B_{n-1}-orbits on the flag variety, I

Mark Colarusso, University of South Alabama and Sam Evens, University of Notre Dame

November 2, 2019

Let $G_{n}=G L(n)$ or $S O(n)$ over \mathbb{C}.
G_{n-1} is a subgroup of $G=G_{n}$.

For the $G L(n)$ case, G_{n-1} is embedded in G_{n} as the upper left corner, with 1 in $n n$ entry. G_{n-1} is a factor of the symmetric subgroup $G_{n-1} \times G_{1}$ of G_{n}.

For the $S O(n)$ case, G_{n-1} is the identity component of the fixed set of an involution.

Let $B \subset G_{n}$ and $B_{n-1} \subset G_{n-1}$ be Borel subgroups, with $B \cap G_{n-1}=B_{n-1}$.

Then B_{n-1} acts with finitely many orbits on G_{n} / B

Goal of this work is to understand B_{n-1}-orbits on G_{n} / B, closure relations, and how to move from one orbit to another.

Motivation is to understand (\mathfrak{g}, B_{n-1})-modules via the Beilinson-Bernstein correspondence.

Further, in study of complex Gelfand-Zeitlin system, one considers a chain of subalgebras

$$
\mathfrak{g}_{1} \subset \mathfrak{g}_{2} \subset \ldots \subset \mathfrak{g}_{n}
$$

where \mathfrak{g}_{i} is the Lie algebra of G_{i}.

The study of this problem depends on a partial version.

Quantization of this problem leads to GelfandZeitlin modules, and ($\mathfrak{g}_{n}, B_{n-1}$)-modules provide examples of a variant of Gelfand-Zeitlin modules.

Previous work

For the GL(n) case, Hashimoto [2004] gives a parametrization of orbits, but only gives a partial description of the closure relations. We give a formally different combinatorial description, and our approach is very different.

Gandini and Pezzini [2018] have general results on spherical varieties which pertain to this case, but are not as specific.

Consider the chain
$G_{1} \subset G_{2} \subset \ldots \subset G_{i} \subset \ldots \subset G_{n-1}=K \subset G_{n}=G$, where in the $G L(n)$ case, $G_{i}=G L(i)$ is the "big" part of the symmetric subgroup.

In the $S O(n)$ case, or $G_{i}=S O(i)$ is the identity component of a symmetric subgroup.

There is a corresponding chain of Borel subgroups:

$$
B_{1} \subset B_{2} \subset \ldots \subset B_{i} \subset \ldots \subset B_{n-1} \subset B_{n}=B
$$

where $B_{i}:=G_{i} \cap B$ is a Borel subgroup of G_{i}.

Let \mathcal{B}_{M} be the flag variety of a connected group M. Let $\mathcal{B}_{n}=G_{n} / B_{n}$ be the flag variety of G_{n}. We use these chains to describe B_{n-1}-orbits on \mathcal{B}_{n} via an inductive argument.
K-ORBITS ON \mathcal{B}_{n}
Let $K=G_{n-1}$

Theorem 1:

Let Q_{K} be a K-orbit on G_{n} / B_{n}. Then G_{n} has parabolic subgroup P with Levi factor L such that
(i) $K \cap P$ is a parabolic subgroup of K, and $B_{n} \cap L$ is a Borel subgroup of L,
(ii) ($L, L \cap K$) has the same semisimple type as the pair $\left(G_{i}, G_{i-1}\right)$ for some $i \leq n$,
(iii) Consider the projection $\pi: G_{n} / B_{n} \rightarrow G_{n} / P$. Then $\pi\left(Q_{K}\right)$ is a closed K-orbit in $K / K \cap P$. Further, $\pi: Q_{K} \rightarrow K / K \cap P$ is a fibre bundle with fibre isomorphic to the open $L \cap K$-orbit in \mathcal{B}_{L}.

We use this result to describe B_{n-1} orbits in Q_{K}. To explain this, it is useful to describe the parabolics P that arise in this theorem, which we call special parabolics.

Notation for Flags and Partial Flags:

Let v_{1}, \ldots, v_{n} be a basis of \mathbb{C}^{n}.

