APPENDIX F

Solutions to Problem Set 6

1. (Problem 3.12.1 in text)

(a) Let u(x,t) satisfy the equation

Upr = czum , c¢=constant
in some region of the (z,?) plane. Show that the quantity (u; — cuy) is constant along each straight
line defined by « — ¢t = constant, and that (u; + cuy) is constant along each straight line of the form

z + ¢t = constant. These straight lines are called characteristics; we will refer to typical members of the
two families as Cy and C_ curves, respectively; thus (¢ — ¢t = constant) is a C4 curve.

Set
(F.1) dy(m,t) = w (2,1) — cug (2,1)
Along a Uy curve we have
(F.2) =k +ct
and so along such a curve
(F.3) Gy(m,t) = ¢ (t) = ue (k1 + et ) — cuy (k1 + ¢t 1)
Differentiating ¢4 with respect to ¢ we obtain
d;ﬁ% Cligy + Uy — Py — Uty

_ 2
= Uzt — C Ugy
0

since u satisfies the wave equation. Therefore, ¢ is constant along any curve of the form (F.2).

Similarly, if we set

(F.4) d_(2,t) = w (2,1) + cuy (2,1)
Then along the curve

(F.5) x=ko—ct

we have

G_(2,t) = ¢_(t) = ug (ko — et,t) + cuy (k2 — ct, 1)

and so
de_
% = —CUtgp + Uyt — Czuxx + cuiy
= W — gy
=0
Thus, ¢_ is constant along any curve of the form (F.5). O
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(b) Let u(x,0) and us(z,0) be prescribed for all values of « between —oo and +oo, and let (z,,%,) be some
point in the (z,t) plane, with ¢, > 0. Draw the Cy and C_ curves through (z,,?,) and let A and B
denote, respectively, their intercepts with the z-axis. Use the properties of C'y and C_ derived in part (a)
to determine wu; (#,,%,) in terms of initial data at points (A,0) and (B,0). Using a similar technique to
obtain u; (z,, 7) with 0 < 7 < t,, determine wu (z,,%,) by integration with respect to 7, and compare with
Equation (3.7). Observe that this “method of characteristics” again shows that u (z,,?,) depends only on
that part of the initial data between points (A4, 0) and (B, 0).

Let

(F.6) ky =2, F ct,

and set

(F.7) ci:{(x,t)ER2|x:Fct:ki}

From part (a) we know that

¢ = u(x,t) — cug(z,t
(F.8) q/)-l_— = UtE$,t;+CuxE$at;

are, respectively, constant along the lines ¢4 and c_.

At the point (A, 0) where the line ¢y intersects the z-axis we have

(F.9) by = ur(A,0) — cuyp(A,0)

and so the constant ¢4 is completely determined by the Cauchy data at the point (A, 0).

Similarly, at the point (B,0) where the line c_ intersects the x-axis we have

(F.10) ¢— = u(B,0) + cuy(B,0)

and so the constant ¢_ is completely determined by the Cauchy data at the point (B, 0).
Using (F.9) and (F.10) we can rewrite equations (F.8) as

ur (A,0) —cuy (A,0) = g (®o,t0) — ctiy (To,10)

(F.11) ut (B, 0) + cuy (B, 0) s (20,10) + cty (20,10)

Adding the second equation to the first and then dividing by 2 we obtain

(F.12) ur (2,,t,) = % (ur (A, 0) + uy (B, 0) — cuy (A,0) + cuy (B, 0))

We can be a even more explicit than this. For the value of A is precisely ky = x, — ¢l,, and the value of B
is precisely k_ = x, + ct,. Thus,

ur (20,1,) = % (ue (o — cty,0) + ug (2, + ct,, 0))

(F13) _|_§ (—ux (l‘o—Cto,O)‘i'ux (l‘o"i’CtoaO))

This equation is perfectly valid for any choice of x, and t,, and so we can write

ur (2,,1) = %(ut(xo—ct,O)—l—ut(xo—l—ct,O))

(F.14) +£ (—ug (zo — ct,0) + uy (z, + ct,0))

