Harry Tamvakis

University of Maryland

November 2, 2019

Giambelli Problem: Find polynomials that represent the cohomology classes of the Schubert varieties X_w in G/P.

Relative Version (Fulton-Pragacz, 1996): Find Chern class polynomials which represent the cohomology classes of *degeneracy loci* \mathfrak{X}_w of vector bundles, when G is a classical Lie group.

Giambelli Problem: Find polynomials that represent the cohomology classes of the Schubert varieties X_w in G/P.

Relative Version (Fulton-Pragacz, 1996): Find Chern class polynomials which represent the cohomology classes of *degeneracy loci* \mathfrak{X}_w of vector bundles, when G is a classical Lie group.

Intrinsic formulas

General w (T., 2009): \exists polynomial formulas for $[\mathfrak{X}_w]$ which are *native to* G/P, for all $w \in W^P$.

New, intrinsic point of view in Schubert calculus.

In special cases, \exists alternative intrinsic formulas:

In Lie type A

For $\varpi \in S_n$ Grassmannian: Thom-Porteous (1970); Kempf-Laksov (1974).

More generally, for $\varpi \in S_n$ vexillary: Lascoux-Schützenberger (1982), et. al. General w (T., 2009): \exists polynomial formulas for $[\mathfrak{X}_w]$ which are *native to* G/P, for all $w \in W^P$. New, intrinsic point of view in Schubert calculus. In special cases, \exists alternative intrinsic formulas: In Lie type A

For $\varpi \in S_n$ Grassmannian: Thom-Porteous (1970); Kempf-Laksov (1974).

More generally, for $\varpi \in S_n$ vexillary: Lascoux-Schützenberger (1982), et. al. General w (T., 2009): \exists polynomial formulas for $[\mathfrak{X}_w]$ which are *native to* G/P, for all $w \in W^P$.

New, intrinsic point of view in Schubert calculus.

In special cases, \exists alternative intrinsic formulas:

In Lie type A

For $\varpi \in S_n$ Grassmannian: Thom-Porteous (1970); Kempf-Laksov (1974).

More generally, for $\varpi \in S_n$ vexillary: Lascoux-Schützenberger (1982), et. al.

Permutations

$$\varpi = (\varpi_1, \dots, \varpi_n) \in S_n$$
, where $\varpi_i = \varpi(i)$.
Code $\gamma = \gamma(\varpi)$ with $\gamma_i := \#\{j > i \mid \varpi_j < \varpi_i\}$.
Shape $\lambda = \lambda(\varpi)$ obtained by reordering the γ_i .

Example

$$w = (2, 1, 5, 4, 3)$$
, $\gamma = (1, 0, 2, 1, 0)$, $\lambda = (2, 1, 1)$.

 $S_n = \langle s_1, \dots, s_{n-1} \rangle$. ϖ has a right/left descent at iif $\ell(\varpi s_i) < \ell(\varpi)$ (resp. $\ell(s_i \varpi) < \ell(\varpi)$).

 ϖ is *Grassmannian* if $\ell(\varpi s_i) > \ell(\varpi)$, $\forall i \neq k$.

arpi is vexillary if $\lambda(arpi^{-1}) = \lambda(arpi)'$.

Permutations

$$\varpi = (\varpi_1, \dots, \varpi_n) \in S_n$$
, where $\varpi_i = \varpi(i)$.
Code $\gamma = \gamma(\varpi)$ with $\gamma_i := \#\{j > i \mid \varpi_j < \varpi_i\}$.
Shape $\lambda = \lambda(\varpi)$ obtained by reordering the γ_i .

Example

$$w = (2, 1, 5, 4, 3), \ \gamma = (1, 0, 2, 1, 0), \ \lambda = (2, 1, 1).$$

 $S_n = \langle s_1, \dots, s_{n-1} \rangle$. ϖ has a *right/left descent* at i if $\ell(\varpi s_i) < \ell(\varpi)$ (resp. $\ell(s_i \varpi) < \ell(\varpi)$).

 ϖ is Grassmannian if $\ell(\varpi s_i) > \ell(\varpi)$, $\forall i \neq k$.

$$arpi$$
 is vexillary if $\lambda(arpi^{-1}) = \lambda(arpi)'$.

Type A degeneracy loci

 $E \to \mathfrak{X}$ is a vector bundle of rank n and $\varpi \in S_n$.

