Multiplicities of Schubert Varieties

Kevin Meek

University of Idaho

November 2, 2019

Kevin Meek (University of Idaho)

Multiplicities of Schubert Varieties

э

Let G = GL_n(ℂ) and B ⊂ G the subgroup of upper triangular matrices.

< ロ > < 同 > < 回 > < 回 >

- Let G = GL_n(ℂ) and B ⊂ G the subgroup of upper triangular matrices.
- *G*/*B* is a projective variety called the **flag variety**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let G = GL_n(ℂ) and B ⊂ G the subgroup of upper triangular matrices.
- *G*/*B* is a projective variety called the **flag variety**.
- Points of the flag variety correspond to complete flags, which are chains of subspaces:

$$F_{\bullet} = F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{C}^n$$

< ロ > < 同 > < 回 > < 回 >

- Let G = GL_n(ℂ) and B ⊂ G the subgroup of upper triangular matrices.
- *G*/*B* is a projective variety called the **flag variety**.
- Points of the flag variety correspond to complete flags, which are chains of subspaces:

$$F_{\bullet} = F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_{n-1} \subsetneq \mathbb{C}^n$$

- *B* acts on G/B by left multiplication.
- The orbit *BwB/B* where *w* is a permutation matrix is called a **Schubert Cell**.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Schubert Varieties

The **Schubert variety** X_w is the closure of the Schubert cell BwB/B.

э

Image: A matrix and a matrix

Question: What local properties of a Schubert variety X_w can be recovered from the combinatorics of the permutation *w*?

Question: What local properties of a Schubert variety X_w can be recovered from the combinatorics of the permutation *w*?

Theorem (Lakshmibai, Sandhya 1990)

The Schubert variety X_w is smooth if and only if *w* avoids the permutations 3412 and 4231

4 3 5 4 3 5 5

4 A 1

Pattern avoidance

• A permutation *w* is said to contain a permutation *v* if, when written in one-line notation, *w* contains a subsequence in the same relative order as *v*. Otherwise, we say that *w* avoids *v*.

(B)

Pattern avoidance

- A permutation w is said to contain a permutation v if, when written in one-line notation, w contains a subsequence in the same relative order as v. Otherwise, we say that w avoids v.
- For instance, **563421** contains the permutation 4231.

Pattern avoidance

- A permutation *w* is said to contain a permutation *v* if, when written in one-line notation, *w* contains a subsequence in the same relative order as *v*. Otherwise, we say that *w* avoids *v*.
- For instance, 563421 contains the permutation 4231.
- So *X*₅₆₃₄₂₁ is not smooth.

4 3 5 4 3 5 5

Multiplicity

- The Hilbert-Samuel multiplicity of a local ring (*R*, m, ℂ) is the degree of the projective tangent cone Proj(gr_m*R*) as a subvariety of the projective tangent space Proj(sym*m/m²).
- For a scheme X and a point p, the multiplicity of X at p is the multiplicity of the local ring (O_{X_ρ}, m_p, C).

< 6 b

Multiplicity

- The Hilbert-Samuel multiplicity of a local ring (R, m, C) is the degree of the projective tangent cone Proj(gr_mR) as a subvariety of the projective tangent space Proj(sym*m/m²).
- For a scheme X and a point p, the multiplicity of X at p is the multiplicity of the local ring (O_{X_p}, m_p, C).
- A variety is smooth if and only if it has multiplicity one at all points.

A first attempt at characterizing Schubert varieties of multiplicity at most two

 Question: Is there a set of permutations S such that a Schubert variety X_w has multiplicity at most two if and only if w avoids the permutations in S?