Integrating both sides with respect to ¢ from 0 to ¢, we obtain

U (2o, te) —u(w,,0) = %fg”ut(xo—ct,O)dt—i—%fgout(l‘o—l—ct,O)dt

F.15
( ) — Otoux ($O_Ct,0)dt+%f(f”ux(xo—i—ct,O)dt
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If we make a change of variables { = z, — ¢t in the first and third integrals and a change of variables
¢ = 2, + ct in the second and fourth integrals, the (F.15) becomes

1 ro—cty 1 rotct,
U (2o, o) —u(2,,0) = ~ 3 uz (C,0)d¢C + %/ uz (£, 0)d¢
1 Oxo—cto 1 Oxo+cto
L UL AT,
1 Totct,
= — 0)d
26 et Ut (Ca ) C
1 To—cl, 1 ToTClo
Fou (GO S (¢, 0) |
2 To 2 To
1 Totct,
= — d
26 et Ut (Ca 0) C

_|_% (u(zo —cto) + u(zo + cty)) + u(z,,0)

or

u(2o,t0) = % (u (o —cto) + u(x, +cty)) +

1 Totct,
26 /xo—cto

uy (€, 0) d¢

which is precisely Equation (3.7).
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2. (Problem 5.7.1 in text)

Let u(z,y) satisfy

(F.16) Upe — 2Ugy + Uyy + 3Up —u+1=0
The discriminant for this PDE 1s
(r.17) (Arg)? = Aoy = (~1)2 = (1)(1) = 0

and so this equation 1s parabolic.

Now under a general coordinate transformation

¢ = ((zy)

n = =y
(F.18)

= #(¢n)

y = (¢
a second order linear PDE
(F.19) Apetor + 2A0yUsy + Ayytyy + Bette + Byuy + Cu+ F1 =0
becomes
(F.20) AccUce +2Ac) Uy + AypUyy + BeUe + ByU, + CU + F =0
where

U(¢m) =u(@(¢,n),9(¢m)
and
A(g‘ == Axxfxfx + QAxyfxéy + Ayyfyfy

w
I

C(¢m) C(&(¢m),9(¢m)
F(¢m) = F((¢n),9(¢n)

Thus, under a general coordinate transformation (F.16) takes the form (F.20) with

A(n = Cxﬁx - (Cxﬁy + Cyﬁx) + Cyﬁy
Agn = el — 20Ty + 7y Ty _
(F22) @C = Cxx - Qny + ny + 3Cx
N Bn — ﬁxx - Qﬁxy + ﬁyy + 377@'
CCm = -1
F(¢n =1

In order to put (F.16) in standard form we must find a coordinate transformation for which 0 = flgg = flgn.

Let us represent the level curves of{~= as the graph of a function f of . Then the condition
(F.23) E(l‘, f(z)) = const

leads to the relation

(F.24) (o=—1"Gy
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Using (F.24) to eliminate the expressions (p in

we obtain
0= (/)" +27 +1) &y
or
(F.25) (f) +2f +1=0
Solving (F.25) for f* we find
f=-1
or
fle)=—x+e¢
Thus, we should choose the coordinate  so that the level curves (N’(a:, y) = const coincide with the lines
y=-—x+c
Therefore, we set
(F.26) ((z,y) =z +y

Since the original PDE is parabolic, there is only one family of characteristics, and so we will not be able
to find another coordinate 5 such that A,, = 0. Therefore, we shall not even bother looking for a better
choice for a second coordinate and we’ll simply set n = y.

Let us now write down the original PDE in terms of our new coordinates

Clr,y) = x4y
n(z,y) = y
We have
A = Analolo + 245Gy + Ay GGy = 1-241=0
Acy = AvoColie + Auy (Exﬁy + Eyﬁx) F AyyCyiy=0—(1+0)+1=0
Apy = Avelloile + 2A0yiiefly + Ayyilyfly = 0+ 041 =1
Be = Apelor + 240y Coy + AyyCyy + Balo + Byly =0+ 0+ 0+3+0=3
By = Awpiler + 2A0yiey + AyyTigy + Beile + Byily =04+ 0+0+0+0=0
C(¢m) = -1
F(¢m) = 1

Thus, (F.20) becomes

Upm+3U-U+1=0
or
(F.27) Upm+3Uc+U, —U+1=0

Equation (F.16) is now in standard form.

