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Abstract

Let k be a field, and let R = k[x1, x2, x3]. Given a Hilbert function H
for a cyclic module over R, we give an algorithm to produce a stable ideal
I such that R/I has Hilbert function H and uniquely minimal graded
Betti numbers among all R/J with the same Hilbert function, where J is
another stable ideal in R. We also show that such an algorithm is impos-
sible in more variables and disprove a related conjecture Deery makes in
[4].

1 Background

Research on the interplay between the graded free resolution of a polynomial
ring modulo a homogeneous ideal and its Hilbert function dates back to Hilbert’s
1890 paper [8]. In this amazing work, he uses the free resolution to compute the
Hilbert function for graded modules over S = k[x1, . . . , xn], where k is a field.
If I is a homogeneous ideal, given a graded free resolution

0→
⊕
j

Sβnj (−j)→ · · · →
⊕
j

Sβ1j (−j)→ S → S/I → 0,

one can easily read off the Hilbert function HS/I of S/I from the graded Betti
numbers βij . Work in the last decade has focused on what information we can
harvest knowing only the Hilbert function. That is, we seek to know the possible
graded Betti numbers that can appear in the resolution of a module with a given
Hilbert function.

It is convenient to put a partial order on the graded Betti numbers of res-
olutions of modules with the same Hilbert function: If M and N are modules
over a polynomial ring S with the same Hilbert function and with graded Betti
numbers βMij and βNij respectively, we say that βM ≥ βN if and only if βMij ≥ βNij
for each i and j.
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Using this partial order, one of the first major breakthroughs came in the
papers of Bigatti [1] and Hulett [9]. They prove independently that in char-
acteristic zero there is a resolution that has the unique maximal graded Betti
numbers for a given Hilbert function, and Pardue [12] generalizes the result to
positive characteristic. The lexicographic ideal yields that largest resolution.
We recall that an ideal I ⊂ S is called lexicographic if for each d, I is generated
in degree d by the first dimk Id monomials of degree d in descending lexico-
graphic order; Macaulay shows in [10] that for each valid Hilbert function for
a cyclic module, there exists a quotient corresponding to a lexicographic ideal
attaining it.

Alas, there is no result for minimal graded Betti numbers corresponding
to that of Bigatti, Hulett, and Pardue. Charalambous and Evans [3] provide a
Hilbert function for which there are incomparable minimal graded Betti numbers
in k[x1, . . . , xn] for all n ≥ 3. In the same paper, they are able to characterize all
the possible graded resolutions in the dimension two finite length cyclic module
case, and one would like to be able to do the same in higher dimensions.

Unfortunately, determining the sets of graded Betti numbers that can occur
is much harder beginning in k[x1, x2, x3]. Deery proposes in [4] restricting to the
class of stable ideals to overcome the incomparability problem that exists when
considering all ideals in k[x1, x2, x3]. Stable ideals are of particular interest
because they have proven tremendously useful in reduction arguments in the
areas of Hilbert functions and graded Betti numbers recently. We show that for
a given Hilbert function, a unique minimal set of graded Betti numbers does
exist among all stable ideals in three variables with that Hilbert function. Deery
conjectured that a slightly weaker statement would be true in more variables,
but in the final section, we give a family of counterexamples.

I thank Mike Stillman for his help with this paper and Daniel Grayson and
Mike Stillman for their computer algebra system, Macaulay 2 [6]. I also thank
the referee for his/her many helpful suggestions. This paper is based upon work
supported under a National Science Foundation Graduate Research Fellowship
and a Cornell Graduate School Fellowship.

2 Definitions and some previous work

For the rest of the paper, let R = k[x1, x2, x3], where k is a field. We wish
to explore some earlier work on computing minimal graded Betti numbers, and
this requires some definitions and notation.

Definition 2.1 For a monomial m, define max(m) to be the largest index i
such that xi divides m.

For example, max(x2
1) = 1, and max(x1x

3
2x4) = 4. We use this notion to

define stable ideals.

