
APPENDIX D

Solutions to Problem Set 4

1. (Problem 3.4.3 in text)

(a) Consider an in�nite-interval problem, �1 < x < +1, for which

u(x; 0) =

�
h(x) ; for x > 0

�h(�x) ; for x < 0
ut(x; 0) = 0

(D.1)

Show that the solution of

utt � c2uxx = 0

satisfying these initial conditions also solves the following semi-in�nite problem: �nd u(x; t) satisfying
utt � c2uxx = 0, x 2 (0;+1), with initial conditions u(x; 0) = h(x), ut(x; 0) = 0, and with �xed end
condition u(0; t) = 0. [Here h(x) is any given function, with h(0) = 0]. Sketch the solution for the case
where h(x) = 1

2 �
��x� 3

2

�� for 1 < x < 2, h(x) = 0 elsewhere.

(b) Use a similar idea to explain how you could use

u(x; t) =
1

2
[u(x+ ct; 0) + u(x� ct; 0)] +

1

2c

Z x+ct

x�ct

ut(�; 0)d�(D.2)

to solve any �nite interval problem in which u(0; t) = u(l; t) = 0 for all t, with u(x; 0) = h(x) and ut(x; 0) = 0
for 0 < x < l. [We take h(0) = h(l) = 0.]

(c) Reconsider parts (a) and (b) for situations in which ut(x; 0) is prescribed, with u(x; 0) = 0. Sketch the
solution for a simple case.

(a) Equation (D.2) gives the unique solution of the wave equation in the region �1 < x < +1, 0 < t < +1,
in terms of its Cauchy data along the x-axis. If we use Eq. (D.1) to extend a Cauchy problem on the positive
x-axis to the entire x-axis, then by restricting Eq. (D.2) to the region (0;+1)�(0;+1) we obtain a solution
of the wave equation satisfying the boundary conditions u(x; 0) = h(x), ut(x; 0) = 0, for all x 2 (0;+1).
We only have to check that if the boundary condition u(0; t) = 0 is also satis�ed. From (D.2) we have

u(x; 0) = 1
2
[u(x; 0) + u(x; 0)] + 1

2c

R x

x
ut(�; 0)d�

= 1
2
h(x)

= 0
(D.3)

(b) Our problem now is to de�ne an extension H(x) of the function h(x) de�ned on (0; l) to the entire x-axis
so that Eq. (8.22) can be used to write down the solution of the wave equation in the region (0; l)� (0;+1)
satisfying

u(x; 0) = h(x)
ut(x; 0) = 0
u(0; t) = 0
u(l; t) = 0

(D.4)
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The validity of the �rst two boundary conditions will be automatic (since the restriction of our extension
must give us exactly what we started with).

Setting u(x; 0) = H(x), ut(x; 0) = 0 we obtain from Eq. (8.22)

u(x; t) =
1

2
[H(x+ ct) +H(x� ct)]

The third boundary condition in (D.4) thus leads to

0 = u(0; t) =
1

2
[H(ct) +H(�ct)] :

This will be satis�ed automatically if we extend h(x) is such a way that the new function H(x) is odd with
respect to re
ections about x = 0.

The last boundary condition thus leads to

0 = u(l; t) =
1

2
[H(l + ct) +H(l � ct)] :

This will be satis�ed automatically if we extend h(x) is such a way that the new function H(x) is odd with
respect to re
ections about x = l.