(a)

Let us now try to construct the power series solution corresponding to the following Cauchy data:
u(z,0) = 2

(F.28) w(z 0) .
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Solving the PDE (F.16) for u,, we have

(F.29) Uyy = QUpy — Ugy — SUe +u — 1

Using the data (F.28) we can explicitly evaluate the right hand side of (F.29) along the z-axis;

Uyy(2,0) = (QUgy — Upy — SUp + U — 1)|y:0
= (Q%Uy—aa—;u—iﬁg—xu—i—u—l)‘

(F30) y=0
= 0-0-042-1
= 1
If we can now differentiate (F.29) with respect to y and evaluate the result along the z-axis
Uyyy(2,0) = (2uayy — Yooy — Sttey + uy) |y:0
= 26—u _3_2u —36—u + u
N oz VY 27V oz Y v =0
= 0

Similarly, we can compute

Uyyyy = (2uoyyy — Useyy — Stayy + Uyy)|y:o
=1

_ { 1 if n =2k
y=0 0 ifn=2k+1
We thus arrive at the following power series solution to (F.16) and (F.28).

.yt (0"
u(z,y) Z ol (w)

n=0

The following pattern emerges
0" u
oy"

(w,0)

1 1
= u(x,0) + yuy (2, 0) + Sy uyy (2,0) + Zy uyyy(,0) +

2 6
1 1 1
— g4l 2t AL L6
—1—23/ —1-4!3/ —1-6!3/ +
= 1+ cosh(y)

(b)

Since the line # + y = 0 is a characteristic for (F.16), the Cauchy problem corresponding to the data u = 2,

g—z = 0 along the line « 4 y is not well posed.

O
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3. (Problem 5.7.3(b) in text)

Consider the PDE

(F.31) bor + Yoy — 2oy +y =0
The discriminant of this PDE is
(F.32) (Apy)? = App Ay = 0— (1)(y) = —y

We thus see that (F.31) is hyperbolic in the region where y < 0, parabolic in the region where y = 0, and
elliptic in the region where y > 0.

Case 1: y < 0 (Hyperbolic Region)
We seek a coordinate transformation
(F.33) ¢ = g(xa y

such that (F.31) takes the form
P¢y + BePe+ By®y+ 5 (¢,n) =0

Under an arbitrary coordinate transformation the coefficients of the second order terms become

Aey = Axxfxéx + QAxyExfy + Ayyfyfy
A = Awelelle + AayCotly + AvyCyiie + AyyCy iy
(F.34) 2 \? 2 \°
= (Cx) +y (Cy)

U L2
= ()" +y(iy)
Let us first try to choose 7(z, y) so that A,, vanishes identically.

If the level curve 7(z, y) = const of the new coordinate 5 corresponds to the graph « = f(y), then we have

(F.35) Ty = =1 ()i
and so (F.34) becomes
(F.36) Agy = (14 9(?) ()"
Setting A,, = 0, then yields
1
F'ly)=+—=
) V-y
S0
(F.37) r=fly) =2v/—y+C
Corresponding to these two independent solutions for f(y), we adopt the following coordinates
¢ = z+2/-y
F.38
(F.38) o= =2y
Then
G=ie = 1
s 1
y ="My = \/_—y

[~y

@1
<

|

|
3
<

<

Il
N | —
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We now compute the coefficients of the PDE relative to the coordinates (F.38).
N2 N2
A = (&) +u(Q)

Il
=
[3v]
+
N
TN
d]-
N

= 0
A = (~x77x) +y (@my)
1
= ()+u=)
= 2
Appy = (ﬁx)z -y (~y)2
= (1)’ -y (i)
= 0
BC = 5xx + yfyy - ny
_ 1. 3 KN
= oy (-5l 4
_ 1+ 22
2/
_ 2(1+C+n)
B ¢—n
By = oo + Yy — 27y
_ 1o s\ x
- o) - 5
_ 2(1+¢+n)
B ¢—n
Thus, (F.31) is equivalent to
2(14+¢+n) 2(14+¢+n) ()
20, + =, O = Sy = e =0
or
1 1 2
(F.39) o JCFE:”)@C_( 15547;77)%_(%277) 0

