A Fine Partitioning of Cells

Atlas of Lie Groups Workshop

American Institute of Mathematics

Palo Alto, July 16-20, 2007

1. The setting in Atlas

Let me begin by talking a bit about the organization of the set of irreducible admissible representations from the atlas point of view.

1.1. \(G \).

- \(G \) be a algebraic group defined over \(\mathbb{C} \),
- \(G^\vee \) its dual group,
- \(\tau \) an outer automorphism determining an inner class of real forms
- \(\delta \in \text{Aut}(G) \) a strong real form of \(G \) in the inner class of \(\tau \)
- \(G^\Gamma = G \times \Gamma = G \times \{1, \sigma\} \) with \(\sigma \) acting on \(G \) by \(\delta \)

1.2. Irreducible admissible representations. From the Atlas point of view, which is essentially a derivative of the Langlands point of view after several reductions/translations (Vogan-Zuckerman-Knapp-Adams-duCloux) the irreducible (admissible) representations (with integral infinitesimal character) are parameterized by triples \((x, y, \lambda) \) where

- \(x \in G^\Gamma - G, x^2 \in Z(G) \), a representative of a strong real form of \(G \)
- \(y \in (G^\vee)^\Gamma - G^\vee, y^2 \in Z(G^\vee) \), a representative of a strong real form of \(G^\vee \)
- \(\lambda \in \mathfrak{d}t \cong \mathfrak{t}^* \)

Remark 1.1. In much of the atlas documentation you will also see \(x \) and \(y \) regarded as representing a pair \((\mathcal{O}, \mathcal{O}^\vee)\), were \(\mathcal{O} \) and \(\mathcal{O}^\vee \) are, respectively, a \(K \)-orbit in \(G/B \) and a \(K^\vee \)-orbit in \(G^\vee/B^\vee \). This is an equivalent parameterization.

1.3. Blocks of Representations. By restricting the parameters \(x \) and \(y \), respectively, to correspond to particular (equivalence classes of) strong real forms, the set \(\hat{G}_{adm}(\lambda) \) of irreducible admissible \((\mathfrak{g}, K)\)-modules with integral infinitesimal character \(\lambda \) can split into “blocks” of representations. From a purely atlas-centric point of view the notion of blocks is useful as it provides a minimal partitioning of \(\hat{G}_{adm}(\lambda) \) into subsets for which KL computations are self-contained. But it turns out that blocks of representations correspond to the collecting together of all irreducible admissible representations into groups connected by a non-trivial Ext.

Below is the beginning of the atlas session in which the KL polynomials for the “big block” of split E8 is computed; we remark that the choice of a weak real form at the user interface level is actually implemented as a choice of a strong real from within the software itself.

real: type
Lie type: E8
enter inner class(es): split
main: klwrite
(weak) real forms are:
0: e8
1.4. Cells of Representations. Within a block we can collect together those representations which belong to the same cell. Recall from Peter’s talk that a cell is an equivalence class of representations where

\[X \sim Y \iff Y \text{ is a subquotient of } X \otimes F \text{ for some f.d.r. } F \text{ and } X \text{ is a subquotient of } Y \otimes F' \text{ for some f.d.r. } F' \]

and that the representations in the cell share the same associated variety. In particular, all the representations in a cell share the same Gelfand-Kirillov dimension.

The cell decomposition of a block is obtainable by the \texttt{wcells}, \texttt{wgraph}, or \texttt{extractgraph} commands of Atlas. Below is beginning of an atlas session in which the \texttt{wcells} command in run on the big block of F4.
1.5. **Tau-invariants.** The output of the `wcells` command contains a lot of information about the representations in a block. The elements of a cell are labeled by (strictly internal) indices from 0 to \((m - 1)\) where \(m\) is the number of elements in the cell; rather than pairs \((x, y)\).\(^1\) Following a cell index number \(i\) is a set \(\{t_{i,1}, \ldots, t_{i,\ell}\}\) which is the “tau-invariant” of the cell element. This is actually an invariant of the primitive ideal corresponding to the annihilator of the irreducible \((\mathfrak{g}, K)\)-module corresponding to \(i \sim (x, y, \lambda)\). The tau-invariant is a set of indices of simple roots that, roughly speaking, prescribes the “direction” in which the corresponding primitive ideal sits relative to the minimal primitive of ideal of infinitesimal character \(\lambda\).