We thus de�ne H(x) as follows:

g(x) =

8>><
>>:

h(2l + x) ; �2l < x < �l
�h(�x) ; �l < x < 0

h(x) ; 0 < x < l

�h(x� l) ; l < x < 2l

H(x) = g (x� 4nl) ; 4nl � 2l < x < 4nl + 2l ; n 2Z :

(c) If instead we had boundary conditions of the form

u(x; 0) = 0 ; 0 < x < l(D.5)

ut(x; 0) = p(x) ; 0 < x < l(D.6)

u(0; t) = 0(D.7)

u(l; t) = 0(D.8)

we would seek to extend the de�nition of p(x) to the entire x-axis so that the last two boundary conditions
are satis�ed automatically. We would thus need to de�ne P (x) such that

0 = u(0; t) =
1

2c

Z ct

�ct

P (� )d�(D.9)

0 = u(l; t) =
1

2c

Z l+ct

l�ct

P (� )d�(D.10)

automatically. To accomplish this we can simply extend p(x) in such a way that it is periodic with period
4l and antisymmetric with respect to re
ections about x = 0 and x = l.
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2. (Problem 3.4.4 in text)

Consider the \whip-cracking" problem:

�tt � c2�xx = 0
�(x; 0) = 0
�t(x; 0) = 0
�(0; t) = 
(t)
�(0; 0) = 0 ;

(D.11)

in the region x > 0, t > 0.

We know from the discussion in Lecture 9 that

�(x; t) = � (x+ ct) + � (x� ct)(D.12)

is the general solution to the wave equation

�tt � c2�xx = 0 :(D.13)

The boundary conditions in (D.11) imply

�(x) + �(x) = 0
c�0(x)� c�0(x) = 0
�(ct)� �(�ct) = 
(t) :

(D.14)

The equation tells us that �(x) = ��(x). Making this substitution, we get from the second equation that

2c�0(x) = 0

so

�(x) = K :

It would seem that this trivializes everything; however, the �rst two conditions in (D.14) are only imposed
only for x > 0. We are therefore free to adjust the functions �(x) and �(x) in the region where x < 0. The
third equation, in fact, tells us that

�(cx) + �(�cx) = 
(x)

which we can satisfy by extending the de�nition of �(x) to x < 0

�(�x) = �K + 

�x
c

�
; 8 x > 0 :

It is not necessary to extend the domain of �(x) to x < 0, since in the expression (D.12) for �(x,t), the
argument of � is always positive. Thus, we take

�(�) =

�
K ; � > 0
K ; � < 0

�(�) =

�


�
��

c

�
�K ; � < 0

�K ; � > 0

(D.15)

Thus,

� (�; �) = �(�) + �(�) =

�


�
��

c

�
; � < 0

0 ; � > 0

and so the solution of (D.11) is

�(x; t) =

�


�
t� x

c

�
; �� ct < 0

0 ; x� ct > 0
:(D.16)
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3. (Problem 3.12.1 in text)

(a) Let u(x; t) satisfy the equation

utt = c2uxx ; c = costant ;

in some region of the (x; t) plane. Show that the quantity (ut � cux) is constant along each straight
line de�ned by x � ct = constant, and that (ut + cux) is constant along each straight line of the form
x + ct = constant. These straight lines are called characteristics; we will refer to typical members of the
two families as C+ and C� curves, respectively; thus (x� ct = constant) is a C+ curve.

Set

�+(x; t) = ut (x; t)� cux (x; t) :(D.17)

Along a C+ curve we have

x = k1 + ct(D.18)

and so along such a curve

�+(x; t) = �+(t) = ut (k1 + ct; t)� cux (k1 + ct; t) :(D.19)

Di�erentiating �+ with respect to t we obtain

d�+

dt
= cutx + utt � c2uxx � cutx(D.20)

= utt � c2uxx(D.21)

= 0(D.22)

since u satis�es the wave equation. Therefore, �+ is constant along any curve of the form (D.18).

Similarly, if we set

��(x; t) = ut (x; t) + cux (x; t) :(D.23)

Then along the curve

x = k2 � ct(D.24)

we have

��(x; t) = ��(t) = ut (k2 � ct; t) + cux (k2 � ct; t)

and so

d��

dt
= �cutx + utt � c2uxx + cutx(D.25)

= utt � c2uxx(D.26)

= 0(D.27)

Thus, �� is constant along any curve of the form (D.24).