Case 2: y > 0 (Elliptic Region)

We now try to find a coordinate transformation such that

0 = A(n = (5177717) +y (5y7~7y)

N2 SN2
L = Ay = (ﬁx)z + i‘/(ﬁy)z
The simplest way to satisfy the first two equations is to take
i(ey) = [y
Clo,y) = ¢

Let us represent level curve of 7. The third equation then implies

1=y ()
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or
1
=t
VY
We can thus take
{(r,y) = =
n(z,y 2y

We then find

BC = 5xx + yfyy - ny
= 0

BU = ﬁm-l-yﬁyy_mh/

1 _3/2) xr
= yloly +—

(2[] VY

1 x

— 4+ =

2y VY

1+2¢

n

Thus, (F.31) is equivalent to

1+2 2
<I>¢g—|—<1>m—|—TC<I>n—|—UZ:0
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Alternatively, one could use the formulas developed in Lecture 16. To make contact with the formulas there,

we take

I
~S oo

T2
Y
Y2 =



and set

and so we have

We might thus take

One then finds

3. (PROBLEM 5.7.3(B) IN TEXT)

A+ \/A11A22 - (A12)2
Arq

1

VY

Ars = ([ A1 Az — (Ars)?

=fly) = 2/y+ const

r=gly) = —2/y+ const

x4+ 2/y
() = 2—2/5

—~
B
|

(&) +u (&)
141
2

= (5xﬁx) +y (5y7~7y)
= 1-1
0

= ()’ + v (i)’
1+1
= 2

5xx + yfyy - ny
0+¢/<—%[M_3ﬂ) —'j%
-1+ 2z
2y
—2(1+¢+m)
C—n

ﬁxx + yﬁyy — Ly

0+y<%[y]_3/2) +%

2(14+¢+n)
-
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Thus, (F.31) is equivalent to

2
2%_2(1zrf:n)q)c+2(1zr_<:n)q)n+(C 1677) .
or
2
<I>cn—(“QTE:")@&“ZTE;")@W(C3277) .
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4. (Problem 5.7.3(d) in text)

Consider the PDE
(F.41) Gy + Ybyy +sin(z +y) =0

Comparing this equation with the general form of a second order linear equation

2 2
(F.42) Y Aijbow, + ) Bide, + Co+ F =0
i,7=1 i=1
we see that we must take
A =
A1s
Ass
(F.43) By
Bs
C
F = sin(z+vy)

[l
oo OoOQ D

The discriminant of (F.41) is thus

(F.44) (A12)” — A1 Ay = (%) —(0)(y) = % >0

and so the PDE (F.41) is hyperbolic. This means there must exist a coordinate transformation that puts
(F.41) in the form
2
(F.45) Ay, y, + Z Bi®y, + ' =0
i=1
Now for a general nonsingular coordinate transformation

¢ =

y)
n = 7~](l‘, y)
v = #((n)
y = 3(¢n)
we have
A’CC = th}ézxézx + ?Alzézxézy + AZZQZyEy
= Cny + yCyCy
A, = A1 Cole + Ara (fxﬁy + 5y7~7x) + A22€:y7~7y
(F.46) Ay = Anilefle + 2A1000 0y + Asailyily
= 7~7x7~7y + yﬁyﬁy
Bl = zflnézm + 241260y + Asalyy + Bile + BaGy
= ny + yny
B;7 = A’j{llﬁx‘x :|— 2A1277xy + Azzﬁyy + B ﬁx + BZﬁy
= Ney T Ylyy

Of course since A;; = 0, already we can simply take

(F.47) Cz,y) =2
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but note that (F.46) tells us that this is consistent.

Let’s try to eliminate Aj,. Let f(z) be a function whose graph corresponds the level curve 7j(z, y) = const.

