
APPENDIX G

Solutions to Problem Set 7

1. (Problem 6.4.2 in text)

Use the method of characteristics to show that the solution of

uux + uy = 0 ; u(x; 0) = f(x)(G.1)

is given implicitly by

u = f (x� uy)(G.2)

and verify this result by direct di�erentiation. In what region is this solution valid?

The di�erential equations satis�ed by the characteristic curves (x(t); y(t); u(t)) are

dx
dt

= u(t)
dy
dt

= 1
du
dt

= 0 :

(G.3)

This system of ODEs is easily integrated to produce

u(t) = C1

y(t) = t+ C2

x(t) = C1t +C3 :

(G.4)

Let t = 0 be the value of the parameter t when characteristic curves pass through the plane y = 0 and let
(xo; 0; uo) be the point where the characteristic through (x; y; u) passes through this plane. We then have

C1 = uo
C2 = 0
C3 = xo

(G.5)

Our initial conditions u(x; 0) = f(x), implies that

C1 = uo = f (xo) :(G.6)

We can thus rewrite (G.4) as

x = f (xo) t+ xo
y = t

u = f (xo) :

(G.7)

We can use the last two equations to replace f (xo) by u, xo by f�1 (u), and t by y in the �rst equation.
This leads u

x = uy + f�1(u) :

or

u = f (x� uy) :(G.8)

It is apparent from (G.8) that

u(x; 0) = f (x+ 0) = f(x) :
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On the other hand,

@u

@x
= f 0 (x� uy)

@u

@y
= �yf 0 (x� uy) :

It is thus clear that (G.8) is indeed the solution of (G.1) and (G.2).
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2. (Probelem 6.4.4 in text)

In a rotating 
uid problem it is required that a function v(r; � ) be found in the region 0 < r < a, � > 0,
satisfying

v� �
�
1� v

r

�
(rv)r = 0
v(r; 0) = 0
v(a; � ) = a :

(G.9)

Use the method of characteristics to obtain the solution

v =
re2r�a2

r

e2r�1 ; r � ae�r

v = 0 ; r � ae�r :
(G.10)

Sketch the two families of characteristics and discuss the nature of solutions near the point r = a and � = 0.

Set

w = vr :

Then PDE in (G.9) is equivalent to

1

r
v� �

�
1� w

r2

�
wr = 0 ;(G.11)

or

v� + (
w

r
� r)wr = 0

with boundary conditions

w = 0 ; when � = 0
w = a2 ; when r = a :

(G.12)

The di�erential equations satis�ed by the characteristic curves �(t) = (� (t); r(t); v(t)) are
d�
dt

= 1
dr
dt

= w
r
� r

dw
dt

= 0 :

(G.13)

The last equation leads to

w(t) = c1 :(G.14)

Notice that the di�erential equation for r(t) takes a radically di�erent form when w(t) = c1 = 0. We shall
handle this special case �rst.

Case 1. c1 = 0.

If w(t) = c1 = 0 we have from (5)

dr

dt
= �r

or
dr

r
= �dt

or

log jrj = �t+ c1

or

r(t) = roe
�t(G.15)

The di�erential equation for � (t)

d�

dt
= 1(G.16)
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easily integrates to

� (t) = t+ �o:(G.17)

Fixing t = 0 to correspond to the point along the characteristic curve where � = 0, we get the following one
parameter family of characteristic curves passing through the line � = w = 0;

� (t) = t

r(t) = roe
�t

w(t) = 0
(G.18)

Note that r(� ) never quite vanishes. This implies that

0 = w(t) = v(t)r(t) ) v(t) = 0 :(G.19)

We conclude from this that if (�; r) is any point in the (�; r)-plane lying on a curve of the form

� (t) = t

r(t) = roe
�t ; 0 � ro � a

(G.20)

then

v(�; r) = 0 :(G.21)

Case 2. c1 6= 0.

We will now proceed with a construction of a general solution of the di�erential equations of the character-
istics:

d�
dt

= 1
dr
dt

= w
r
� r

dw
dt

= 0
(G.22)

Again the general solution to the �rst and last equations is

� (t) = t+ �o
v(t) = wo :

(G.23)

Inserting the last result into the di�erential equation for r(t) yields

dr

dt
=

wo

r
� r(G.24)

or
rdr

wo � r2
= dt :

The latter equation is easily integrated to produce

�1

2
ln
��wo � r2

�� = t+ C

or

wo � r2 = Ae�2t :(G.25)

or

r(t) =
p
wo � Ae�2t :(G.26)

Our characterisitics are thus curves of the form

� (t) = t+ �o
r(t) =

p
wo �Ae�2t

w(t) = wo :

