
APPENDIX A

Solutions to Problem Set 1

1. (Problem 1.2.4 in text)

Let the temperature � inside a solid sphere be a function of the radial distance r from the center and the
time t. Show that the 3-dimensional heat equation
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when transformed to spherical coordinates reduces to
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Show also that a transformation of the form � = r� , for a suitable choice of constant � reduces this
equation to the form
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Discuss also the corresponding problem of 1-dimensional heat ow in a cylinder (consider here the trans-
formation � = ln jrj).

2. (Problem 1.4.1 in text)

Using Separation of Variables, investigate solutions of of the Heat Equation

@�
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� a2
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@x2
= 0 :(A.1)

when the separation constant C is taken to be the square of a complex number. Which of these solutions
compatible with the boundary conditions

�(x; 0) = g(x)(A.2)

�(0; t) = 0(A.3)

�(L; t) = 0(A.4)

lim
t!1

�(x; t) = 0(A.5)

Suppose

�(x; t) = F (x)G(t):

If we plug this expression for �(x; t) into the Heat Equation we �nd

dG
dt

G
= a2

d2F
dx2

F
:
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Applying the usual Separation of Variables argument we thus arrive at the following pair of ordinary
di�erential equations for F (x) and G(t):
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F = 0(A.6)

dG
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� CG = 0:(A.7)

A priori, the separation constant C could be any complex number. Let us set C = (�+ i�)2. By letting
� range over the set of real numbers and � range over the set of non-negative real numbers, we can still
obtain any complex number C we want. The general solution of
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While is tempting to try to take the real and imaginary parts of these complex-valued solutions to obtain four
families of real-valued solutions, this is not really permitted. For the di�erential equation satis�es by F (x)
is not invariant under complex conjugation (when �� 6= 0), and so the complex conjugate of one solution
is not necessarily a solution; hence the real and imaginary parts of a solution can not be separated without
destroying the solution. We thus obtain two 2-parameter families of linearly independent complex-valued
solutions:

f1;�;� = e(
�+i�

a )x

f2;�;� = e�(
�+i�
a )x

The general solution of

dG

dt
� (�+ i�)2G = 0

is given by

G(t) = A exp
�
(�+ i�)2t

�
And so we obtain one 2-parameter family of complex-valued solutions of (A.7):

g�;�(t) = e(��+i�)
2t

We now obtain, in toto, two 2-parameter families of complex-valued solutions of the Heat Equation by
taking all possible products of the functions fi;�;�(x) and g�;�(t) :
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�+i�

a )x

Let us now decide which of these solutions is amenable to the boundary conditions.
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First of all in order that our solutions be real-valued functions we must take either � = 0 or � = 0. This
leads us to restrict our attention to solutions of the form
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In order to satisfy the boundary condition (A.5) we eliminate those solutions that are proportional to e�
2t.

In order to satisfy the boundary condition (A.3), we eliminate those solutions that are proportional to

cos(�x
a
).

In order to satisfy the boundary condition (A.4) we demand further that

�L

a
= n�

We are thus constricted to construct solutions from functions of the form

�n(x; t) = e�(
n�a
L )2t sin

�
2�x

L

�
:

3. (Problem 1.4.2 in text)

Suppose we want to use the function

�(x; t) =
NX
n=1

cn exp
�
�n2�2a2t=L2

�
sin (n�x=L)

where N is a chosen integer and the cn are constants, to approximate solutions of the following problem:
Find �(x; t) satisfying the Heat Equation in the region 0 < x < L, 0 < t, with 0 = �(0; t) � �(L; t) and
�(x; 0) = g(x). What would be a good way to determine the constants cn. If we permitN !1, what feature

of the series would appear to ensure convergence for t > 0? (Hint: consider
R L
0 [�(x; 0)��(x; 0)]2 dx.)

According to the Fourier Theorem, every continuous function f(x) on the interval [0; L] has a Fourier (Sine)
Series Representation:
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Therefore, if �x the coe�cients cn to be
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then

�(x; t) =
NX
n=1

cn exp
�
�n2�2a2t=L2

�
sin (n�x=L)

being constructed as a linear combination of solutions of the Heat Equation, clearly satis�es the Heat
Equation. Moreover,

�(0; t) =
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n=1

cn exp
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�
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So �(x; t) also satis�es the di�erential equation and the boundary conditions at x = 0 and x = L, however
it does not quite satisfy the boundary condition at t = 0 since

�(x; 0) = g(x) 6=
NX
n=1

cn sin (n�x=L) = �(x; 0)

in general. Indeed,
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To clarify our notation, �(x; t) is the solution of the Heat Equation vanishing at x = 0 and x = L and
satisfying

�(x; 0) = g(x) =
1X
n=1

cn sin
�n�x
L

�
;

and �(x; t) is the solution of the Heat Equation vanishing at x = 0 and x = L and satisfying

�(x; 0) = G(x) =
NX
n=1

cn sin (n�x=L)

To get a handle on the di�erence between �(x; t) and �(x; t) we shall investigate the di�erence between g(x)
and G(x): If we can show that in the limitN !1, G(x)! g(x), then we can conclude that limn!1�(x; t)
satis�es exactly the same boundary conditions as �(x; t), and so �(x; t) = �(x; t): Now G(x) is a manifestly
continuous function, so if g(x) is continuous, the square of the di�erence between g(x) and G(x) is a
manifestly positive continuous function. But then we have necessarily

0 �
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and furthermore
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0
(g(x)� G(x))2 dx if and only if g(x) = G(x):
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But
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Since the series
1X
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converges, necessarily we must have

lim
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Hence,

lim
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Now let us compare the di�erence between the solution �(x; t) that satis�es our boundary conditions exactly,
and the solution �(x; t) that satis�es our boundary conditions only approximately:

�(x; t)��(x; t) =
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Note that this error term is negliable for large N not only because limn!1 cn = 0, but also because the
factors

exp
�
�n2�2a2t=L2

�
go to zero extremely rapidly for large n (for any t > 0).