We then have

(F.48) 7 (z, f(x)) = const

which when differentiated with respect to x yields

(.49) o = =i

Plugging this into the expression (F.46) for A;, and setting the resulting expression equal to zero yields
(F.50) 0= —f'iiyily + yilyily = (=" + J) fyly
or

(F.51) F() ~ flz) =0

The general solution to (F.51) is

(F.52) flz) = Ce®.

Setting y = f(x) and 5 = C, we obtain a suitable expression for 5
(F.53) n=ye "

Inverting (F.47) and (F.53) we obtain

(F.54) f/ — geﬁ

Inserting (F.47), (F.53) and (F.54) into (F.46) we find that all the coefficients A}; and B} vanish except

Ay = Gy + G ) + uGyiy
(F-55) = () (7 +(0) (=) + ne(0) (=)
= L
and
B7/7 = ey + Yiyy
= —¢¢
Thus, (F.41) is equivalent to
_ , , - N
(F.56) 0 - zf_ch%f;i‘:ininjsi(é(i Zl’f;(c’ 1))
or
(F.57) ®ey — O, = —eb sin ¢+ neC)

To solve this equation we first integrate (to find anti-derivatives of) both sides of (F.57) with respect to 5.
We get

(F.58) B¢ — D = cos (¢ +net) + H(C)

Now we regard 7 as being fixed so that (F.58) can be viewed as an first order linear ODE for ®; however,
in solving this ODE we must regard any constant of integration that is introduced as being potentially
dependent on 7.

The general solution of an ODE of the form

(F.59) Y +p(z)y = g(x)
1 xr
(F60) 1) = | [ s +



where
(F.61)

In our case,
(F.62)

S0

(F.63)

and
(F.64)

where

(F.65)

can both be regarded as arbitrary functions. We thus write the general solution of (F.58) as

(F.66)

(¢, n)
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p(x) = el TPt

;o g(Q) =cos(C+ne)+H(EC)

F(n) = Cm)
Gi¢) = egfoce_o‘H(a)da

UO (cos (o + ne®) + H(a)) do + C(n)
eC fOC e~%cos (a + ne®)da + e F(n) + G(C)

¢
®((,n) = e /0 e~ % cos (a4 ne®) da + e F(n) + G(¢)

143

The general solution to (F.41) is now obtained by changing back to the original variables z and y using

(F.47) and (F.53). One thus obtains
O(x, ye x)

¢(z,y)
(F.67)

e fo
e fo

“cos(a+ye "e¥)da+ " Fye ™) + G(x)

“cos (o + ye* ") da + e F(ye™

")+ Glx)
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5. (Problem 5.7.6 in text)

Let a function u(¢, n) satisfy the equation
(F.68) Uey + aue + fuy +yu+3 =0

where «, 8,7,d are functions of ¢ and 5. In the ((,n)-plane, the characteristics are lines parallel to the
coordinate axes. We have shown that the Cauchy data on a characteristic is not adequate for computation of
the solution elsewhere; show, moreover, that Cauchy data cannot be arbitrarily prescribed on a characteristic
in any event because of a compatibility condition imposed by the PDE itself. What does this result imply
about Cauchy data on the (z,y) plane characteristic of Eq. (5.1)

in the hyperbolic case? In the parabolic case? Is there any similar restriction in the elliptic case?

Suppose we try to impose the following condition on a solution of (F.68)

u(Cm) = [f(Q)
up (C,m0) = 9(Q)

Then along the characteristic n = 1, we have

uc (C,m0) = f(¢)

upe (m0) = 4'(Q)
Evaluating (F.68) along the characteristic n = 5, thus yields
(F.69) O=g'+af +Bg+~f+d

Thus, the function ¢ and f can not be completely arbitrary (they must satisfy (F.69) or else the PDE will
not be satisfied along the curve n = n,).

In the hyperbolic case, where there are two families of characteristics, this result implies that there will be
two families of curves for which the Cauchy problem is ill-posed.

In the parabolic case, where there is a single family of characteristics, this result implies that there will be
a l-parameter family of curves for which the Cauchy problem is ill-posed.

In the parabolic case, where there are no characteristics, the Cauchy problem will always be well-posed.