Definition 2.2 An ideal I is said to be stable if I is a monomial ideal, and
for each monomial m in I and all i < max(m), xim/xmax(m) is also in I. (We
define a stable set of monomials analogously.)
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To check whether a monomial ideal is stable, it is enough to check the con-
dition on minimal generators, and an ideal is stable if and only if the set of
monomials in each degree is stable. Clearly every lexicographic ideal is stable,
but there are many others as well. The combinatorial structure of stable ideals
makes them easier to study than typical monomial ideals, and their graded free
resolution is known; we even have a convenient formula for their graded Betti
numbers. Eliahou and Kervaire describe the minimal free resolution in [5], and
the formula

β
R/I
qj =

∑
m∈G(I)

deg(m)=j−q+1

(
max(m)− 1

q − 1

)

from [9] gives the graded Betti numbers, where G(I) is the minimal monomial
generating set of a stable ideal I. We seek to minimize this quantity.

To do this, we shall consider some special stable ideals. In [4], Deery defines
the notions of reverse-lex ideals and weakly reverse-lex ideals (Deery calls them
“almost reverse-lex” ideals) to prove some minimality properties. Recall that if
xa1

1 · · ·xan
n and xb11 · · ·xbn

n are monomials of the same degree, then xa1
1 · · ·xan

n >
xb11 · · ·xbn

n in the reverse-lex order if and only if the last nonzero entry of (a1 −
b1, . . . , an − bn) is negative.

Definition 2.3 Call a monomial ideal I a reverse-lex ideal if in each degree,
I is generated by an initial reverse-lex segment.

For example, the ideal (x3
1, x

2
1x2, x1x

2
2, x

3
2) ⊂ k[x1, x2, x3] is a reverse-lex

ideal. Of course, if one replaces “reverse-lex” with “lexicographic,” one obtains
the definition of a lexicographic ideal. In [4], Deery shows that if I is a reverse-
lex ideal in S = k[x1, . . . , xn], and J is a stable ideal with the same Hilbert
function, then the graded Betti numbers in the resolution of S/I are at most
those of S/J . Marinari and Ramella have a similar result in [11]. Unfortunately,
Hilbert functions admitting a reverse-lex ideal are rather uncommon, and it is
beneficial to consider a generalization introduced in [4].

Definition 2.4 Let I be a monomial ideal, and for each degree d, let md be
the minimal monomial generator of I in degree d that is smallest with respect to
reverse-lex order. We say that I is a weakly reverse-lex ideal if all monomials
of degree d greater than md in the reverse-lex order are in I.

Obviously any reverse-lex ideal is a weakly reverse-lex ideal, and it is easy
to see that weakly reverse-lex ideals are stable. The ideal (x1) + (x1, x2, x3)3 is
not a reverse-lex ideal since in degree 2, x2

2 is not in the ideal, while x1x3 is.
However, it is a weakly reverse-lex ideal.

In [4], Deery modifies combinatorial methods that Bigatti uses in [1] to show
that in three variables, the weakly reverse-lex ideal has uniquely minimal graded
Betti numbers among all stable ideals with the same Hilbert function. This is a
nice generalization since weakly reverse-lex ideals can attain many more Hilbert
functions than reverse-lex ideals. Nevertheless, there are still many Hilbert
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functions for which there is no quotient corresponding to a weakly reverse-lex
ideal in R. Consider, for example, the Hilbert function {1,3,3,4}. We need to
put three monomials into the ideal in degree 2, and they must be x2

1, x1x2, and
x2

2. But this puts seven monomials into the ideal in degree three, and there can
be at most six. Thus there is no weakly reverse-lex ideal such that the quotient
can have Hilbert function {1,3,3,4}.

Our goal is to find a class of stable ideals in three variables with their quo-
tients attaining all possible Hilbert functions for cyclic modules; this class should
include the weakly reverse-lex ideals, and its members should have uniquely min-
imal graded Betti numbers among stable ideals with a given Hilbert function.
The algorithm in Section 5 produces the desired ideals.