(G.27)

Recalling that

w(t) =def r(t)v(t)
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we have

� (t) = t+ �o
r(t) =

p
wo �Ae�2t

v(t) = wop
wo�Ae�2t

:
(G.28)

The natural thing to do next would be to impose the boundary condition

r = v = a ; 8 � > 0 ;(G.29)

at t = � identify the constants wo and A. However, note that the Cauchy data (G.29) lies on the line

� (t) = t

r(t) = a

v(t) = a

(G.30)

which corresponds to the characteristic curve with �o = 0, wo = a2, and A = 0. Since (G.29) is a
characteristic curve, we can not use it as Cauchy data. By the uniqueness property of characteristics no
other characteristic will pass through the line (G.29).

So here's the problem. The Cauchy data above the line � = 0, 0 < r < a give rises to characteristics that
�ll only the region of the (r; � )-plane lying below the curve r = ae�� , while the initial data along the line
r = a, � > 0 is itself a characteristic and so intersects no other characteristics. Thus, we seem to have no
means of determining the characteristic curves of our solution whose projections in the (r; � )-plane lie the
curve r = ae�� and below the line r = a.

Let's proceed by ignoring the problem. Actually, what we will do is construct a general solution of the PDE
in (1) from the characteristic curves passing over the line r = a in the (r; � )-plane and then take impose
appropriate boundary conditions on this general solution.

From (G.28) we see that along any characteristic curve for (1) we have

r2 = wo �Ae�2�

v = wo
r

(G.31)

with wo and A �xed constants (on any particular characteristic). Suppose P = (r1; �1) is a point in the
(r; � ) plane in the region above the curve r = ae�� and the line r = a. We want to �gure out under what
circumstances the characteristic through P will cross over the line r = a. Suppose it crosses this line when
� = �o. Then

a2 = wo � Ae�2�o :

or

wo = a2 � Ae�2�o :(G.32)

But we also have

r21 = wo � Ae�2�1

or

wo = r21 � Ae�2�1(G.33)

We can now use (G.32) and (G.33) to eliminate the constants wo and A. One �nds

A = a2�r2
1

e�2�1�e�2�o

wo =
a2e�2�1�r2

1
e�2�o

e�2�1�e�2�o

(G.34)

Thus,

v1 =
wo

r1
=

1
r1
a2e�2�1 � r1e

�2�o

e�2�1 � e�2�o
:(G.35)
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Now note have yet to impose any boundary condition on v we have only shifted the ambiguity in the value
of v along the line r = a to an unspeci�ed number �o, the value of � when the characteristic through
(r1; �1; v1) crosses through the plane r = a. As such we can regard �1 as a constant depending only on
initial conditions. Indeed, we can regard the relation (G.35) as a relation that holds at arbitrary points
r1 = r, �1 = � , v1 = v. We thus obtain

v(r; � ) =
1
r
a2e�2� � re�2�o

e�2� � e�2�o
:(G.36)

It is a simple, albeit tedius, task to con�rm that (G.36) is indeed a solution of the PDE in (G.9).

We now (�nally) ask the question. Can we match the solution (G.36) to the boundary conditions in (G.9).
The answer is yes; we simply take �o = 0 to obtain

v(r; � ) =
1

r
a2e�2��r

e�2��1

=
re2�� a

2

r

e2��1 :
(G.37)

Note that

limr!ae�� v(r; � ) = 0
limr!a v(r; � ) = a

(G.38)

and this solution is the appropriate one matching the solution in region below the curve r = ae�� and the
data along the line r = a.
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3. (Problem 9.3.1 in text)



4. (PROBLEM 9.3.9 IN TEXT) 152

4. (Problem 9.3.9 in text)

A two-dimensional Green's function G(x; y; �; �) for the Laplacian operator on a region D � R2 may be
de�ned by �

@2

@x2
+

@2

@y2

�
G(x; y; �; �) = �(x� �)�(y � �)(G.39)

G(x; y; �; �)j@D = 0 :(G.40)

Show that in the case of the square region

D = f(x; y) j 0 < x < L ; 0 < y < Lg ;(G.41)

G(x; y; �; �) is given by

G(x; y; �; �) =
P1

m=1

sin(m��

L ) sin(m�x
L )

m� sinh(m�)

�
h
cosh

h
m�(L�y��)

L

i
� cosh

h
m�(L�jy��j

L

ii
:

(G.42)

We will solve this problem using series expansions. Recall that when we looked for solutions of

r2�(x; y) = 0(G.43)

using separation of variables, we were lead to solutions of the form

�(x; y) =
�
Aei�x + Be�i�x

� �
Ce�y +De��y

�
(G.44)

or equivalently

�(x; y) = (c1 sin(�x) + c2 cos(�x)) (d1 sinh(�x) + d2 cosh(�x))(G.45)

