Motivic Chern classes and Hecke algebras

Leonardo Mihalcea (Virginia Tech)
based on joint work with P. Aluffi, J. Schürmann and C. Su and with C. Withrow

AMS Special Session on Combinatorial Lie Theory, Gainsville, FL

November 2, 2019

K theory

X (smooth) projective algebraic variety defined over $k, \operatorname{char}(k)=0$. The K-theory

$$
K(X)=\frac{\{[E]: E \rightarrow X \text { vector bundle }\}}{[E]=[F]+[G]},
$$

for any short exact sequence $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$. Addition and multiplication are given by

$$
[E]+[F]:=[E \oplus F] ; \quad[E] \cdot[F]:=[E \otimes F]
$$

There is a pairing $\langle\cdot, \cdot\rangle: K(X) \times K(X) \rightarrow \mathbb{Z}$ defined by

$$
\langle[E],[F]\rangle=\int_{X} E \otimes F=\sum(-1)^{i} \operatorname{dim} H^{i}(X ; E \otimes F)
$$

The Grothendieck group of varieties

Let X algebraic variety.

$$
G_{0}(v a r / X)=\frac{\{[f: Y \rightarrow X]: Y-\text { scheme }\}}{[Y \rightarrow X]=[Z \rightarrow X]+[Y \backslash Z \rightarrow X]},
$$

for $Z \subset Y$ a closed subvariety. For any $f: X_{1} \rightarrow X_{2}$ have a push-forward:

$f_{!}: G_{0}\left(\operatorname{var} / X_{1}\right) \rightarrow G_{0}\left(\operatorname{var} / X_{2}\right) ; \quad\left[g: Y \rightarrow X_{1}\right] \mapsto\left[f \circ g: Y \rightarrow X_{2}\right]$.

Motivic Chern classes

Theorem (Brasselet-Schürmann-Yokura, 2010)
There exists a unique natural transformation

$$
M C_{y}: G_{0}(\operatorname{var} / X) \rightarrow K(X)[y]
$$

commuting with proper morphisms such that when X is smooth,

$$
M C_{y}\left[i d_{X}: X \rightarrow X\right]=\lambda_{y}\left(T^{*} X\right):=\sum\left[\wedge^{i} T^{*}(X)\right] y^{i}
$$

is the Hirzeburch λ_{y} class of X.
Notation: if $Z \subset X$, denote by $M C_{y}(Z):=M C_{y}[Z \hookrightarrow X]$. Initial goal: Calculate

$$
M C_{y}\left(X_{w}^{\circ}\right):=M C_{y}\left[X_{w}^{\circ} \hookrightarrow \operatorname{Fl}(n)\right] \in K(\mathrm{Fl}(n)),
$$

where X_{w}° is a Schubert cell in a flag manifold $\mathrm{Fl}(n)$.
(Feher-Rimányi-Weber, A.-M.-S.-S.)

Flag manifolds

$X=G / B=\operatorname{Fl}(n)$, the flag manifold, where G is a complex, simple Lie group, $B \subset G$ is Borel subgroup. Let $T:=B \cap B^{-}$be the maximal torus.

$$
\mathrm{Fl}(n)=\left\{F_{\bullet}: F_{1} \subset F_{2} \subset \ldots \subset F_{n}=\mathbb{C}^{n}\right\}
$$

Let $W:=N_{G}(T) / T=S_{n}$ be the Weyl group. For each $w \in W$ have Schubert cells and varieties

$$
X_{w}^{\circ}:=B w B / B ; \quad X_{w}:=\overline{X_{w}^{\circ}} .
$$

Then $\operatorname{dim} X_{w}=\ell(w)$. Let

$$
\mathcal{O}_{w}:=\left[\mathcal{O}_{X_{w}}\right] \in K(\operatorname{Fl}(n)) .
$$

Then

$$
K(\mathrm{Fl}(n))=\oplus_{w} \mathbb{Z} \mathcal{O}_{w}
$$

the Schubert basis.