 $0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_n = E \quad 0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n = E.$

 $\mathfrak{X}_{\varpi} := \{ x \in \mathfrak{X} \mid \dim(E_r(x) \cap F_s(x)) \ge d_{\varpi}(r,s), \ \forall r,s \}$

where $d_{\varpi}(r,s) := \#\{i \leq r \mid \varpi_i > n-s\}.$

Assume: \mathfrak{X}_{arpi} has pure codimension $\ell(arpi)$ in \mathfrak{X} .

ゆ く き と く き とう

Type A degeneracy loci

 $E \to \mathfrak{X}$ is a vector bundle of rank n and $\varpi \in S_n$.

$$0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_n = E \ 0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n = E.$$

$$\mathfrak{X}_{\varpi} := \{ x \in \mathfrak{X} \mid \dim(E_r(x) \cap F_s(x)) \ge d_{\varpi}(r,s), \ \forall r,s \}$$

where $d_{\varpi}(r,s) := \#\{i \leq r \mid \varpi_i > n-s\}.$

Assume: \mathfrak{X}_{ϖ} has pure codimension $\ell(\varpi)$ in \mathfrak{X} .

Type A degeneracy loci

 $E \to \mathfrak{X}$ is a vector bundle of rank n and $\varpi \in S_n$.

$$0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_n = E \ 0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n = E.$$

$$\mathfrak{X}_{\varpi} := \{ x \in \mathfrak{X} \mid \dim(E_r(x) \cap F_s(x)) \ge d_{\varpi}(r,s), \ \forall r,s \}$$

where $d_{\varpi}(r,s) := \#\{i \leq r \mid \varpi_i > n-s\}.$

Assume: \mathfrak{X}_{ϖ} has pure codimension $\ell(\varpi)$ in \mathfrak{X} .

Type A vexillary degeneracy loci

Theorem (L.-S., Wachs, Macdonald, Fulton (1992)) Suppose that ϖ is a vexillary permutation of shape $\lambda = (\lambda_1, \ldots, \lambda_\ell)$. Then there exist sequences $\mathfrak{f} = (f_1 \leq \cdots \leq f_\ell)$ and $\mathfrak{g} = (g_1 \geq \cdots \geq g_\ell)$ consisting of right and left descents of ϖ , respectively, such that

$$[\mathfrak{X}_{\varpi}] = \det(c_{\lambda_i+j-i}(E - E_{f_i} - F_{n-g_i}))_{1 \le i,j \le \ell}$$

holds in $H^*(\mathfrak{X})$.

Here
$$c_p(E - E' - E'')$$
 is defined by $c(E - E' - E'') := c(E)c(E')^{-1}c(E'')^{-1}$.

Raising Operator Form

$$[\mathfrak{X}_{\varpi}] = \prod_{i < j} (1 - R_{ij}) c_{\lambda} (E - E_{\mathfrak{f}} - F_{n-\mathfrak{g}}) \quad (1)$$

For i < j and $\alpha = (\alpha_1, \alpha_2, \ldots)$ an integer sequence,

$$R_{ij} \alpha := (\alpha_1, \dots, \alpha_i + 1, \dots, \alpha_j - 1, \dots)$$

If $\mathfrak{c}_{\alpha} := \mathfrak{c}_{\alpha_1} \mathfrak{c}_{\alpha_2} \cdots$, then $R_{ij} \mathfrak{c}_{\alpha} := \mathfrak{c}_{R_{ij}\alpha}$.

(1) is the image of $\prod_{i < j} (1 - R_{ij}) \mathfrak{c}_{\lambda}$ under the Z-linear map sending \mathfrak{c}_{α} to $\prod_{i} c_{\alpha_{i}} (E - E_{f_{i}} - F_{n-g_{i}})$, for every integer sequence α .

Raising Operator Form

$$[\mathfrak{X}_{\varpi}] = \prod_{i < j} (1 - R_{ij}) c_{\lambda} (E - E_{\mathfrak{f}} - F_{n-\mathfrak{g}}) \quad (1)$$

For i < j and $\alpha = (\alpha_1, \alpha_2, \ldots)$ an integer sequence,

$$R_{ij} \alpha := (\alpha_1, \ldots, \alpha_i + 1, \ldots, \alpha_j - 1, \ldots)$$

If
$$\mathfrak{c}_{\alpha} := \mathfrak{c}_{\alpha_1} \mathfrak{c}_{\alpha_2} \cdots$$
, then $R_{ij} \mathfrak{c}_{\alpha} := \mathfrak{c}_{R_{ij}\alpha}$.

(1) is the image of $\prod_{i < j} (1 - R_{ij}) \mathfrak{c}_{\lambda}$ under the Z-linear map sending \mathfrak{c}_{α} to $\prod_{i} c_{\alpha_{i}} (E - E_{f_{i}} - F_{n-g_{i}})$, for every integer sequence α .

