-orbits on Bn.

Thus, one gets monoidal operations coming
both from simple roots of Gn−1 and from sim-
ple roots of Gn.

We generate a weak order on the Bn−1-orbits
on Bn by taking the order relation generated
by requiring Q ≤ m(sα)(Q).

This order relation will play a role in Mark’s
talk.
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We prove some compatibility results for the

monoid action with the fibre bundle structure

in our theorem:

(i) Let Q be a Bn−1-orbit in Bn contained in a

K-orbit QK in Bn.

If α is a simple root of Gn−1, then m(sα)(Q) ⊂

QK.

m(sα)(QP,w,Ot
) is computed explicitly, and is

given by a monoid action on at most one of

the base data w or the fibre data Ot.

(ii) Let Q be a Bn−1-orbit in Bn contained in a

K-orbit QK in Bn.

If α is a simple root of Gn, then m(sα)(Q) ⊂

m(sα)(QK).

If m(sα)(QK) = QK, and QP,w,Ot
⊂ QK, then

m(sα)(QP,w,Ot
) is computed explicitly, and is

given by a monoid action on at most one of

the base data w or the fibre data Ot.
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Mark will explain the combinatorial aspects of

our results.

We hope to use these to:

(1) Understand the category of (g, Bn−1)-modules

with fixed central character.

(2) Use category of (g, Bn−1)-modules to con-

struct new Gelfand-Zeitlin modules.
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