
APPENDIX B

Solutions to Problem Set 2

1. (Problem 2.2.2 in text)

(See Lecture 2)

2. (Problem 2.2.3 in text)

(See Lecture 2)

3. (Problem 2.2.5 in text)

Use the method of images to solve for �(x; t) in the region 0 < x < L, t > 0 satisfying

�t � a2�xx = 0
�(x; 0) = f(x)
�(0; t) = 0

�x(L; t) = 0 :

(B.1)

We start with the solution to the PDE/BVP

�t � a2�xx = 0
�(x; 0) = F (x)

(B.2)

on the interval �1 < x < +1. In Problem 2.2.2 (and in lecture) the solution was shown to be
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Our goal is to obtain a solution of (B.1) by de�ning a function F : R! R such that

F (x) = f(x) ; 0 � x � L ;(B.4)
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and
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Note that the integral on the right hand side will vanish automatically if the function F (�) were an odd
function of �. (The integral of an odd function about symmetric limits vanishes identically).

Similarly, the integral of the right hand side would vanish automatically if F (�) is symmetric about � = L

(because the rest of the integrand is already odd with respect to re
ections about � = L).
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The question thus becomes how can we extend the function f(x) to a function F (x) that is odd with respect
to re
ections about x = 0 and even with respect to re
ections about x = L.

This can be accomplished by de�ning F (x) as the periodic function with period 4L. We do this in two
steps. First we de�ne g : [�2L; 2L]! R by

g(x) =

8>><
>>:
�f (2L+ x) �2L � x � �L

�f (�x) ; �L � x � 0
f(x) ; 0 � x � L

f (2L� x) ; L � x � 2L

(B.7)

and then de�ne F : R! R by

F (x) = g (x� 4nL) ; 4nL� 2L � x � 4nL+ 2L ; n 2Z :(B.8)

The solution to (B.1) is thus given by (B.3) with F (�) de�ned by (7) and (B.8).

4. Solution to Problem 2.6.2.

Referring to Problem 1.2.3, interprete the equation

�t = a2�xx +m(x) � �(t)(B.9)

for �1 < x < +1, t > 0, where m(x) is a given function, in terms of the release at t = 0 of heat energy
distributed along the rod with an intensity proportional to m(x). Use Laplace transforms to �nd �(x; t) if
�(x; 0) = 0 for all x. Next, replace m(x) by �(x� �) (where � is a chosen point such that �1 < � < +1)
and discuss the meaning of your results in this case.

In problem 1.2.3, the di�erential equation
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c�
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h(x; t)(B.10)

is interpreted as the follows. The unknown function �(x; t) represents the temperature of a (1-dimensional)
wire, with (linear) density �, speci�c heat c, and thermal conductivity k, at position x and time t. The
term � (�� �o) represents the heat loss per unit length (� is a constant indicating the rate at which heat
is lost to the surrounding environment and �o is the temperature of the environment). The function h(x; t)
is interpreted as the rate at which heat is being generated inside the wire at the point x and time t.

Comparing (B.9) and (B.10), we see that the PDE (B.9) would correspond to an in�nite wire that loses no
heat to its environment (� = 0) and that is heated at a rate of c�m(x)�(t) at the point x at time t. Noting
that the total amount of heat added to the wire at point x (over all time) isZ

1

0

c�m(x)�(t)dt = c�m(x) :

and that the support of the generalized function �(t) is concentrated at t = 0, we interprete the term
c�m(x)�(t) as representing the instantaneous addition of c�m(x) units of heat to the wire at the point x at
the time t = 0.

Let us now take the Laplace transform (with respect to t) of (1).

s�(x; s) � �(x; 0)� a2�xx(x; s) =

Z
1

0

m(x)�(t)e�stdt = m(x)e�s�0 = m(x):

Here we have set �(x; s) = L [�(x; t)] (s) and have implicitly assumed that �(x; t) is su�ciently tame that
L (�xx) = �xx. Imposing the initial condition �(x; 0) = 0 we thus arrive at the following second order ODE
for �(x; s)

�xx � s

a2
� = m(x) :