3 Some lemmas and formulas

In this section, we gather some results and formulas about stable ideals that we
shall need in the proof that our algorithm works. Many of the techniques in the
next two sections come from [1] and [4]. Following their notation, if T is a finite
set of monomials in k[x1, . . . , xn], let mi(T ) be the number of monomials u in
T such that max(u) = i. Similarly, let m≤i(T ) be the number of monomials
u in T such that max(u) ≤ i. Finally, let XnT denote the set of monomials
{xiu|1 ≤ i ≤ n and u ∈ T}. We have the following proposition from [1] and [4]:

Proposition 3.1 Let T be a stable set of monomials of degree d. Then: (i)
XnT is stable. (ii) mi(XnT ) = m≤i(T ). (iii) |XnT | =

∑n
i=1m≤i(T ).

Given a stable ideal, this result is extremely useful in helping determine how
many monomials are in the ideal in a high degree when one knows what the
ideal looks like in low degrees. We are particularly interested in the case n = 3.
Suppose a stable ideal I ⊂ R is generated in degree d and lower, and suppose we
form a new stable ideal J = (I,m) by adding to I a minimal monomial generator
m of degree d. If max(m) = 2, then Proposition 3.1 tells us that, comparing J
to I, J has one more monomial in degree d, two more in degree d + 1, and, in
general, k + 1 more monomials in degree d+ k. If instead max(m) = 3, then J
has exactly one more monomial than I in each degree d and higher.

In the proof that our algorithm is correct, we shall have to use some infor-
mation about the growth of a Hilbert function for a quotient of R. Macaulay
characterizes the valid Hilbert functions for cyclic modules in [10], and one can
express this characterization using sums of binomial coefficients. It is not hard
to show that, if a and d are positive integers, a has a unique decomposition as

a =
(
bd
d

)
+
(
bd−1

d− 1

)
+ · · ·+

(
b2
2

)
+
(
b1
1

)
,

where bd > bd−1 > · · · > b1 ≥ 0. Green [7] calls this the d-th Macaulay
representation of a. We can then define a new object a<d> to be

a<d> =
(
bd + 1
d+ 1

)
+
(
bd−1 + 1

d

)
+ · · ·+

(
b2 + 1

3

)
+
(
b1 + 1

2

)
.
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Macaulay’s characterization says that H = {h0, h1, . . .} is a valid Hilbert
function if and only if h0 = 1 and for all d ≥ 1, hd+1 ≤ h<d>d . (See, e.g.,
Chapter 4 of [2].) We are interested in Hilbert functions for quotients in three
variables, so hd ≤

(
d+2
d

)
=
(
d+2
2

)
for each d. In order to determine whether we

have a valid Hilbert function, the next lemma is helpful.

Lemma 3.2 Let a ≥ 1 be an integer, and let l be an integer such that 1 ≤ l
≤
(
a+2
a

)
. If ml is the unique integer such that 1+ · · ·+ml < l ≤ 1+ · · ·+(ml+1)

(equivalently,
(
ml+1

2

)
< l ≤

(
ml+2

2

)
), then [

(
a+2
a

)
− l]<a> = [

(
a+2
a

)
− l]+(a−ml).

Proof: First suppose that
(
a+2
a

)
− l ≥ a + 1. Since l ≥ 1, the a-th Macaulay

expansion of
(
a+2
a

)
− l begins with

(
a+1
a

)
, and each additional term is of the

form
(
y+1
y

)
,
(
y
y

)
, or zero. When passing to [

(
a+2
a

)
− l]<a>, it is clear that the

values of the latter two types of terms are unchanged, and sending
(
y+1
y

)
to(

y+2
y+1

)
adds one to the previous sum. To compute [

(
a+2
a

)
− l]<a>, we work from

the Macaulay expansion(
a+ 2
a

)
− l =

(
a+ 1
a

)
+
(

a

a− 1

)
+ · · ·+

(
z + 1
z

)
+
(
z − 1
z − 1

)
+ · · ·+

(
b

b

)
.