A little more precisely. Let \(\text{Prim}_\rho\) be the set of primitive ideals of infinitesimal character \(\rho\) endowed with the natural partial ordering by inclusion.

\[
I \leq I' \iff I \subseteq I'
\]

Then there is a unique maximal primitive ideal within \(\text{Prim}_\rho\) (the annihilator of the trivial representation) and a unique minimal primitive ideal \(I_0\) which is the annihilator of the irreducible Verma module \(M_\rho\) of highest weight \(-2\rho\). The other primitive ideals of infinitesimal character \(\rho\) can be thought of as sitting on the vertices of a Hasse diagram associated with the above partial ordering. Since the minimal primitive ideal is contained in every primitive ideal, every primitive ideal in the \(\text{Prim}_\rho\) is connected to \(I_0\) by certain sequences of inclusions \(I \supset I' \supset \cdots \supset I^{(k)} \supset I_0\), which can be visualized as certain directed paths through a Hasse diagram. It turns out that the penultimate primitive ideals in such a sequence are always primitive ideals of the form \(\text{Ann}(M_{-s\rho}/M_{-\rho})\) where \(M_{-s\rho}\) is the Verma module of highest weight \(-s\rho - \rho\), \(s\) being a reflection by a simple root in \(W\). For a given primitive ideal \(I\) let \(\tau(I)\) denote the set of simple roots \(s\) for which \(\text{Ann}(M_{-s\rho}/M_{-\rho})\) sits between \(I\) and \(I_0\) in the Hasse diagram of \(\text{Prim}_\rho\). In other words, the tau invariant \(\tau(I)\) is the set of next-to-last-stops on the paths from \(I\) to \(I_0\).

I should perhaps remark that the sets \(\{t_{i,1}, \ldots, t_{i,\ell}\}\) that occur in the output of `wcells` are actually the indices of the simple roots that lie in the descent set of the representation indexed by \(i\). The identification with tau-invariants comes via

Theorem 1.2. If \(X\) is an irreducible \((\mathfrak{g}, K)\)-module, then the tau-invariant of \(\text{Ann}(X)\) is equal to the descent set of \(X\).

Note that in the example above, some cell elements share the same tau-invariant. This, however, does not mean that they share same annihilator; it simply means that their annihilators lie in the same direction(s) from \(I_0\). On the other hand, since \(\tau(X) \equiv \tau(\text{Ann}(X))\),

Fact 1.3. If \(X, Y\) are two irreducible \((\mathfrak{g}, K)\)-modules such that \(\text{Ann}(X) = \text{Ann}(Y)\), then \(\tau(X) = \tau(Y)\)

1.6. **Edges.** The output of the `wcells` command contains one last bit of cell element data; the `edges` and multiplicities of the Wgraph “star”\(^2\) originating from a cell element. If \((j, m)\) is listed in the edge/multiplicity data of a cell element \(i\) then the representation \(\pi_j\) corresponding to (cell index) \(j\) occurs in the HC module \(\pi_i \otimes \mathfrak{g}\) with multiplicity \(m\) (\(\pi_i\) being the irreducible HC module corresponding to cell index \(i\)).

\(^1\)The exact correspondence between the internal cell indices \(i\) and the pairs \((x, y)\) of real forms can be deduced from the output of the `extractgraph` and `block` commands.

\(^2\)Here I mean the Wgraph of the cell which is the restriction of the Wgraph of the block to the cell.
1.7. **Primitive Ideals.** In the above we allude to the possibility of grouping together cell elements which share the same primitive ideal; however, Atlas will not do that for us. Yet,