Examples

(1) By the motivic property:

$$
M C_{y}\left(\mathbb{A}^{1} \subset \mathbb{P}^{1}\right)=\lambda_{y}\left(T_{\mathbb{P}^{1}}^{*}\right)-\lambda_{y}\left(T_{p t}^{*}\right)=(1+y) \mathcal{O}_{\mathbb{P}^{1}}-(1+2 y) \mathcal{O}_{p t}
$$

(2) The motivic class for the open cell in $\mathrm{Fl}(3)$ is:

$$
\begin{aligned}
M C_{y}\left(X\left(s_{1} s_{2} s_{1}\right)^{\circ}\right)= & (1+y)^{3} \mathcal{O}_{s_{1} s_{2} s_{1}}-(1+y)^{2}(1+2 y)\left(\mathcal{O}_{s_{1} s_{2}}+\mathcal{O}_{s_{2} s_{1}}\right)+ \\
& (1+y)\left(5 y^{2}+4 y+1\right)\left(\mathcal{O}_{s_{1}}+\mathcal{O}_{s_{2}}\right) \\
& -\left(8 y^{3}+11 y^{2}+5 y+1\right) \mathcal{O}_{i d}
\end{aligned}
$$

(3) $\int_{G / B} M C_{y}\left(X_{w}^{\circ}\right)=M C_{y}\left[X_{w}^{\circ} \rightarrow p t\right]=M C_{y}\left[\mathbb{A}^{1} \rightarrow p t\right]^{\ell(w)}=(-y)^{\ell(w)}$. In particular, the χ_{y} genus of $\operatorname{Fl}(n)$ is

$$
\begin{aligned}
\int_{\mathrm{Fl}(n)} M C_{-q}[i d: \operatorname{Fl}(n) \rightarrow \mathrm{Fl}(n)] & =\sum_{w \in W} M C_{-q}\left[X_{w}^{\circ} \rightarrow p t\right] \\
& =\sum_{w \in W} q^{\ell(w)} \\
& =[n]_{q}!
\end{aligned}
$$

(the q-analogue of the factorial.)

Bott Samelson resolutions

Let $\omega=\left(i_{1}, \ldots, i_{k-1}, i_{k}\right)$ be a word and $\omega^{\prime}=\left(i_{1}, \ldots, i_{k-1}\right)$. The Bott-Samelson variety $Z:=B_{\omega}$ can be defined inductively as a \mathbb{P}^{1}-bundle over $Z^{\prime}:=B_{\omega^{\prime}}$, using the following fibre squares.

If ω is reduced and $w:=s_{i_{1}} \ldots s_{i_{k}}$, then $\theta: Z \rightarrow X_{w}$ is a resolution of singularities. For each subexpression $\underline{v} \subset \omega$ one defines a Bott stratum:

$$
B_{\underline{v}}^{\circ}:= \begin{cases}\pi^{-1}\left(B_{\underline{v}^{\prime}}^{\circ}\right) \backslash \sigma\left(B_{\underline{v}^{\prime}}^{\circ}\right) & \underline{v}^{\prime} \not \subset \omega^{\prime} \\ \sigma\left(B_{\underline{v}^{\prime}}^{\circ}\right) & \underline{v}^{\prime} \subset \omega^{\prime}\end{cases}
$$

MC classes of Bott-Samelson varieties

(1) Find $\theta_{*}\left(M C_{y}\left(B_{\omega}\right)\right) \in K(\operatorname{Fl}(n))[y]$.
(2) Find $\theta_{*}\left(M C_{y}\left(B_{\underline{v}}^{\circ}\right)\right) \in K(\operatorname{Fl}(n))[y]$ for any subexpression $\underline{v} \subset \omega$. Let $w:=s_{i_{1}} \circ \ldots \circ s_{i_{k}}$ be the Hecke product. Then in $G_{0}(\operatorname{var} / \mathrm{Fl}(n))$:
$\left[\theta: B_{\omega} \rightarrow \mathrm{Fl}(n)\right]=\sum_{v \leq w}\left[\theta^{-1} X_{v}^{\circ} \rightarrow \mathrm{Fl}(n)\right]=\sum_{v \leq w}\left[F_{v} \rightarrow p t\right] \boxtimes\left[X_{v}^{\circ} \rightarrow \mathrm{Fl}(n)\right]$,
where $F_{v}=\theta^{-1}\left(e_{v}\right)$. By motivic and product properties:

$$
\theta_{*} M C_{y}\left(B_{\omega}\right)=\sum_{v \leq w} M C_{y}\left[F_{v} \rightarrow p t\right] \cdot M C_{y}\left(X_{v}^{\circ}\right)=\sum_{v \leq w} P_{v}(y) M C_{y}\left(X_{v}^{\circ}\right)
$$

where $P_{v}(-q)$ is the Poincaré polynomial of the fibre F_{v} (by S . Gaussent stratification).