Clearly [
(
a+2
a

)
− l]<a> = [

(
a+2
a

)
− l] + (a − z + 1). Therefore it suffices to

show that z = ml + 1. Note that

(a+ 1) + a+ · · ·+ (z + 1) + z >

(
a+ 2

2

)
− l ≥ (a+ 1) + a+ · · ·+ (z + 1).

Multiplying by -1 and adding
(
a+2
2

)
, we obtain

1 + · · ·+ (z − 1) < l ≤ 1 + · · ·+ z.

Consequently, ml = z − 1 as desired.
If instead

(
a+2
a

)
− l ≤ a, all the terms in the Macaulay expansion are 1, and

so the “upper a” operation should not add anything. Note that 1+ · · ·+a < l ≤
1 + · · ·+ (a+ 1). Hence ml = a, and this agrees with our formula. �

4 Combinatorial formulas for the Betti numbers

We wish to find a condition under which the graded Betti numbers of a given
stable ideal will be minimal among the Betti numbers of all stable ideals with
a fixed Hilbert function. It proves helpful to relate the formula from Section 2
for the graded Betti numbers to the m≤i defined in the previous section. To
do this, we again borrow some definitions and results from Bigatti and Deery.
First, we compare m≤i for two stable sets, taking a result from [4].

Lemma 4.1 Let T and U be stable sets of the same degree such that m≤i(T ) ≤
m≤i(U) for all i. Then m≤i(XnT ) ≤ m≤i(XnU).
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Next, we make two definitions from [4] that will allow us to draw conclusions
about graded Betti numbers and total Betti numbers (the sum of the graded
Betti numbers for a fixed syzygy). For a finite set of monomials T , we define

bqj(T ) =
∑
m∈T

deg(m)=j−q+1

(
max(m)− 1

q − 1

)
and bq(T ) =

∞∑
j=0

bqj(T ).

The first step in relating the m≤i to the Betti numbers is the following
proposition of Bigatti from [1] and [4]:

Proposition 4.2 If T is a stable set of monomials of all the same degree in
R = k[x1, x2, x3], then

bq(T ) =
(

2
q − 1

)
|T | −

2∑
i=1

[
m≤i(T )

(
i− 1
q − 2

)]
.

We need two more results before we can prove our main lemma. The first is
Deery’s adaptation in [4] of a formula from [1], and its proof follows from the
previous results.

Lemma 4.3 Let T and U be stable sets of monomials of the same degree such
that |T | = |U | and m≤i(T ) ≥ m≤i(U) for each i. Then (i) bq(T ) ≤ bq(U) and
(ii) bq(XnT ) ≥ bq(XnU).

Now let M(Id) be the set of monomials in I of degree d. Our final tool is
the following from [1] and [4] (note that the subscripts on I are incorrect in [4]):

Lemma 4.4 If I is a stable ideal, then for j ≥ q, βqj(R/I) = bq(M(Ij−q+1))−
bq(X3M(Ij−q)).

Finally, we may state the lemma that we need to prove the minimality of the
graded Betti numbers in the following section. This is based almost completely
on Deery’s proof of Theorem 3.10 in [4].

Lemma 4.5 Let I ⊂ R be a stable ideal such that if J ⊂ R is any stable ideal
with the same Hilbert function, then m≤i(Id) ≥ m≤i(Jd) for all i and d. Then
for all q and j, βqj(R/I) ≤ βqj(R/J).