2. **A fine partitioning of cells**

What one can obtain from immediately from the output of the `wcells` command is a partitioning of a cell into subcells with the same tau-invariant. As remarked above, this is compatible with the partitioning of a cell via primitive ideals, but it is much coarser. However, besides having the same tau-invariant, representations with the same primitive ideal also have the property that their collections of tau-invariants of their edge vertices are the same. By this I mean the following. Let $\tau_0(i) = \{t_{i,1}, \ldots, t_{i,m}\}$ denote the tau invariant of vertex i of a cell. Let $e(i) = \{e_{i,1}, \ldots, e_{i,k}\}$ be the set of edge vertices for vertex i, and let

$$\tau_1(i) = \{\tau_0(e_{i,1}), \ldots, \tau_0(e_{i,k})\}$$

be the corresponding set (without multiplicity) of tau-invariants of the edge vertices of vertex i. If two vertices i, j share the same primitive ideal then

$$\tau_1(i) = \tau_1(j)$$

This equivalence relation still fails to complete separate the representations in a cell into subgroups with a common primitive ideal; however, it is compatible with the partitioning by primitive ideals and it is compatible with the partitioning than by tau-invariants.

So what to do next? Simply repeat. That is, set

$$\tau_2(i) = \{\tau_1(e_{i,1}), \ldots, \tau_1(e_{i,k})\}$$

and group together vertices with the same τ_0, the same τ_1 and the same τ_2. If you continue this process until the sub-partitioning process stabilizes (as it must since the cells are finite), and do this for, say, all real forms of all exceptional groups, then the following empirical fact emerges:

Fact 2.1. The number of elements in the infinite order (stable) partitioning of a cell is always the dimension of a special representation of the Weyl group of G.

What makes this so striking is the following.

Fact 2.2. Attached (by other means [Lu]) to each cell C is a unique special representation σ_C of W, and

$$\# \{\text{Ann}(X) \mid X \text{ an irreducible HC module in } C\} = \dim \sigma_C$$

That is, the number of distinct primitive ideals arising from a given cell is equal to the dimension of the special representation of W attached to that cell.

Conjecture 2.3. The infinite ordering partitioning of a cell corresponds to a partitioning of the cell by primitive ideals.

Patrick Polo asked the following question. Why should it be that representations with the same primitive ideal share the same τ_1 invariant (as well as the higher derived τ-invariants, τ_2, \ldots)? David offered the following explanation.

Fix a irreducible (\mathfrak{g}, K)-module X of infinitesimal character ρ, and consider $I = \text{Ann}(X)$. $X \otimes \mathfrak{g}$ is a (\mathfrak{g}, K)-module that is also a faithful module for $U(\mathfrak{g})/I \otimes U(\mathfrak{g})/\text{Ann}(\mathfrak{g})$. You can diagonally embed $U(\mathfrak{g})$

$$\Delta : U(\mathfrak{g}) \longrightarrow U(\mathfrak{g})/I \otimes U(\mathfrak{g})/\text{Ann}(\mathfrak{g})$$

Then

$$\Delta^{-1}(U(\mathfrak{g})/I \otimes U(\mathfrak{g})/\text{Ann}(\mathfrak{g})) = \text{Ann}_{U(\mathfrak{g})}(X \otimes \mathfrak{g})$$
depends only on I. Now $X \otimes g$ will decompose as

$$X \otimes g = \text{several copies of } X + \bigoplus Y_i \text{ (irreducible } (g,K)\text{-module in same cell as } X; \text{ in fact, Wgraph neighbors of } X) + (g,K)\text{-modules of lower GK-dim (bigger annihilators)}$$

Therefore, the set of minimal primes in $\text{Ann}(X \otimes g)$ will consist of $\{I, \text{Ann}(Y_i)\}$. Since $\text{Ann}(X \otimes g)$ depends only on the primitive ideal I containing X, the set of minimal primes in $\text{Ann}(X \otimes g)$, will also depend only on I and so if we have two (g,K)-modules X, X' in the same cell and consider the sets of primitive ideals corresponding to the Wgraph neighbors of X, X' we must have

$$\{\text{Ann}(Y_1), \ldots, \text{Ann}(Y_k)\} = \left\{\text{Ann}(Y'_1), \ldots, \text{Ann}(Y'_\ell)\right\}$$

This implies

$$\tau_1(X) = \tau_1(X')$$

and, in fact, infers the equality of the higher derived tau-invariants as well.

References

[M] W. McGovern, *Primitive Ideals*, Monty’s article in the private atlas Wiki http:\\wiki.math.umd.edu\atlas\Primitive_ideals