Noting the boundary conditions (G.40), we might thus try an expansion of the form

G(x; y; �; �) =
1X

m=1

am(y; �; �) sin
�m�x

L

�
:(G.46)

However, before we start, I should point out that

�(x� �) =
1X

m=1

2

L
sin
�m�x

L

�
sin

�
m��

L

�
:(G.47)

The justi�cation for this formula is as follows. Suppose f(x) is a piecewise continuous function on (0; L)
and let

f(x) =
X
m=1

�m sin
�m�x

L

�
(G.48)

be its Fourier expansion. Then using the identitiesZ L

0

sin
�m�x

L

�
sin
�n�x

L

�
dx =

L

2
�m;n(G.49)

is easy to show that

f(�) =
X
m=1

�m sin

�
m��

L

�
=

Z L

0

f(x)�(x � �)dx :(G.50)

If we now insert the expansions (G.46) and (G.47) into (G.39) we get

1X
m=0

��
�m

2�2

L2
am +

@2am

@y2

�
sin
�m�x

L

��
=

1X
m=1

2

L
sin
�m�x

L

�
sin

�
m��

L

�
�(y � �)
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Setting the total coe�cient of sin
�
m�x
L

�
equal to zero, we get

�m
2�2

L2
am +

@2am

@y2
=

2

L
sin

�
m��

L

�
�(y � �)(G.51)

The coe�cients am should thus correspond to

am =
2

L
sin

�
m��

L

�
g(y; �)(G.52)

where g(y; �) is the Green's function satisfying

d2

dy2
g(y; �) � m2�2

L2 g(y; �) = �(y � �)

g(0; �) = 0
g(L; �) = 0 :

(G.53)

In the preceding lecture, we developed a general formula for constructing Green's functions for Sturm-
Liouville problems with homogeneous boundary conditions:�

d

dx

�
p(x)

d

dx

�
+ q(x)

�
G(x; �) = �(x� �)

G(a; �) = 0

G(b; �) = 0

) G(x; �) =

(
u1(x)u2(�)

W [u1;u2](�)p(�)
; a < x < �

u1(�)u2(x)
W [u1;u2](�)p(�)

; � < x < b
(G.54)

where u1(x) and u2(x) satisfy respectively,�
d

dx

�
p(x)

d

dx

�
+ q(x)

�
u1(x) = 0

u1(a) = 0

and �
d

dx

�
p(x)

d

dx

�
+ q(x)

�
u2(x) = 0

u2(b) = 0 ;

and W [u1; u2] (x) is the Wronskian of u1(x) and u2(x).

In the case at hand we may take

u1(y) = sinh
�
m�y

L

�
u2(y) = sinh

�
m�
L

(L� y)
�(G.55)

as solutions to the homogeneous equations corresponding to (14), respectively satisfying u1(0) = 0 and
u2(L) = 0. Note that the p(x) = 1 in (G.52) and that

W [u1; u2] (x) =
�
sinh

�
m�y

L

�� ��m�
L

cosh
�
m�
L

�
(L� y)

�
� �m�

L
cosh

�
m�y

L

�� �
sinh

�
m�
L

(L� y)
��

= �m�
L

(sinh (m�))
(G.56)

In the last step we used the identity

sinh(�) cosh(�) + cosh(�) sinh(�) = sinh (�+ �) :

Thus,

g(y; �) =

8<
:

L sinh(m�
L
y) sinh(m�

L
(L��))

�m� sinh(m�) ; 0 < y < �

L sinh(m�
L

(L�y)) sinh(m�
L
�)

�m� sinh(m�) ; � < y < L :
(G.57)

Using the identity

sinh(�) sinh(�) =
1

2
[cosh (�+ �) � cosh (�� �)] ;
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we get

g(y; �) =

8<
:

L(cosh(m�
L
(L�y��))�cosh(m�

L
(L+y��)))

2m� sinh(m�) ; 0 < y < �

L(cosh(m�
L

(L���y))�cosh(m�
L

(L+��y)))
2m� sinh(m�) ; � < y < L

or

g(y; �) =
L
�
cosh

�
m�
L

(L � (y + �)
� � cosh

�
m�
L

(L� jy � �j)��
2m� sinh (m�)

:(G.58)

Finally, inserting (G.58) into (G.52), we get

am =
sin
�
m��

L

� �
cosh

�
m�
L

(L� (y + �)
�� cosh

�
m�
L

(L� jy � �j)��
m� sinh (m�)

and plugging this expression for am into (G.46) yields (G.42).