Proof: By Lemma 4.3, bq(M(Id)) ≤ bq(M(Jd)) and bq(X3M(Id))≥ bq(X3M(Jd))
for all d. Now if j < q, clearly βqj(R/I) = βqj(R/J) = 0. Suppose j ≥ q. By
the previous lemma,

βqj(R/I) = bq(M(Ij−q+1))− bq(X3M(Ij−q))
≤ bq(M(Jj−q+1))− bq(X3M(Jj−q))
= βqj(R/J). �
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Since we are working in three variables, if two stable ideals I and J have
the same Hilbert function, m≤1(Id) = m≤1(Jd) and m≤3(Id) = m≤3(Jd) in
each degree d. Hence in the previous lemma, it suffices to note that I and J
are stable ideals with the same Hilbert function such that m≤2(Id) ≥ m≤2(Jd).
That is, we seek a stable ideal I that has as many monomials in each degree
that do not involve x3 as possible.

5 The algorithm

In this section we present our algorithm to obtain an ideal in R with uniquely
minimal graded Betti numbers among all stable ideals with a given Hilbert func-
tion. We begin by assuming that our Hilbert function has finite length (that is,
that the Hilbert function is eventually zero).

Input: A valid finite length Hilbert function H for a cyclic graded module over
R = k[x1, x2, x3].
Output: A stable ideal I in R such that R/I has Hilbert function H and
uniquely minimal graded Betti numbers among all quotients of R with Hilbert
function H that correspond to stable ideals.

Initialization:
p:=first positive degree in which H is zero;
I:=(x1, x2, x3)p;
H̄:=Hilbert function of R/I ;
∆:=H̄ −H;

begin
while ∆ 6= {0, . . . , 0} do

t:=first degree in which ∆ is not zero;
M :=monomials of degree t in descending reverse-lex order;
while entry t of ∆ is not zero do

m:=first monomial in M not in I;
H0:=Hilbert function of R/(I,m);
if (max(m)=2 and H0 −H is not weakly increasing)

then M := only the monomials of degree t involving x3;
else if (max(m)=1 or 2) or (max(m)=3 and (I,m) is stable)

then
I := (I,m);
H̄:=Hilbert function of R/I ;

M := M \ {m};
∆ := H̄ −H;

return I;
end

Our algorithm works by adding monomials into the ideal being constructed in
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reverse-lex order as much as possible. The list ∆ indicates how many monomials
we still need to add into the ideal in each degree to attain the Hilbert function
H. As long as the Hilbert function allows it, we put in generators only involving
x1 and x2. At some point, it is possible that adding in such a generator will
make the Hilbert function too small in a higher degree; by Proposition 3.1,
this occurs when ∆ is no longer weakly increasing. Then we must resort to
adding generators with nonzero powers of x3 while being careful to maintain
the stability of the ideal. The next theorem asserts that the algorithm gives the
ideal that we want.

Theorem 5.1 Given a finite length Hilbert function H for a cyclic graded mod-
ule over R = k[x1, x2, x3], the algorithm above yields a stable ideal I such that
HR/I = H, and given any stable ideal J ⊂ R with HR/J = H, βR/I ≤ βR/J .

Proof: The main work in the proof is showing that if we cannot add a generator
involving only x1 and x2, then there exists a monomial involving x3 that we
can add that keeps the ideal stable. We prove this by supposing that no such
monomial exists and enumerating the monomials that must already be in the
ideal. This allows us to compute a formula for the Hilbert function in each
degree. Consequently, we can use the bound on the growth of the Hilbert
function from Lemma 3.2 to show that the Hilbert function grows faster than
is allowed, so our input was not a valid Hilbert function.

For each Hilbert function H, there is a quotient corresponding to a lexico-
graphic ideal attaining that Hilbert function. Thus Proposition 3.1 shows that
∆, the difference vector of the Hilbert function of R/I at a point in the algo-
rithm and H, must initially be weakly increasing. The first generator is forced,
and it must be a power of x1. If one needs to add a second generator, it must be
x1 to one fewer power times a power of x2 to ensure stability. Clearly ∆ stays
weakly increasing since the ideal is currently a lexicographic ideal.