Let $V_{i}=\operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}$, and denote the flag

$$
V_{1} \subset V_{2} \subset \ldots \subset V_{n}
$$

by

$$
v_{1} \subset v_{2} \subset \ldots \subset v_{n}
$$

More generally, we denote the partial flag

$$
V_{i_{1}} \subset V_{i_{2}} \subset \ldots \subset V_{i_{k}}
$$

by

$$
\begin{gathered}
\left\{v_{1}, \ldots, v_{i_{1}}\right\} \subset\left\{v_{i_{1}+1}, \ldots, v_{i_{2}}\right\} \subset \ldots \\
\subset\left\{v_{i_{1}+\ldots+i_{k-1}+1}, \ldots, v_{i_{k}}\right\}
\end{gathered}
$$

K-ORBITS IN GL(n) CASE:

The closed orbits are the K-orbits Q_{i} through the points:

$$
e_{1} \subset \ldots \subset e_{i-1} \subset \underbrace{e_{n}}_{i} \subset e_{i+1} \subset \ldots \subset e_{n-1} .
$$

These points are stabilized by a Borel subgroup of K, and that is the associated parabolic to the orbit. In this case, the fibre is trivial.

The non-closed orbits are the orbits $Q_{i, j}=K$. $\mathcal{F}_{i, j}$, where $\mathcal{F}_{i, j}=$
$e_{1} \subset \ldots \subset \underbrace{e_{i}+e_{n}}_{i} \subset \ldots \subset e_{j-1} \subset \underbrace{e_{n}}_{j} \subset e_{j} \subset \ldots e_{n-1}$.

Note that $\operatorname{dim}\left(Q_{i, j}\right)=\operatorname{dim}\left(Q_{i}\right)+j-i$, and $Q_{1, n}$ is the open K-orbit.

For the $Q_{i, j}$, the associated special parabolic $P_{i, j}$ is the stabilizer of the partial flag
$\mathcal{P}_{i, j}=e_{1} \subset \ldots \subset\left\{e_{i}, \ldots, e_{j-1}, e_{n}\right\} \subset e_{j} \subset \ldots \subset e_{n-1}$.
and $P_{i, j}$ has Levi decomposition $L U$ with
$L=G L(j-i+1) \times G L(1)^{n-(j-i)-1}$ and
$L \cap K=G L(j-i) \times G L(1)^{n-(j-i)-1}$

K-ORBITS FOR SO(n) CASE:

For $S O(2 n+1)$, the K-orbits form a linear chain.
The associated special parabolics are standard, i.e., they contain B
and have Levi factor $L=S O(2(n-i)+1)$ times a product of $G L(1)^{\prime} s$
and $L \cap K=S O(2(n-i))$ times a product of Levi factors.
This includes the case $n=i$, where the associated parabolic is B.

For $G=S O(2 n)$, the K-orbits almost form a linear chain.
The unique closed $O(2 n)$-orbit is a union of two $S O(2 n)$-orbits.
One is stabilized by B and the other is stabilized by a small variant of B.
Otherwise the description is roughly the same, except the odd orthogonal group factors are replaced by even factors.

DESCRIPTION OF B_{n-1}-ORBITS IN A $K-$ ORBIT Q_{K} :

Let P be special parabolic associated to Q_{K}, and let $\pi: \mathcal{B}_{n} \rightarrow G_{n} / P$ be the associated projection.

Let $Q \subset Q_{K}$ be a B_{n-1}-orbit. Then
$\pi(Q)=B_{n-1} w(K \cap P) \subset \pi\left(Q_{K}\right)=K / K \cap P$ for unique $w \in W_{K} / W_{K \cap L}$

For $x \in Q, Q_{K} \cap \pi^{-1} \pi(x)$ is isomorphic to the open $K \cap L$-orbit in \mathcal{B}_{L}.

Thus, the description of B_{n-1}-orbits reduces to the data:
(P, w, \mathcal{O}_{t}), where P is special, $w \in W_{K} / W_{K \cap L}$, and \mathcal{O}_{t} is a $w^{-1} B_{n-1} w \cap L$-orbit in the open $K \cap L$-orbit in \mathcal{B}_{L}.

To understand these orbits, we need:

Lemma 1: $w^{-1} B_{n-1} w \cap L \cong B_{n-1} \cap L$.

Lemma 2 : There is a point in the open K-orbit in G_{n} / B with stabilizer B_{n-2}.

For the $G L(n)$-case, it follows that the orbit data \mathcal{O}_{t} from the previous slide are parametrized by:
B_{m-1}-orbits on $G L(m-1) / B_{m-2}$,
where $L=G L(m)$ times a product of $G L(1)^{\prime} s$.

These are the same as B_{m-2}-orbits on $G L(m-1) / B_{m-1}$, which is a lower dimensional case of the problem we want to solve.

For the $S O(n)$-cases, we reduce to a lower dimensional case in a similar way.

Main idea: we can use induction to classify the B_{n-1}-orbits on \mathcal{B}_{n}.

Remark: there are a lot of them.
$G_{n}=G L(2), B_{1}$ has 3 orbits on \mathcal{B}_{2}.
$G_{n}=G L(3), B_{2}$ has 13 orbits on \mathcal{B}_{3}.
$G_{n}=G L(4), B_{3}$ has 73 orbits on \mathcal{B}_{4}.
$G_{n}=G L(5), B_{4}$ has 501 orbits on \mathcal{B}_{5}.

