Multiplicities of Schubert Varieties

Kevin Meek

University of Idaho
November 2, 2019

Preliminary Definitions

- Let $G=G L_{n}(\mathbb{C})$ and $B \subset G$ the subgroup of upper triangular matrices.

Preliminary Definitions

- Let $G=G L_{n}(\mathbb{C})$ and $B \subset G$ the subgroup of upper triangular matrices.
- G / B is a projective variety called the flag variety.

Preliminary Definitions

- Let $G=G L_{n}(\mathbb{C})$ and $B \subset G$ the subgroup of upper triangular matrices.
- G / B is a projective variety called the flag variety.
- Points of the flag variety correspond to complete flags, which are chains of subspaces:

$$
F_{\bullet}=F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{C}^{n}
$$

Preliminary Definitions

- Let $G=G L_{n}(\mathbb{C})$ and $B \subset G$ the subgroup of upper triangular matrices.
- G / B is a projective variety called the flag variety.
- Points of the flag variety correspond to complete flags, which are chains of subspaces:

$$
F_{\bullet}=F_{1} \subsetneq F_{2} \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{C}^{n}
$$

- B acts on G / B by left multiplication.
- The orbit $B w B / B$ where w is a permutation matrix is called a Schubert Cell.

Schubert Varieties

The Schubert variety X_{w} is the closure of the Schubert cell $B w B / B$.

Schubert Varieties

Question: What local properties of a Schubert variety X_{w} can be recovered from the combinatorics of the permutation w ?

Schubert Varieties

Question: What local properties of a Schubert variety X_{w} can be recovered from the combinatorics of the permutation w ?

Theorem (Lakshmibai, Sandhya 1990)

The Schubert variety X_{w} is smooth if and only if w avoids the permutations 3412 and 4231

Pattern avoidance

- A permutation w is said to contain a permutation v if, when written in one-line notation, w contains a subsequence in the same relative order as v. Otherwise, we say that w avoids v.

Pattern avoidance

- A permutation w is said to contain a permutation v if, when written in one-line notation, w contains a subsequence in the same relative order as v. Otherwise, we say that w avoids v.
- For instance, 563421 contains the permutation 4231.

Pattern avoidance

- A permutation w is said to contain a permutation v if, when written in one-line notation, w contains a subsequence in the same relative order as v. Otherwise, we say that w avoids v.
- For instance, 563421 contains the permutation 4231.
- So X_{563421} is not smooth.

Multiplicity

- The Hilbert-Samuel multiplicity of a local ring $(R, \mathfrak{m}, \mathbb{C})$ is the degree of the projectiive tangent cone $\operatorname{Proj}\left(\operatorname{gr}_{m} R\right)$ as a subvariety of the projective tangent space $\operatorname{Proj}\left(\mathrm{sym}^{*} \mathfrak{m} / \mathfrak{m}^{2}\right)$.
- For a scheme X and a point p, the multiplicity of X at p is the multiplicity of the local ring $\left(\mathcal{O}_{X_{p}}, \mathfrak{m}_{p}, \mathbb{C}\right)$.

Multiplicity

- The Hilbert-Samuel multiplicity of a local ring $(R, \mathfrak{m}, \mathbb{C})$ is the degree of the projectiive tangent cone $\operatorname{Proj}\left(\operatorname{gr}_{m} R\right)$ as a subvariety of the projective tangent space $\operatorname{Proj}\left(\operatorname{sym}^{*} \mathfrak{m} / \mathfrak{m}^{2}\right)$.
- For a scheme X and a point p, the multiplicity of X at p is the multiplicity of the local ring $\left(\mathcal{O}_{X_{p}}, \mathfrak{m}_{p}, \mathbb{C}\right)$.
- A variety is smooth if and only if it has multiplicity one at all points.

A first attempt at characterizing Schubert varieties of multiplicity at most two

- Question: Is there a set of permutations S such that a Schubert variety X_{w} has multiplicity at most two if and only if w avoids the permutations in S ?