Suppose now that we have added in w > 1 generators, maintaining a stable
ideal with weakly increasing ∆ and putting in the monomials in the order dic-
tated by the algorithm. If we need not add in more monomials (that is, if ∆ is
the zero vector), we are completely finished, for the ideal has the desired Hilbert
function. Otherwise, we need to put in a new monomial in, say, degree t. If not
all xt−d1 xd2 are in I, we attempt to add the first one (in reverse-lex order) that is
not already in. If ∆ remains weakly increasing, then we are done since the ideal
clearly remains stable. If not, then we must add in a monomial with nonzero
power of x3. Proposition 3.1 shows that in this case, there is some s ≥ 0 such
that ∆t+s = ∆t+s+1 = y for some y > 0. We wish to show that we can find
a monomial m of degree t involving x3 to add to the ideal that keeps the ideal
stable; if so, ∆ will remain weakly increasing by the formulas in Proposition 3.1.

We claim that we can always do this. Suppose not, and suppose that xt1,
xt−1

1 x2, . . . , and xt−d1 xd2 are in I. Under our assumption, there does not exist
a monomial m of degree t such that (I,m) is stable and the Hilbert function is
not too small. Hence we may conclude that xt−1

1 x3, xt−2
1 x2x3, . . . , xt−d1 xd−1

2 x3,
xt−2

1 x2
3, . . . , xt−d1 xd−2

2 x2
3, . . . , xt−d1 xd3 are all in I. Therefore in degree t, there
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is one monomial involving only x1; there are d monomials u with max(u) = 2,
and there are

(
d+1
2

)
+ r monomials u with max(u) = 3, where r ≥ 0. By (ii) of

Proposition 3.1, it is easy to compute that there are d+ s monomials involving
x2 but not x3 in degree t+s, and there are d+s+1 in degree t+s+1. Similarly,
we can count the monomials in each degree in I that have nonzero powers of
x3. There are

(
s+1
2

)
+sd+

(
d+1
2

)
+r in degree t+ s and

(
s+2
2

)
+(s+ 1)d +

(
d+1
2

)
+r in degree t+ s+ 1.

Thus in I,

# of monomials in degree t+ s =
(
s+ 2

2

)
+ (s+ 1)d+

(
d+ 1

2

)
+ r,

and

# of monomials in degree t+ s+ 1 =
(
s+ 3

2

)
+ (s+ 2)d+

(
d+ 1

2

)
+ r.

Consequently, we obtain formulas for the Hilbert function in degrees t + s
and t+ s+ 1:

ht+s =
(
t+ s+ 2

2

)
−
[(
s+ 2

2

)
+ (s+ 1)d+

(
d+ 1

2

)
+ r + y

]
,

and

ht+s+1 =
(
t+ s+ 3

2

)
−
[(
s+ 3

2

)
+ (s+ 2)d+

(
d+ 1

2

)
+ r + y

]
.

As a result, we have ht+s+1 − ht+s = t + s + 2 − (s + 2) − d = t − d. Thus
ht+s + t− d = ht+s+1 ≤ h<t+s>t+s . We wish to find h<t+s>t+s . Let l be the number
of monomials in the desired final ideal in degree t+ s. By Lemma 3.2,

h<t+s>t+s = ht+s + t+ s−ml,

(
ml + 1

2

)
< l ≤

(
ml + 2

2

)
.

Hence ht+s + t− d ≤ ht+s +t+ s−ml. Therefore s+ d ≥ ml.
Thus if we cannot find a monomial with nonzero power of x3 to add that

keeps the ideal stable, then s+ d ≥ ml. We have

l =
(
s+ 2

2

)
+ (s+ 1)d+

(
d+ 1

2

)
+ r + y

=
(
s+ d+ 2

2

)
+ r + y

≤
(
ml + 2

2

)
≤

(
s+ d+ 2

2

)
.
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This is a contradiction because r + y > 0. Hence by induction, we can always
find the monomial we need to keep the ideal stable and to ensure that ∆ stays
weakly increasing.