(b) Let u(x; 0) and ut(x; 0) be prescribed for all values of x between �1 and +1, and let (xo; to) be some
point in the (x; t) plane, with to > 0. Draw the C+ and C� curves through (xo; to) and let A and B

denote, respectively, their intercepts with the x-axis. Use the properties of C+ and C� derived in part (a)
to determine ut (xo; to) in terms of initial data at points (A; 0) and (B; 0). Using a similar technique to
obtain ut (xo; � ) with 0 < � < to, determine u (xo; to) by integration with respect to � , and compare with
Equation (8.22). Observe that this \method of characteristics" again shows that u (xo; to) depends only on
that part of the initial data between points (A; 0) and (B; 0).

Let

k� = xo � cto(D.28)
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and set

c� =
�
(x; t) 2 R2 j x� ct = k�

	
(D.29)

From part (a) we know that

�+ = ut(x; t)� cux(x; t)
�� = ut(x; t) + cux(x; t)

(D.30)

are, respectively, constant along the lines c+ and c�.

At the point (A; 0) where the line c+ intersects the x-axis we have

�+ = ut(A; 0)� cux(A; 0)(D.31)

and so the constant �+ is completely determined by the Cauchy data at the point (A; 0).

Similarly, at the point (B; 0) where the line c� intersects the x-axis we have

�� = ut(B; 0) + cux(B; 0)(D.32)

and so the constant �� is completely determined by the Cauchy data at the point (B; 0).

Using (D.31) and (D.32) we can rewrite equations (D.30) as

ut (A; 0)� cux (A; 0) = ut (xo; to) � cux (xo; to)
ut (B; 0) + cux (B; 0) = ut (xo; to) + cux (xo; to)

(D.33)

Adding the second equation to the �rst and then dividing by 2 we obtain

ut (xo; to) =
1

2
(ut (A; 0) + ut (B; 0)� cux (A; 0) + cux (B; 0)) :(D.34)

We can be a even more explicit than this. For the value of A is precisely k+ = xo � cto, and the value of B
is precisely k� = xo + cto. Thus,

ut (xo; to) = 1
2 (ut (xo � cto; 0) + ut (xo + cto; 0))
+ c
2 (�ux (xo � cto; 0) + ux (xo + cto; 0))

(D.35)

This equation is perfectly valid for any choice of xo and to, and so we can write

ut (xo; t) = 1
2 (ut (xo � ct; 0) + ut (xo + ct; 0))
+ c
2 (�ux (xo � ct; 0) + ux (xo + ct; 0))

(D.36)

Integrating both sides with respect to t from 0 to to we obtain

u (xo; to)� u (xo; 0) = 1
2

R to

0 ut (xo � ct; 0)dt+ 1
2

R to

0 ut (xo + ct; 0)dt

� c
2

R to

0 ux (xo � ct; 0)dt+ c
2

R to

0 ux (xo + ct; 0) dt
(D.37)
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If we make a change of variables � = xo � ct in the �rst and third integrals and a change of variables
� = xo + ct in the second and fourth integrals, the (D.37) becomes

u (xo; to)� u (xo; 0) = �
1

2c

Z xo�cto

xo

ut (�; 0)d� +
1

2c

Z xo+cto

xo

ut (�; 0) d�(D.38)

+
1

2

Z xo�cto

xo

ux (�; 0)d� +
1

2

Z xo+cto

xo

ux (�; 0)d�(D.39)

(D.40)

=
1

2c

Z xo+cto

xo�cto

ut (�; 0) d�(D.41)

+
1

2
u (�; 0)

��xo�cto

xo
+

1

2
u (�; 0)

��xo+cto

xo
(D.42)

(D.43)

=
1

2c

Z xo+cto

xo�cto

ut (�; 0) d�(D.44)

+
1

2
(u (xo � cto) + u (xo + cto)) + u (xo; 0)(D.45)

or

u (xo; to) =
1

2
(u (xo � cto) + u (xo + cto)) +

1

2c

Z xo+cto

xo�cto

ut (�; 0) d�

which is precisely Equation (8.22).