SUMMARIZE:

Theorem :

B_{n-1}-orbits on \mathcal{B}_{n} correspond to triples (P, w, \mathcal{O}_{t}) where (i) P is a special parabolic,
(ii) $w \in W_{K} / W_{K \cap L}$, and
(iii) \mathcal{O}_{t} is parametrized by B_{m-1}-orbits on \mathcal{B}_{m} for some $m<n$ determined by the parabolic P.

NOTATION: Given orbit datum $\left(P, w, \mathcal{O}_{t}\right)$, let $Q_{P, w, \mathcal{O}_{t}}$ denote the corresponding orbit.

Mark will explain a much better description.

Note that $Q_{P, w, \mathcal{O}_{t}}$ fibres over $B_{n-1} w K \cap P / K \cap P$ with fibre isomorphic to \mathcal{O}_{t}

MONOID ACTION

Let H be a reductive group with flag variety \mathcal{B}_{H}.
Let α be a simple root for H, and let \mathcal{P}_{α} be the variety of parabolics of type α.

Let $p: \mathcal{B}_{H} \rightarrow \mathcal{P}_{\alpha}$ be the associated \mathbb{P}_{1}-bundle.

Let $R \subset H$ be a subgroup which acts on \mathcal{B}_{H} with finitely many orbits.

Then for $Q \subset \mathcal{B}_{H}$ a R-orbit, and $x \in Q$ there is a unique R-orbit $m\left(s_{\alpha}\right)(Q)$ whose intersection with $p^{-1} p(x)$ is open in $p^{-1} p(x)$.

The operations $m\left(s_{\alpha}\right)$ generate a monoid action, and these operators satisfy braid relations.

For K-orbits, one can describe the type of an orbit for a simple root, and we can do something similar here.

Let $K_{\Delta}:=\left\{(x, x) \in G_{n-1} \times G_{n}: x \in G_{n-1}\right\}$
Note: K_{Δ}-orbits on $\mathcal{B}_{n-1} \times \mathcal{B}_{n}$ correspond to B_{n-1}-orbits on \mathcal{B}_{n}.

This is by a general fact: let A be a group with subgroups B, C, and D.

Then C-orbits on $C / D \times A / B$ correspond to D-orbits on A / B.

Since the monoid $M\left(G_{n-1} \times G_{n}\right)$ acts on $K_{\Delta^{-}}$ orbits on $\mathcal{B}_{n-1} \times \mathcal{B}_{n}$,
$M\left(G_{n-1} \times G_{n}\right)$ acts on B_{n-1}-orbits on \mathcal{B}_{n}.
Thus, one gets monoidal operations coming both from simple roots of G_{n-1} and from simple roots of G_{n}.

We generate a weak order on the B_{n-1}-orbits on \mathcal{B}_{n} by taking the order relation generated by requiring $Q \leq m\left(s_{\alpha}\right)(Q)$.

This order relation will play a role in Mark's talk.

We prove some compatibility results for the monoid action with the fibre bundle structure in our theorem:
(i) Let Q be a B_{n-1}-orbit in \mathcal{B}_{n} contained in a K-orbit Q_{K} in \mathcal{B}_{n}.
If α is a simple root of G_{n-1}, then $m\left(s_{\alpha}\right)(Q) \subset$ Q_{K}.
$m\left(s_{\alpha}\right)\left(Q_{P, w, \mathcal{O}_{t}}\right)$ is computed explicitly, and is given by a monoid action on at most one of the base data w or the fibre data \mathcal{O}_{t}.
(ii) Let Q be a B_{n-1}-orbit in \mathcal{B}_{n} contained in a K-orbit Q_{K} in \mathcal{B}_{n}.
If α is a simple root of G_{n}, then $m\left(s_{\alpha}\right)(Q) \subset$ $m\left(s_{\alpha}\right)\left(Q_{K}\right)$.
If $m\left(s_{\alpha}\right)\left(Q_{K}\right)=Q_{K}$, and $Q_{P, w, \mathcal{O}_{t}} \subset Q_{K}$, then $m\left(s_{\alpha}\right)\left(Q_{P, w, \mathcal{O}_{t}}\right)$ is computed explicitly, and is given by a monoid action on at most one of the base data w or the fibre data \mathcal{O}_{t}.

Mark will explain the combinatorial aspects of our results.

We hope to use these to:
(1) Understand the category of (\mathfrak{g}, B_{n-1})-modules with fixed central character.
(2) Use category of (\mathfrak{g}, B_{n-1})-modules to construct new Gelfand-Zeitlin modules.