The algorithm will clearly terminate because the Hilbert function is eventu-
ally zero. The minimality of the graded Betti numbers is immediate since the
algorithm maximizes the number of monomials in each degree not involving x3

subject to the constraints of the Hilbert function and keeping the ideal stable.
�

We can use the finite length case now to generalize the result to Hilbert
functions that are never zero in positive degree.

Corollary 5.2 Fix a Hilbert function H for a cyclic graded module over R =
k[x1, x2, x3]. Then there exists a unique minimal set of graded Betti numbers
among all quotients of R with Hilbert function H corresponding to stable ideals.
That is, there are no incomparable minimals in this class.

Proof: The finite length case is in the previous theorem, so we now consider
a Hilbert function H for a cyclic graded module over R that is never zero in
positive degree. The idea is to truncate the Hilbert function at an appropriate
place so that we may work with something of finite length. Since R modulo the
lexicographic ideal has the most generators in each degree of any cyclic module
with a given Hilbert function, we first compute the highest degree d of a minimal
generator for the lexicographic ideal L whose quotient has Hilbert function
H. Writing H = {1, h1, h2, . . . , hd, hd+1, . . .}, let H ′ = {1, h1, h2, . . . , hd, hd+1}.
Then H ′ has finite length, so we can use H ′ as the input in the finite length
algorithm, obtaining output I ′. Now the Hilbert function of R/I ′ is H ′, so it
agrees with H through one degree beyond the degree of the maximal generator
of L. We then remove all the generators of I ′ of degree higher than d, forming a
new ideal I. Both L and I have generators of degree no higher than d, and the
Hilbert functions of R/L and R/I agree through degree d+1. By the Gotzmann
Persistence Theorem, since R/L has Hilbert function H, R/I must also, and its
graded Betti numbers obviously have the minimality property we want. �

The ideal we obtain from our algorithm actually satisfies a more restrictive
condition than stability. Recall that we call a monomial ideal strongly stable if
whenever a monomial m ∈ I, then xim/xj ∈ I for each i < j.

Proposition 5.3 The above algorithm produces a strongly stable ideal.

Proof: It suffices to check the strongly stable property on minimal generators.
Suppose xa1x

b
2x
c
3 is a minimal generator of I. We need to show that xa+1

1 xb−1
2 xc3 ∈

I, for the other monomials to check are automatically in I by stability. We
proceed by induction on c. If c = 0, xa+1

1 xb−1
2 ∈ I because it comes before

xa1x
b
2 in reverse-lex order, so we would have chosen it first. Now suppose that

c ≥ 1 and that the strongly stable property holds for all monomials with power
of x3 at most c − 1. Stability implies that both xa+1

1 xb2x
c−1
3 and xa1x

b+1
2 xc−1

3
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are in I. Note that xa+1
1 xb−1

2 xc3 >rlex x
a
1x
b
2x
c
3, so if xa+1

1 xb−1
2 xc3 is not in I, we

must not have chosen it in our algorithm because its inclusion in I would have
ruined stability. Thus either xa+2

1 xb−1
2 xc−1

3 or xa+1
1 xb2x

c−1
3 is not in I. But by

the induction hypothesis, xa+1
1 xb2x

c−1
3 ∈ I implies that xa+2

1 xb−1
2 xc−1

3 ∈ I, and
similarly, xa1x

b+1
2 xc−1

3 ∈ I implies that xa+1
1 xb2x

c−1
3 ∈ I. This is a contradiction,

so xa+1
1 xb−1

2 xc3 ∈ I after all. �

These results mean that one must go beyond the class of stable ideals in
three variables to find the incomparability behavior that Charalambous and
Evans exhibit with monomial ideals in three variables that are not stable. We
consider stable ideals in more variables next, where the combinatorics is harder
to unravel.

