APPENDIX B

Solutions to Problem Set 2

1. (Problem 2.2.2 in text)

(See Lecture 2)

2. (Problem 2.2.3 in text)

(See Lecture 2)

3. (Problem 2.2.5 in text)

Use the method of images to solve for ¢(z,t) in the region 0 < x < L, t > 0 satisfying

"o 2 b

z,0) = x
(B.1) o) = 0
$o(L,t) = 0

We start with the solution to the PDE/BVP

¢t - a2¢xx = 0
B.2
(B2 b(x.0) = Fla)
on the interval —oo < # < 4+00. In Problem 2.2.2 (and in lecture) the solution was shown to be

1 e (x—¢)°
(B3) qf)(l‘,t) - 2a\/ﬁ/—oo F(C) exp [_W dC
Our goal is to obtain a solution of (B.1) by defining a function F' : R — R such that
(B.4) Fle)=f(z) , 0<a<L |

1 + oo ($ _ C)Z
(B.5) 0=2¢(0,1) = m/_oo F(¢) exp [_W d¢
and
1Lt (L=¢ (L—¢)°

(B.6) 0= 0 (L,1) 2a\/ﬁ/_oo ( 2a%t ) (C) exp l dat ¢

Note that the integral on the right hand side will vanish automatically if the function F({) were an odd
function of (. (The integral of an odd function about symmetric limits vanishes identically).

Similarly, the integral of the right hand side would vanish automatically if F'({) is symmetric about ¢ = L
(because the rest of the integrand is already odd with respect to reflections about { = L).
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4. SOLUTION TO PROBLEM 2.6.2. 105

The question thus becomes how can we extend the function f(#) to a function F(z) that is odd with respect
to reflections about # = 0 and even with respect to reflections about z = L.

This can be accomplished by defining F'(x) as the periodic function with period 4L. We do this in two
steps. First we define g : [-2L,2L] — R by

—f(2L+ ) 2L <a< L
— _f(_$) ) —LSl‘SO
(B.7) 9(@) = fe) L 0<e<t
F(2L —x) , L<a<2L
and then define F': R — R by
(B.8) Fe)=g(x—4nL) |, 4nL 2L <z <4nL+2L |, neZ

The solution to (B.1) is thus given by (B.3) with F(x) defined by (7) and (B.8).

4. Solution to Problem 2.6.2.

Referring to Problem 1.2.3, interprete the equation
(B.9) ¢r = a’¢rr + m(x) - 5(t)

for —oo < & < 400, t > 0, where m(z) is a given function, in terms of the release at t = 0 of heat energy
distributed along the rod with an intensity proportional to m(z). Use Laplace transforms to find ¢(z,¢) if
é(x,0) = 0 for all . Next, replace m(x) by §(x — ) (where { is a chosen point such that —oo < ¢ < +0)
and discuss the meaning of your results in this case.

In problem 1.2.3, the differential equation
k 1 1

(BlO) ¢t - _¢xx + _6 (¢ - ¢0) = —h(l‘,t)
cp cp cp

is interpreted as the follows. The unknown function ¢(z,t) represents the temperature of a (1-dimensional)
wire, with (linear) density p, specific heat ¢, and thermal conductivity k, at position # and time ¢. The
term 3 (¢ — ¢,) represents the heat loss per unit length (3 is a constant indicating the rate at which heat
is lost to the surrounding environment and ¢, is the temperature of the environment). The function h(z,?)
is interpreted as the rate at which heat is being generated inside the wire at the point z and time ¢.

Comparing (B.9) and (B.10), we see that the PDE (B.9) would correspond to an infinite wire that loses no
heat to its environment (8 = 0) and that is heated at a rate of cpm(z)d(¢) at the point z at time ¢. Noting
that the total amount of heat added to the wire at point & (over all time) is

/000 cpm(x)6(t)dt = cpm(x)

and that the support of the generalized function d(¢) is concentrated at ¢ = 0, we interprete the term
cpm(x)d(t) as representing the instantaneous addition of cpm(z) units of heat to the wire at the point x at
the time ¢t = 0.

Let us now take the Laplace transform (with respect to t) of (1).
s®(z,5) — ¢(z,0) — a’Ppy(x,s) = / m(z)d(t)e™*tdt = m(z)e™*" = m(z).
0

Here we have set ®(x,s) = L[¢(x,t)] (s) and have implicitly assumed that ¢(x,t) is sufficiently tame that
L (¢zz) = Ppp. Imposing the initial condition ¢(x,0) = 0 we thus arrive at the following second order ODE
for ®(z,s)

o= m(x)

q)xx -
a2