A first attempt at characterizing Schubert varieties of multiplicity at most two

- Question: Is there a set of permutations S such that a Schubert variety X_{w} has multiplicity at most two if and only if w avoids the permutations in S ?
- Answer: No

A first attempt at characterizing Schubert varieties of multiplicity at most two

- Question: Is there a set of permutations S such that a Schubert variety X_{w} has multiplicity at most two if and only if w avoids the permutations in S ?
- Answer: No
- The permutation 354612 embeds in 4657312 , but X_{354612} has multiplicity three while $X_{4657312}$ has multiplicity two.

Schubert points

- The points of X_{w} that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_{x}. Moreover e_{x} is a Schubert point of X_{w} precisely when $x \leq w$ in Bruhat order.

Schubert points

- The points of X_{w} that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_{x}. Moreover e_{x} is a Schubert point of X_{w} precisely when $x \leq w$ in Bruhat order.
- Every point on a Schubert variety is in the B-orbit of some Schubert point, and the B-action gives an isomorphism between local neighborhoods.

Schubert points

- The points of X_{w} that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_{x}. Moreover e_{x} is a Schubert point of X_{w} precisely when $x \leq w$ in Bruhat order.
- Every point on a Schubert variety is in the B-orbit of some Schubert point, and the B-action gives an isomorphism between local neighborhoods.
- So if we want to study local properties of Schubert varieties, it suffices to focus on Schubert points.

The Rothe Diagram

To calculate the local equations for X_{w}, we will need to construct the Rothe Diagram for w. We will proceed by example for $w=819372564$.

The Rothe Diagram

Start with the permutation matrix for w.

$$
\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Rothe Diagram

Our diagram starts with a 9×9 grid with dots in place of each 1 in the permutation matrix. Draw a hook that extends north and east of each dot.

The Rothe Diagram

The Rothe Diagram consists of the positions not in any hook, designated by squares. The essential set consists of the northeast corners of the connected components of the diagram, designated by E's.

The Kazhdan-Lusztig ideal

- The rank function for a permutation w is $r_{w}(p, q)=\#\{k \leq q \mid w(k) \geq p\}$.

The Kazhdan-Lusztig ideal

- The rank function for a permutation w is $r_{w}(p, q)=\#\{k \leq q \mid w(k) \geq p\}$.
- For a permutation $x \in S_{n}$, let let $Z^{(x)}$ be the $n \times n$ matrix where the entries at $(x(i), i)$ are 1 for all i; the entries at $(x(i), a)$ and (b, i) are 0 for $a>i$ and $b<x(i)$; and the remaining entries are variables.

The Kazhdan-Lusztig ideal

- The rank function for a permutation w is $r_{w}(p, q)=\#\{k \leq q \mid w(k) \geq p\}$.
- For a permutation $x \in S_{n}$, let let $Z^{(x)}$ be the $n \times n$ matrix where the entries at $(x(i), i)$ are 1 for all i; the entries at $(x(i), a)$ and (b, i) are 0 for $a>i$ and $b<x(i)$; and the remaining entries are variables.
- Let $Z_{i j}^{(x)}$ be the southwest submatrix of $Z^{(x)}$ with northeast corner (i, j).

The Kazhdan-Lusztig ideal

- The rank function for a permutation w is $r_{w}(p, q)=\#\{k \leq q \mid w(k) \geq p\}$.
- For a permutation $x \in S_{n}$, let let $Z^{(x)}$ be the $n \times n$ matrix where the entries at $(x(i), i)$ are 1 for all i; the entries at $(x(i), a)$ and (b, i) are 0 for $a>i$ and $b<x(i)$; and the remaining entries are variables.
- Let $Z_{i j}^{(x)}$ be the southwest submatrix of $Z^{(x)}$ with northeast corner (i, j).
- The Kazhdan-Lusztig ideal $\mathcal{I}_{x, w}$ is generated by the size $1+r_{w}(p, q)$ minors of $Z_{i j}^{x}$ over all i, j.