4 3 5 4 3 5 5

A first attempt at characterizing Schubert varieties of multiplicity at most two

- Question: Is there a set of permutations S such that a Schubert variety X_w has multiplicity at most two if and only if w avoids the permutations in S?
- Answer: No

4 3 5 4 3 5 5

< 6 b

A first attempt at characterizing Schubert varieties of multiplicity at most two

- Question: Is there a set of permutations S such that a Schubert variety X_w has multiplicity at most two if and only if w avoids the permutations in S?
- Answer: No
- The permutation 354612 embeds in 4657312, but X_{354612} has multiplicity three while $X_{4657312}$ has multiplicity two.

イロト イポト イラト イラト

Schubert points

 The points of X_w that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_x. Moreover e_x is a Schubert point of X_w precisely when x ≤ w in Bruhat order.

4 **A** N A **B** N A **B** N

Schubert points

- The points of X_w that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_x. Moreover e_x is a Schubert point of X_w precisely when x ≤ w in Bruhat order.
- Every point on a Schubert variety is in the *B*-orbit of some Schubert point, and the *B*-action gives an isomorphism between local neighborhoods.

4 E N 4 E N

< 6 b

Schubert points

- The points of X_w that correspond to permutations are called Schubert points. For a permutation x, we denote the Schubert point by e_x. Moreover e_x is a Schubert point of X_w precisely when x ≤ w in Bruhat order.
- Every point on a Schubert variety is in the *B*-orbit of some Schubert point, and the *B*-action gives an isomorphism between local neighborhoods.
- So if we want to study local properties of Schubert varieties, it suffices to focus on Schubert points.

4 E N 4 E N

< 6 b

To calculate the local equations for X_w , we will need to construct the **Rothe Diagram** for *w*. We will proceed by example for w = 819372564.

< ロ > < 同 > < 回 > < 回 >

Start with the permutation matrix for w.

Our diagram starts with a 9x9 grid with dots in place of each 1 in the permutation matrix. Draw a hook that extends north and east of each dot.

Kevin Meek (University of Idaho)

The **Rothe Diagram** consists of the positions not in any hook, designated by squares. The **essential set** consists of the northeast corners of the connected components of the diagram, designated by E's.

Kevin Meek (University of Idaho)

• The **rank function** for a permutation *w* is $r_w(p, q) = \#\{k \le q \mid w(k) \ge p\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The rank function for a permutation w is $r_w(p,q) = \#\{k \le q \mid w(k) \ge p\}.$
- For a permutation x ∈ S_n, let let Z^(x) be the n × n matrix where the entries at (x(i), i) are 1 for all i; the entries at (x(i), a) and (b, i) are 0 for a > i and b < x(i); and the remaining entries are variables.

4 E N 4 E N

- The rank function for a permutation w is $r_w(p,q) = \#\{k \le q \mid w(k) \ge p\}.$
- For a permutation x ∈ S_n, let let Z^(x) be the n × n matrix where the entries at (x(i), i) are 1 for all i; the entries at (x(i), a) and (b, i) are 0 for a > i and b < x(i); and the remaining entries are variables.
- Let $Z_{ij}^{(x)}$ be the southwest submatrix of $Z^{(x)}$ with northeast corner (i, j).

- The rank function for a permutation w is $r_w(p,q) = \#\{k \le q \mid w(k) \ge p\}.$
- For a permutation x ∈ S_n, let let Z^(x) be the n × n matrix where the entries at (x(i), i) are 1 for all i; the entries at (x(i), a) and (b, i) are 0 for a > i and b < x(i); and the remaining entries are variables.
- Let $Z_{ij}^{(x)}$ be the southwest submatrix of $Z^{(x)}$ with northeast corner (i, j).
- The **Kazhdan-Lusztig ideal** $\mathcal{I}_{x,w}$ is generated by the size $1 + r_w(p,q)$ minors of Z_{ij}^x over all i, j.

4 B N 4 B N B

Theorem

Let $\mathcal{N}_{x,w} := Spec(\mathbb{C}[z^{(x)}]/\mathcal{I}_{x,w})$. Then $\mathcal{N}_{x,w} \times \mathbb{A}^{l(x)}$ is isomorphic to an affine neighborhood of X_w at e_x .