Question: What is the analogue of 'vexillary' in the other classical Lie types B, C, and D?

Prior attempts at a definition of vexillary signed permutations: Billey-Lam (1998) & Anderson-Fulton (2012).

Both of these definitions are wrong.

Question: What is the analogue of 'vexillary' in the other classical Lie types B, C, and D?

Prior attempts at a definition of vexillary signed permutations: Billey-Lam (1998) & Anderson-Fulton (2012).

Both of these definitions are wrong.

Question: What is the analogue of 'vexillary' in the other classical Lie types B, C, and D?

Prior attempts at a definition of vexillary signed permutations: Billey-Lam (1998) & Anderson-Fulton (2012).

Both of these definitions are wrong.

Question: What is the analogue of 'vexillary' in the other classical Lie types B, C, and D?

Prior attempts at a definition of vexillary signed permutations: Billey-Lam (1998) & Anderson-Fulton (2012).

Both of these definitions are wrong.

$$w = (w_1, \dots, w_n) \in W_n = \langle s_0, s_1, \dots, s_{n-1} \rangle.$$

A-code $\gamma = \gamma(w)$ with $\gamma_i := \#\{j > i \mid w_j < w_i\}.$

Definition (T., 2019)

w is leading if the A-code $\tilde{\gamma}$ of the extended sequence $(0, w_1, \ldots, w_n)$ is unimodal.

 $\{Leading elements\} \supset \{Grassmannian elements\}$

Definition (T., 2019)

$$w = (w_1, \dots, w_n) \in W_n = \langle s_0, s_1, \dots, s_{n-1} \rangle.$$

A-code $\gamma = \gamma(w)$ with $\gamma_i := \#\{j > i \mid w_j < w_i\}.$

Definition (T., 2019)

w is leading if the A-code $\tilde{\gamma}$ of the extended sequence $(0, w_1, \ldots, w_n)$ is unimodal.

 $\{Leading \ elements\} \supset \{Grassmannian \ elements\}$

Definition (T., 2019)

$$w = (w_1, \dots, w_n) \in W_n = \langle s_0, s_1, \dots, s_{n-1} \rangle.$$

A-code $\gamma = \gamma(w)$ with $\gamma_i := \#\{j > i \mid w_j < w_i\}.$

Definition (T., 2019)

w is leading if the A-code $\tilde{\gamma}$ of the extended sequence $(0, w_1, \ldots, w_n)$ is unimodal.

{Leading elements} \supset {Grassmannian elements}

Definition (T., 2019)

$$w = (w_1, \dots, w_n) \in W_n = \langle s_0, s_1, \dots, s_{n-1} \rangle.$$

A-code $\gamma = \gamma(w)$ with $\gamma_i := \#\{j > i \mid w_j < w_i\}.$

Definition (T., 2019)

w is leading if the A-code $\tilde{\gamma}$ of the extended sequence $(0, w_1, \ldots, w_n)$ is unimodal.

{Leading elements} \supset {Grassmannian elements}

Definition (T., 2019)

Let $k \ge 0$ be the first right descent of w. List the values w_{k+1}, \ldots, w_n in increasing order: $u_1 < \cdots < u_m < 0 < u_{m+1} < \cdots < u_{n-k}.$ A simple transposition s_i , $i \ge 1$ is called *w*-negative, if $\{i, i+1\} \subset \{-u_1, ..., -u_m\}$; *w*-positive, if $\{i, i+1\} \subset \{u_{m+1}, \dots, u_{n-k}\}$.

Let $k \ge 0$ be the first right descent of w. List the values w_{k+1}, \ldots, w_n in increasing order: $u_1 < \cdots < u_m < 0 < u_{m+1} < \cdots < u_{n-k}.$ A simple transposition s_i , $i \ge 1$ is called *w*-negative, if $\{i, i+1\} \subset \{-u_1, ..., -u_m\}$; *w*-positive, if $\{i, i+1\} \subset \{u_{m+1}, \ldots, u_{n-k}\}$. Let σ^- (resp. σ^+) be the longest subword of $s_{n-1} \cdots s_1$ (resp. $s_1 \cdots s_{n-1}$) consisting of w-negative (resp. w-positive) transpositions s_i .

Definition

A modification of w is an element ϖw , where $\varpi \in S_n$, $\ell(\varpi w) = \ell(w) - \ell(\varpi)$, and ϖ has a reduced decomposition of the form $R_1 \cdots R_{n-1}$, where each R_j is a (possibly empty) subword of $\sigma^-\sigma^+$, and all simple transpositions in R_p are also contained in R_{p+1} , $\forall p < n - 1$.