6 Incomparability in more variables

We now turn to rings of higher dimension, motivated by Deery’s conjecture in [4]
that whenever H is a Hilbert function such that there exists a weakly reverse-lex
ideal I with HS/I = H, then βS/I ≤ βS/J for all stable J with HS/J = H.

Initially, one might hope that we could find a algorithm similar to that of
Section 5 for Hilbert functions in S = k[x1, . . . , xn], where n ≥ 4. Unfortunately,
if one tries the analogous procedure, it is quickly apparent that it fails. Consider,
for example, the Hilbert function {1, 4, 6, 9} in k[x1, x2, x3, x4]. Putting in the
first three monomials of degree two in reverse-lex order keeps the difference of
the Hilbert functions vector weakly increasing, but then we can add only one
more monomial in degrees two and three. No choice of degree two monomial
will satisfy this condition. Minor adjustments to account for the change in
combinatorics from three to four variables also do not seem to help much since
one can no longer simply worry about the number of monomials not involving
the last variable.

In lieu of such an algorithm, we would at least like to find some minimality
result that applies to Hilbert functions for which there is no quotient corre-
sponding to a reverse-lex ideal. In presenting the above conjecture on weakly
reverse-lex ideals, Deery notes that one cannot use the same methods of proof
in four or more variables as in three variables by exhibiting an example for
which the techniques of Section 4 fail. We show that Deery’s example is actu-
ally a counterexample to his conjecture (also modifying it to use finite length
modules).

Let I = (x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

6
2) +(x1, x2, x3, x4)8, and let J = (x4

1, x
3
1x2,

x3
1x3, x

3
1x4, x

2
1x

3
2, x1x

4
2, x

5
2) +(x1, x2, x3, x4)8 be ideals in S = k[x1, x2, x3, x4].

It is easy to check that S/I and S/J both have Hilbert function {1, 4, 10,
20, 31, 43, 55, 67}. Moreover, I is a weakly reverse-lex ideal, and J is stable.
(Both ideals are actually strongly stable.) To display the graded Betti numbers,
we use the notation of the computer algebra system Macaulay 2 [6]. The rows
and columns are numbered starting with zero, and one can find βij in column
i and row j − i. We use a period in place of the number zero. The graded free
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resolutions of S/I and S/J are as follows:

S/I: total: 1 84 229 213 67
0: 1 . . . .
1: . . . . .
2: . . . . .
3: . 4 3 . .
4: . . . . .
5: . 1 1 . .
6: . . . . .
7: . 79 225 213 67

S/J : total: 1 86 234 217 68
0: 1 . . . .
1: . . . . .
2: . . . . .
3: . 4 6 4 1
4: . 3 3 . .
5: . . . . .
6: . . . . .
7: . 79 225 213 67

Obviously these sets of graded Betti numbers are incomparable. We argue
that there is no set of graded Betti numbers for a quotient with the same Hilbert
function corresponding to a stable ideal that lies below both of these sequences.
For if there were, then β00 = 1, β14 = 4, β25 ≤ 3, and all other graded Betti
numbers above row seven are zero. It is clear that in this case, β25 must be at
least three, so it is exactly three. There are no second syzygies in row three, so
by the Eliahou-Kervaire formula, the generators in degree four have to involve
only x1 and x2. But this gives us the generators of I in degree four. To get the
necessary Hilbert function, we would need an additional generator in degree six,
a contradiction.

We can construct a similar family of finite length examples in more variables
by putting all but the last four variables in each ideal and then forming the ideals
corresponding to I and J using the final four variables. Stability is obvious, and
it is not hard to see that we obtain incomparable graded Betti diagrams with
no set of Betti numbers for that Hilbert function beneath both. Hence if we
have at least four variables, the weakly reverse-lex ideal does not necessarily
have uniquely minimal graded Betti numbers among stable ideals with a given
Hilbert function. The above family of examples shows that we can actually
have incomparable minimal elements whenever our ring has more than three
variables, and therefore we cannot hope for an algorithm similar to that of
Section 5 in higher dimensions.
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