不同 トイモトイモ

Theorem

Let $\mathcal{N}_{x,w} := Spec(\mathbb{C}[z^{(x)}]/\mathcal{I}_{x,w})$. Then $\mathcal{N}_{x,w} \times \mathbb{A}^{l(x)}$ is isomorphic to an affine neighborhood of X_w at e_x .

In particular, a local property *P* holds at *e_x* on *X_w* if and only if *P* holds at the origin 0 on *N_{x,w}*.

• We can simplify our computations by restricting our attention to e_{id} . This is because $\operatorname{mult}_{e_u}(X_w) \ge \operatorname{mult}_{e_v}(X_w)$ when $u \le v \le w$ in Bruhat order.

EN 4 EN

- We can simplify our computations by restricting our attention to e_{id} . This is because $\operatorname{mult}_{e_u}(X_w) \ge \operatorname{mult}_{e_v}(X_w)$ when $u \le v \le w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCI.

4 3 5 4 3 5 5

- We can simplify our computations by restricting our attention to e_{id} . This is because $\operatorname{mult}_{e_u}(X_w) \ge \operatorname{mult}_{e_v}(X_w)$ when $u \le v \le w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCI.
- *I*_{id,w} has a known set of minimal generators corresponding to diagram boxes when *X_w* is LCI.

- A TE N - A TE N

- We can simplify our computations by restricting our attention to e_{id} . This is because $\operatorname{mult}_{e_u}(X_w) \ge \operatorname{mult}_{e_v}(X_w)$ when $u \le v \le w$ in Bruhat order.
- We can restrict our attention to Schubert varieties that are local complete intersections (LCI). This is because Schubert varieties are Cohen-Macaulay. If a variety is Cohen-Macaulay and has multiplicity at most two, then it must be LCI.
- *I*_{id,w} has a known set of minimal generators corresponding to diagram boxes when *X_w* is LCI.
- If X_w is LCI, then there are strong restrictions on where the essential set boxes may appear.

3

 These constraints are sufficient to provide a characterization of Schubert varieties of multiplicity at most two based on the Rothe diagram.

4 3 5 4 3 5 5

< 6 b

- These constraints are sufficient to provide a characterization of Schubert varieties of multiplicity at most two based on the Rothe diagram.
- For an entry (a, b) in the Rothe diagram, shift every entry $(p, q) \neq (a, b)$ in the Rothe diagram southwest by $r_w(p, q)$. The resulting diagram is the **shifted diagram** for *w* at (a, b).

4 3 5 4 3 5 5

The Rothe diagram for w = 819372564

Kevin Meek (University of Idaho)

э

< 回 > < 回 > < 回 >

The shifted diagram for w = 819372564 at (6,6)

Kevin Meek (University of Idaho)

A characterization for Schubert varieties of multiplicity at most two

- If the shifted diagram at (a, b) contains an entry r_w(a, b) southwest of (a, b), then (a, b) is called a **double** box.
- If the shifted diagram at (a, b) contains a hook of length
 r_w(a, b) + 1 with vertex r_w(a, b) southwest of (a, b), then (a, b) is called a triple box.

4 **A** N A **B** N A **B** N

A characterization for Schubert varieties of multiplicity at most two

- If the shifted diagram at (a, b) contains an entry r_w(a, b) southwest of (a, b), then (a, b) is called a **double** box.
- If the shifted diagram at (a, b) contains a hook of length $r_w(a, b) + 1$ with vertex $r_w(a, b)$ southwest of (a, b), then (a, b) is called a **triple** box.

Theorem (M.)

If X_w is an LCI Schubert variety, then it has multiplicity at least three if and only if it contains a triple box or two double boxes. Moreover, it suffices to check only the southwest corners of each connected component and essential set boxes that are not defined by inclusions.

Thank you!

2

イロト イヨト イヨト イヨト