The Kazhdan-Lusztig ideal

Theorem
Let $\mathcal{N}_{x, w}:=\operatorname{Spec}\left(\mathbb{C}\left[Z^{(x)}\right] / \mathcal{I}_{x, w}\right)$. Then $\mathcal{N}_{X, w} \times \mathbb{A}^{1(x)}$ is isomorphic to an affine neighborhood of X_{w} at e_{x}.

The Kazhdan-Lusztig ideal

Theorem
Let $\mathcal{N}_{x, w}:=\operatorname{Spec}\left(\mathbb{C}\left[Z^{(x)}\right] / \mathcal{I}_{x, w}\right)$. Then $\mathcal{N}_{x, w} \times \mathbb{A}^{l(x)}$ is isomorphic to an affine neighborhood of X_{w} at e_{x}.

- In particular, a local property \mathcal{P} holds at e_{x} on X_{w} if and only if \mathcal{P} holds at the origin 0 on $\mathcal{N}_{x, w}$.

Schubert varieties of multiplicity at most two

- We can simplify our computations by restricting our attention to $e_{i d}$. This is because mult $e_{u}\left(X_{w}\right) \geq \operatorname{mult}_{e_{v}}\left(X_{w}\right)$ when $u \leq v \leq w$ in Bruhat order.

Schubert varieties of multiplicity at most two

- We can simplify our computations by restricting our attention to $e_{i d}$. This is because mult $e_{u}\left(X_{w}\right) \geq$ mult $_{e_{v}}\left(X_{w}\right)$ when $u \leq v \leq w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCl .

Schubert varieties of multiplicity at most two

- We can simplify our computations by restricting our attention to $e_{i d}$. This is because mult $e_{u}\left(X_{w}\right) \geq$ mult $_{e_{v}}\left(X_{w}\right)$ when $u \leq v \leq w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCI.
- $\mathcal{I}_{i d, w}$ has a known set of minimal generators corresponding to diagram boxes when X_{w} is LCl .

Schubert varieties of multiplicity at most two

- We can simplify our computations by restricting our attention to $e_{i d}$. This is because mult $e_{u}\left(X_{w}\right) \geq$ mult $_{e_{v}}\left(X_{w}\right)$ when $u \leq v \leq w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCl .
- $\mathcal{I}_{i d, w}$ has a known set of minimal generators corresponding to diagram boxes when X_{w} is LCl .
- If X_{w} is LCl , then there are strong restrictions on where the essential set boxes may appear.

The shifted diagram

- These constraints are sufficient to provide a characterization of Schubert varieties of multiplicity at most two based on the Rothe diagram.

The shifted diagram

- These constraints are sufficient to provide a characterization of Schubert varieties of multiplicity at most two based on the Rothe diagram.
- For an entry (a, b) in the Rothe diagram, shift every entry $(p, q) \neq(a, b)$ in the Rothe diagram southwest by $r_{w}(p, q)$. The resulting diagram is the shifted diagram for w at (a, b).

The shifted diagram

The Rothe diagram for $w=819372564$

The shifted diagram

The shifted diagram for $w=819372564$ at $(6,6)$

A characterization for Schubert varieties of multiplicity at most two

- If the shifted diagram at (a, b) contains an entry $r_{w}(a, b)$ southwest of (a, b), then (a, b) is called a double box.
- If the shifted diagram at (a, b) contains a hook of length $r_{w}(a, b)+1$ with vertex $r_{w}(a, b)$ southwest of (a, b), then (a, b) is called a triple box.

A characterization for Schubert varieties of multiplicity at most two

- If the shifted diagram at (a, b) contains an entry $r_{w}(a, b)$ southwest of (a, b), then (a, b) is called a double box.
- If the shifted diagram at (a, b) contains a hook of length $r_{w}(a, b)+1$ with vertex $r_{w}(a, b)$ southwest of (a, b), then (a, b) is called a triple box.

Theorem (M.)

If X_{w} is an LCI Schubert variety, then it has multiplicity at least three if and only if it contains a triple box or two double boxes. Moreover, it suffices to check only the southwest corners of each connected component and essential set boxes that are not defined by inclusions.

Thank you!