Theorem (T., 2019)

If $w \in S_n$, then w is amenable if and only if w is vexillary.

Definition

A modification of w is an element ϖw , where $\varpi \in S_n$, $\ell(\varpi w) = \ell(w) - \ell(\varpi)$, and ϖ has a reduced decomposition of the form $R_1 \cdots R_{n-1}$, where each R_j is a (possibly empty) subword of $\sigma^-\sigma^+$, and all simple transpositions in R_p are also contained in R_{p+1} , $\forall p < n - 1$.

Theorem (T., 2019)

If $w \in S_n$, then w is amenable if and only if w is vexillary.

Type C degeneracy loci

$E \to \mathfrak{X}$ is a symplectic bundle of rank 2n and $w \in W_n$.

$$0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_{2n} = E; \\ 0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_{2n} = E.$$

 $E_{n+i} = E_{n-i}^{\perp}$ and $F_{n+i} = F_{n-i}^{\perp}$ for each $i \ge 0$.

 $\mathfrak{X}_w := \{ x \in \mathfrak{X} \mid \dim(E_r(x) \cap F_s(x)) \ge d'_w(r,s), \text{ for } r \in [1,n], s \in [1,2n] \}.$

Assume: \mathfrak{X}_w has pure codimension $\ell(w)$ in \mathfrak{X} .

Type C degeneracy loci

 $E \to \mathfrak{X}$ is a symplectic bundle of rank 2n and $w \in W_n$.

$$0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_{2n} = E; 0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_{2n} = E.$$

 $E_{n+i} = E_{n-i}^{\perp} \text{ and } F_{n+i} = F_{n-i}^{\perp} \text{ for each } i \geq 0.$

$$\mathfrak{X}_w := \{ x \in \mathfrak{X} \mid \dim(E_r(x) \cap F_s(x)) \ge d'_w(r,s), \text{ for } r \in [1,n], s \in [1,2n] \}.$$

Assume: \mathfrak{X}_w has pure codimension $\ell(w)$ in \mathfrak{X} .

Theorem (T., 2019)

Suppose that w is amenable. Then there exist sequences $\mathfrak{f} = (f_1 \ge \cdots \ge f_\ell \ge 0)$ and $\mathfrak{g} = (g_1 \le \cdots \le g_\ell)$ such that f_i (resp. $|g_i|$) is a right (resp. left) descent of w, for all $i \in [1, \ell]$, and we have

$$[\mathfrak{X}_w] = R^D c_\lambda (E - E_{n-\mathfrak{f}} - F_{n+\mathfrak{g}})$$

in $\mathrm{H}^{*}(\mathfrak{X})$.

The operator R^D and the shape λ

Fix $w \in W_n$ amenable, k and u as before.

$$D := \{(i,j) \mid i < j \text{ and } u_i + u_j < 0\}.$$
$$R^D := \prod_{i < j} (1 - R_{ij}) \prod_{(i,j) \in D} (1 + R_{ij})^{-1}.$$

Definition (T., 2017)

The shape of w is the partition $\lambda := \mu + \nu$, where $\mu := (-u_1, \ldots, -u_m)$ and ν is the partition with $\nu_j := \#\{i \mid \gamma_i \ge j\}$ for each $j \ge 1$.

Example

Let
$$w := (2, 4, 6, 5, -1, -3) \in W_6$$
, a leading element.

We have
$$k=3,\,\gamma=(2,2,3,2,1,0),\,\mu=(3,1),$$
 $\nu=(5,4,1),\,\lambda=(8,5,1),$

$$u=(-3,-1,5),$$
 $D=\{(1,2)\},$ $\mathfrak{f}=(5,4,3),$
$$\mathfrak{g}=(-2,0,5).$$

The cohomology class $[\mathfrak{X}_w]$ is equal to

$$\frac{1-R_{12}}{1+R_{12}}(1-R_{13})(1-R_{23})c_{8,5,1}(E-E_{6-\mathfrak{f}}-F_{6+\mathfrak{g}}).$$

- ▲ 문 ▶ - ▲ 문 ▶

____ ▶

H. Tamvakis: Giambelli and degeneracy locus formulas for classical G/P spaces, arXiv:1305.3543.

H. Tamvakis: *Theta and eta polynomials in geometry, Lie theory, and combinatorics,* arXiv:1807.10784.

H. Tamvakis: *Degeneracy locus formulas for amenable Weyl group elements*, arXiv:1909.06398.