Demazure-Lusztig operators

Fix $1 \leq i \leq n-1$, and consider the projection: $p_{i}: G / B \rightarrow G / P_{i}$. The Demazure operator is $\partial_{i}:=\left(p_{i}\right)^{*}\left(p_{i}\right)_{*}: K(G / B) \rightarrow K(G / B)$.

$$
\partial_{i} \mathcal{O}_{w}= \begin{cases}\mathcal{O}_{w s_{i}} & w s_{i}>w \\ \mathcal{O}_{w} & w s_{i}<w\end{cases}
$$

The Demazure-Lusztig operators are:

$$
\mathcal{T}_{i}=\left(1+y T_{p_{i}}^{*}\right) \partial_{i}-i d ; \quad \mathcal{T}_{i}^{\vee}=\partial_{i}\left(1+y T_{p_{i}}^{*}\right)-i d
$$

Lemma (Lusztig)

The operators \mathcal{T}_{i} satisfy the following properties:
(1) (commutativity) E.g. in type $A, \mathcal{T}_{i} \mathcal{T}_{j}=\mathcal{T}_{j} \mathcal{T}_{i}$ if $|i-j| \geq 2$;
(2) (braid relations) E.g. in type $A: \mathcal{T}_{i} \mathcal{T}_{i+1} \mathcal{T}_{i}=\mathcal{T}_{i+1} \mathcal{T}_{i} \mathcal{T}_{i+1}$;
(3) (quadratic relations): $\left(\mathcal{T}_{i}+y\right)\left(\mathcal{T}_{i}+i d\right)=0$.

Same properties are satisfied by \mathcal{T}_{i}^{\vee} and $\left\langle\mathcal{T}_{i}(a), b\right\rangle=\left\langle a, \mathcal{T}_{i}^{\vee}(b)\right\rangle$.

Motivic Chern classes

Theorem (A-M-S-S '19)
Let $w \in W$ and let i such that $w s_{i}>w$. Then

$$
M C_{y}\left(X\left(w s_{i}\right)^{\circ}\right)=\mathcal{T}_{i}\left(M C_{y}\left(X(w)^{\circ}\right)\right.
$$

In particular, $M C_{y}\left(X(w)^{\circ}\right)=\mathcal{T}_{w^{-1}}\left(\mathcal{O}_{i d}\right)$.

Corollary (M.-Withrow)

Let $\omega=\left(\omega^{\prime}, i_{k}\right)$ be any (possibly non-reduced) word. Then:
(1) $\theta_{*} M C_{y}\left(B_{\omega}^{\circ}\right)=\mathcal{T}_{i_{k}} M C_{y}\left(B_{\omega^{\prime}}^{\circ}\right)$;
(2) $\theta_{*} M C_{y}\left(B_{\omega}\right)=\left(\mathcal{T}_{i_{k}}+1\right) M C_{y}\left(B_{\omega^{\prime}}\right)$.

Define $\mathcal{D}_{\omega}:=\left(\mathcal{T}_{i_{1}}+1\right) \cdot \ldots \cdot\left(\mathcal{T}_{i_{k}}+1\right)$. (This depends on the word.) Then:

$$
\theta_{*}\left(M C_{y}\left(B_{\omega}\right)\right)=\left[\mathcal{O}_{p t}\right] \cdot \mathcal{D}_{\omega^{-1}}=\left[\mathcal{O}_{p t}\right] \cdot\left(\sum_{v \leq w(\omega)} P_{v}(y) \mathcal{T}_{v^{-1}}\right)
$$

Examples

Consider $\mathrm{Fl}(3)$ and the Bott-Samelson variety $\pi: B S(121) \rightarrow \mathrm{Fl}(3)$. One calculates $(y=-q)$:

$$
\begin{aligned}
\pi_{*}\left(\lambda_{y}\left(T_{B S(1,2,1)}^{*}\right)=\right. & M C_{y}\left(X\left(s_{1} s_{2} s_{1}\right)^{\circ}\right)+M C_{y}\left(X\left(s_{1} s_{2}\right)^{\circ}\right)+M C_{y}\left(X\left(s_{2} s_{1}\right)^{\circ}\right) \\
& +M C_{y}\left(X\left(s_{2}\right)^{\circ}\right)+(1-y) M C_{y}\left(X\left(s_{1}\right)^{\circ}\right) \\
& +(1-y) M C_{y}(X(i d)) .
\end{aligned}
$$

The image of a Bott stratum for a non-reduced expression:

$$
\pi_{*} M C_{y}\left(B_{101}^{\circ}\right)=-(1+y) M C_{y}\left(X\left(s_{1}\right)^{\circ}\right)-y M C_{y}(X(i d)) .
$$

This suggests:

- the preimage (in B_{101}°) of $e_{S_{1}}$ is \mathbb{C}^{*};
- the preimage (in B_{101}°) of $e_{i d}$ is \mathbb{C}.

