
LECTURE 24

Green's Functions for Wave Equations, Cont'd

Last time we looked for a Green's function suitable for calculating the solution of an inhomogeneous wave
equation. We ended up with
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Let us now consider a speci�c example.

Example.

At time t = 0 a small piece of charged material is ejected with velocity along the z-axis from an in�nite
plane of (perfectly) conducting material that is maintained at constant potential 0, and coincident with the
(x; y)-plane. Assume that initially the scalar potential had constant value 0 everywhere within the halfspace
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and �nd an expression for the scalar electromagnetic potential at the point r at time t.
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where �(r; t) is the charge density at the point r at the time t. Our initial conditions imply
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We also have the following boundary conditions along the plane z = 0.
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The second condition comes from the fact that the electric �eld, which is identi�able with r� must vanish
at the surface of a perfect conductor. But then
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We shall also assume that the solution �(r; t) vanishes su�ciently fast as jrj ! 1; more explicitly,
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for any function F (r). This is reasonable since the e�ect of any source that is con�ned within a bounded
region of space can never propagate all the way to spatial in�nity in any �nite time. We thus need to solve
the following PDE/BVP
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(the second and third integrals vanish identically due to the boundary conditions on �.)

Equation (24.7) may be written more explicitly as
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Making a change of variables
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