APPENDIX D

Solutions to Problem Set 4

1. (Problem 3.4.3 in text)

(a) Consider an infinite-interval problem, —oo < # < 400, for which

h(x , forz>0
(D.1) u(z,0) = { —h(—(x; , forx <0
ur(z,0) = 0

Show that the solution of
Ut — Uy = 0

satisfying these initial conditions also solves the following semi-infinite problem: find u(z,t) satisfying
uge — ?ugy = 0, 2 € (0,+00), with initial conditions u(z,0) = h(z), us(x,0) = 0, and with fixed end
condition u(0,t) = 0. [Here h(z) is any given function, with A(0) = 0]. Sketch the solution for the case
where h(z) = % — |x — %| for 1 < & < 2, h(z) = 0 elsewhere.

(b) Use a similar idea to explain how you could use

r+ct
(D.2) u(z,t) = = [u(e +ct,0) + u(z — ct,0)] + —/ u(r,0)dr

1
2 2¢ Jp_et

to solve any finite interval problem in which «(0,¢) = u({,¢) = 0 for all ¢, with u(z,0) = h(z) and u;(x,0) =0
for 0 < & < . [We take h(0) = A(l) = 0.]

(c) Reconsider parts (a) and (b) for situations in which u;(z,0) is prescribed, with u(x,0) = 0. Sketch the
solution for a simple case.

(a) Equation (D.2) gives the unique solution of the wave equation in the region —oo < # < 400, 0 <t < 400,
in terms of its Cauchy data along the z-axis. If we use Eq. (D.1) to extend a Cauchy problem on the positive
z-axis to the entire z-axis, then by restricting Eq. (D.2) to the region (0, +00) x (0, +00) we obtain a solution
of the wave equation satisfying the boundary conditions u(z,0) = h(z), us(x,0) = 0, for all z € (0,400).
We only have to check that if the boundary condition «(0,¢) = 0 is also satisfied. From (D.2) we have

w(z,0) = L[u(x,0)+u(x,0)]+ £ [ u(r,0)dr
h(z)

(D.3)

O o]

O

(b) Our problem now is to define an extension H (z) of the function k() defined on (0,1) to the entire z-axis
so that Eq. (8.22) can be used to write down the solution of the wave equation in the region (0,{) x (0, +00)
satisfying

(D-4) w(0.1) = 0
u(l,t) = 0
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The validity of the first two boundary conditions will be automatic (since the restriction of our extension
must give us exactly what we started with).

Setting u(x,0) = H(x), us(x,0) = 0 we obtain from Eq. (8.22)

u(z,t) = % [H(z +et) + H(x — ct)]

The third boundary condition in (D.4) thus leads to
1
0=u(0,t) = 3 [H(ct) + H(—ct)]

This will be satisfied automatically if we extend h(z) is such a way that the new function H(x) is odd with
respect to reflections about =z = 0.

The last boundary condition thus leads to
1
0=u(l,t)= §[H(l—|—ct) + H(l — ct)]

This will be satisfied automatically if we extend h(z) is such a way that the new function H(x) is odd with
respect to reflections about # = 1.

We thus define H () as follows:

(21+x) , A <r< -l
g($) = (l‘) CO<az<l
—h(z —1) , l<x<
Hx)=g(x—4nl) , 4nl-2<z<4nl+2l |, neZ
O

(c) If instead we had boundary conditions of the form
(D.5) u(z,0) = 0 , O<ue<l
(D-6) w(@,0) = pz) , 0<a<l
(D.7) w(0,1) = 0
(D.8) u(l,t) = 0

we would seek to extend the definition of p(x) to the entire z-axis so that the last two boundary conditions
are satisfied automatically. We would thus need to define P(z) such that

(D.9) 0 = u(0,t)= 216/_C;P(T)d7'
(D.10) 0 = u(l,t)= 21c/l+CtP(7')dT

automatically. To accomplish this we can simply extend p(z) in such a way that it is periodic with period
4l and antisymmetric with respect to reflections about # = 0 and = = {. |
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2. (Problem 3.4.4 in text)

Consider the “whip-cracking” problem:

¢tt - Cz¢xx = 0
$(x,0) = 0
(D.11) ¢e(z,0) = 0
¢(0,) = (1)
¢(0,0) = 0 ,
in the region & > 0, ¢ > 0.
We know from the discussion in Lecture 9 that
(D.12) dlr,t)y=a(z+ct)+ 5 (x—ct)
is the general solution to the wave equation
(D13) ¢tt - Cz¢xx =0
The boundary conditions in (D.11) imply
alz)+p(x) = 0
(D.14) ca(2) —ef(z) = 0
alct) — B(—=ct) = ()

The equation tells us that 5(z) = —a(z). Making this substitution, we get from the second equation that
2ca’(z) =0

50
alz) =K

It would seem that this trivializes everything; however, the first two conditions in (D.14) are only imposed
only for # > 0. We are therefore free to adjust the functions a(z) and (z) in the region where x < 0. The
third equation, in fact, tells us that

alcr) 4+ B(—ex) = y(x)
which we can satisfy by extending the definition of 3(z) to # < 0
i x
B(—z) = =K —1—7(2) , Ya>0

It is not necessary to extend the domain of a(z) to < 0, since in the expression (D.12) for ¢(x,t), the
argument of « is always positive. Thus, we take

[ K ;o (>0
(D.15) " {]{ w
. b — {VQ{)—K , n<0
K , n>0
Thus,
B =al0)+om ={ TCH 1

and so the solution of (D.11) is

(D.16) é(x,t) = { Y (to_ ) ; x—ct<0
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3. (Problem 3.12.1 in text)

(a) Let u(x,t) satisfy the equation

Upr = czum , ¢ =costant |
in some region of the (z,?) plane. Show that the quantity (u; — cuy) is constant along each straight
line defined by « — ¢t = constant, and that (u; + cuy) is constant along each straight line of the form

z + ¢t = constant. These straight lines are called characteristics; we will refer to typical members of the
two families as Cy and C_ curves, respectively; thus (¢ — ¢t = constant) is a C4 curve.