Connections to Hecke algebra

The Hecke algebra is a $\mathbb{Z}\left[q^{1 / 2}, q^{-1 / 2}\right]$-algebra freely generated by elements $T_{w}, w \in W$ satisfying the relations from previous Lemma. There is an involution:

$$
\overline{q^{1 / 2}}=q^{-1 / 2} ; \quad \overline{T_{w}}=T_{w^{-1}}^{-1} .
$$

The element $D_{i}^{\prime}:=q^{-1 / 2}\left(T_{i}+1\right)$ is satisfies $\overline{D_{i}^{\prime}}=D_{i}^{\prime}$.
Theorem (Deodhar '90, Brubaker-Bump-Licata '16)
For a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{k}}$, let $D_{\underline{w}}^{\prime}=D_{i_{1}}^{\prime} \cdots D_{i_{k}}^{\prime}$. Then

$$
D_{\underline{w}}^{\prime}=q^{-\ell(w) / 2} \sum_{v \leq w} P_{\underline{w}, v}(q) T_{v} .
$$

A more refined geometric interpretation is:

$$
\pi_{*}\left(M C_{y}\left(B_{\underline{w}}\right)\right)=\left[\mathcal{O}_{p t}\right] \cdot \mathcal{D}_{w}=\sum_{v \leq w} P_{\underline{w}, v}(y) M C_{y}\left(X(v)^{\circ}\right)
$$

A motivic Demazure formula

We work in equivariant K-theory. For a weight λ, let

$$
\mathcal{L}_{\lambda}:=G \times^{B} \mathbb{C}_{\lambda} .
$$

Let $A: K_{G}(G / B) \rightarrow K_{G}(G / B)$ be any $K_{G}(p t)$-linear operator. Recall $K_{T}(p t)=R(T) \simeq K_{G}(G / B) \simeq K_{T}(G / B)^{W}$. Define

$$
\widetilde{A}: K_{T}(p t) \rightarrow K_{T}(p t) ; \quad \widetilde{A}\left(e^{\lambda}\right)=A\left(\mathcal{L}_{\lambda}\right) \mid i d .
$$

The Demazure formula is

$$
\begin{aligned}
\chi\left(G / B ; \mathcal{L}_{\lambda} \otimes \mathcal{O}_{w}\right) & =\left\langle\mathcal{L}_{\lambda}, \mathcal{O}_{w}\right\rangle \\
& =\left\langle\mathcal{L}_{\lambda}, \partial_{w^{-1}}\left(\mathcal{O}_{i d}\right)\right\rangle \\
& \left.=\left\langle\partial_{w}\left(\mathcal{L}_{\lambda}\right), \mathcal{O}_{i d}\right)\right\rangle \\
& =\widetilde{\partial}_{w}\left(e^{\lambda}\right) .
\end{aligned}
$$

A motivic Demazure formula

Define:

$$
M C_{y}^{\prime}\left(X(w)^{\circ}\right):=\prod_{\alpha>0}\left(1+y e^{\alpha}\right) \frac{M C_{y}\left(X(w)^{\circ}\right)}{\lambda_{y}\left(T_{x}^{*}\right)} .
$$

Theorem (M.-Su '19)

The following hold:
(1) $\chi\left(X, \mathcal{L}_{\lambda} \otimes M C_{y}\left(X(w)^{\circ}\right)\right)=\widetilde{\mathcal{T}_{w}^{\vee}}\left(e^{\lambda}\right)$.
(3) $\chi\left(X, \mathcal{L}_{\lambda} \otimes M C_{y}^{\prime}\left(X(w)^{\circ}\right)\right)=\widetilde{\mathcal{T}_{w}}\left(e^{\lambda}\right)$.

The element $\widetilde{\mathcal{T}_{w}}\left(e^{\lambda}\right)$ is the Iwahori-Whittaker function for the principal series representation (Brubaker-Bump-Licata; Lee-Lenart-Liu). In particular, we obtain the Casselman-Shalika formula:

$$
\begin{aligned}
\sum_{w \in W} \widetilde{\mathcal{T}_{w}}\left(e^{\lambda}\right) & =\sum_{w \in W} \chi\left(G / B ; M C_{y}^{\prime}\left(X(w)^{\circ}\right) \otimes \mathcal{L}_{\lambda}\right) \\
& =\chi\left(G / B ; \prod_{\alpha>0}\left(1+y e^{\alpha}\right) \otimes \mathcal{L}_{\lambda}\right)=\prod_{\alpha>0}\left(1+y e^{\alpha}\right) \widetilde{\partial_{w_{0}}}\left(e^{\lambda}\right) .
\end{aligned}
$$

THANK YOU!