Set

(D.17) dy(m,t) = w (2,1) — cug (2,1)

Along a Uy curve we have

(D.18) r=k +ct

and so along such a curve

(D.19) Gy(m,t) = ¢ (t) = ue (k1 + et ) — cuy (k1 + ¢t 1)
Differentiating ¢4 with respect to ¢ we obtain

(D.20) dj% = Clgp + Ust — gy — Cliy
(D.21) = Wt — gy

(D.22) =0

since u satisfies the wave equation. Therefore, ¢ is constant along any curve of the form (D.18).

Similarly, if we set

(D.23) d_(2,t) = w (2,1) + cuy (2,1)
Then along the curve

(D.24) x=ky—ct

we have

G_(2,t) = ¢_(t) = ug (ko — et,t) + cuy (k2 — ct, 1)

and so
deo_
(D.25) % = —Cliy + Ut — CUgy + ClUgy
(D26) = Uzt — Czuxx
(D.27) = 0
Thus, ¢_ is constant along any curve of the form (D.24). O

(b) Let u(x,0) and us(z,0) be prescribed for all values of « between —oo and +oo, and let (z,,%,) be some
point in the (z,t) plane, with ¢, > 0. Draw the Cy and C_ curves through (z,,?,) and let A and B
denote, respectively, their intercepts with the z-axis. Use the properties of C'y and C_ derived in part (a)
to determine wu; (#,,%,) in terms of initial data at points (A,0) and (B,0). Using a similar technique to
obtain u; (z,, 7) with 0 < 7 < t,, determine wu (z,,%,) by integration with respect to 7, and compare with
Equation (8.22). Observe that this “method of characteristics” again shows that u (z,,%,) depends only on
that part of the initial data between points (A4, 0) and (B, 0).

Let
(D.28) ky =2, F ct,
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and set
(D.29) cx = {(=

From part (a) we know that

P+
(D.30) -

,t)ER2|x:Fct:ki}

u (2, 1) — cug(z,1)
u (2, 1) + cug(z,1)

are, respectively, constant along the lines ¢4 and c_.

At the point (A, 0) where the line ¢y intersects the z-axis we have

(D.31) by = ur(A,0) — cuyp(A,0)

and so the constant ¢4 is completely determined by the Cauchy data at the point (A, 0).

Similarly, at the point (B, 0) where the line c_

intersects the z-axis we have

(D.32) ¢ = u(B,0) + cuy(B,0)

and so the constant ¢_ is completely determined by the Cauchy data at the point (B, 0).

Using (D.31) and (D.32) we can rewrite equations (D.30) as

(D.33)

) = Ut($0ato)_cux($0ato)
) = ue (@, t,) + cug (o,15)

Adding the second equation to the first and then dividing by 2 we obtain

(D.34) ur (2,,t,) = E (ur (A, 0) + uy (B, 0) — cuy (A,0) + cuy (B, 0))

2

We can be a even more explicit than this. For
is precisely k_ = x, + ct,. Thus,

(D.35) up (20, t0) = 5 (e (

the value of A is precisely ky = x, — ¢t,, and the value of B

x, —cty, 0) + uy (xo + ct,, 0))

+5 (—ug (2o — cto, 0) + ug (z, + cto, 0))

This equation is perfectly valid for any choice of x, and t,, and so we can write

(D.36) T

ur (2,,1) = %(ut(xo—ct,O)—l—ut(xo—l—ct,O))

(—ugp (2o — ct,0) + uy (2, + ct,0))

Integrating both sides with respect to ¢ from 0 to ¢, we obtain

(D.37) wlooto) =un0) = 3

2

up (1, —et,0) dt + %foto ug (x, + ct,0) dt
foto Uy (2o — ct,0) dt + %foto ug (2o +¢t,0) dt
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If we make a change of variables { = z, — ¢t in the first and third integrals and a change of variables
¢ = 2, + ct in the second and fourth integrals, the (D.37) becomes

1 ro—cty 1 rotct,
(D.38) U (2o, o) —u(2,,0) = ~5 uz (C,0)d¢C + %/ uz (£, 0)d¢
1 Oxo—cto 1 Oxo+cto
(D.40)
1 Totct,
(D.41) = o ur (¢, 0)d¢
ro—cty
1 Zo—ct, 1 zotct,
(D.42) 5 u(CO) [T 4 S u (¢ 0) [
(D.43)
1 Totct,
ro—cty
1
(D.45) —1—5 (u(xy— cto) + u (o + cto)) + u(2,,0)
or

Totct,
u(z,,t,) = % (u (o —cto) + u(x, +cty)) + i/ uz (£, 0)d¢

26 o—cCty

which is precisely Equation (8.22). O



