LECTURE 24

Green’s Functions for Wave Equations, Cont’d

Last time we looked for a Green’s function suitable for calculating the solution of an inhomogeneous wave
equation. We ended up with

1 r—r,
(241) G(I‘,t;l‘o,to) = m(s (t — 1, — | : |)
as a solution to
(§T - szio) G(r,tiro,t,) = d(t—t,)d(r—r.)
(24.2) G(r,t;re,t,) = 0 , t<t,
S (rtrot,) = 0, t<t,

If G (r,t;r,,t,) satisfies (24.2), then the solution of

32
(24.3) (ﬁ_czvz) d(r,t)=f(r,t), Yt>0 , reV,cRr?
1s
O(r,t) = f0t+ fVO G (r,t;r0,t,) f(ro,t,) dVodt,
(24.4) +fy, (®000,0) 22 (r,85w0,0) = G (1, 1505,0) 22 (x,,0)) dV,

t+
+e? fo fov, (G352 — @55) dS,dt,

Let us now consider a specific example.
Example.

At time ¢ = 0 a small piece of charged material is ejected with velocity along the z-axis from an infinite
plane of (perfectly) conducting material that is maintained at constant potential 0, and coincident with the
(z,y)-plane. Assume that initially the scalar potential had constant value 0 everywhere within the halfspace

Voz{(x,y,z)ER3|z>0}

and find an expression for the scalar electromagnetic potential at the point r at time ¢.

The scalar electromagnetic potential is governed by equation

0? _— dmwp(r,t)
(245) (w Y% ) <I>(I‘,t) = T
where p(r,?) is the charge density at the point r at the time ¢. Our initial conditions imply
$(r,0) = 0
0P
E (I‘, 0) = 0
We also have the following boundary conditions along the plane z = 0.
®(z,y,0,t) = 0
0P
6_2; (l‘, Y, 0, t) = 0
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The second condition comes from the fact that the electric field, which is identifiable with V& must vanish
at the surface of a perfect conductor. But then

OZE.HZWS.II:(@@ 00 Od _ oo

We shall also assume that the solution ®(r,¢) vanishes sufficiently fast as |r| = oo; more explicitly,

lim O(r,t)F(r)dS =0
vol V=00 av,

for any function F'(r). This is reasonable since the effect of any source that is confined within a bounded
region of space can never propagate all the way to spatial infinity in any finite time. We thus need to solve
the following PDE/BVP

(g—; - /\2V2) B(r, 1) 06 (2)3(y)d (= + vt)
$(r,0) = 0
(24.6) 2 (:0) = 0
()]0 = 0
limpy| 500 F(r)@(x,t) = 0

Setting
Vo= {r=(x,y,2) €R*| 2 <0}

plugging into (24.3) yields

o+
O(r,1) 1 fVo G (v 10, t0) [ (ro,t,) dV,dt,
—I—IVO ® (r,,0) 577 oG (I‘ t;v,,0) — G (r,t;1,,0) gtq) (1‘0,0)) dv,

(24.7) + o Jov, (52— 932) ds. .

+ r—r,
I Sy, arem (t 1, - M) 06(20)8 ()8 (20 — vlo) dV,dt,

(the second and third integrals vanish identically due to the boundary conditions on ®.)

Equation (24.7) may be written more explicitly as

o et +00 +00 0 1
S (z,y,7,1) 2/ dto/ da:o/ dyo/ dz,
Ame® Jo oo oo —co {(l‘—l‘o)zﬂy—yo)zﬂz—zo)z

“§ (t —t, - ! {(1‘ — 2 + (y—yo) + (2 — Zo)zD

C

X 8(20)6(y0)d (20 — vto)

1 1
= 471_62/ dt, \/ ) 5<t—to—z\/x2+y2—|—(z—vto)2>

224y + (2 — vt
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Making a change of variables

1
T to—i——\/xz—i—yz—l—(z—vto)z
c
A4 vz 4 /(2 —v2) (22 + y?) + 2(z — vT)?
b = 2 — 2
c? [\/(cz—vz)xz—i—yz—|—cz(z—|—vr)2—v(z—v7')]
dto = dr

(¢ —v?) \/(62 —v2) (22 4+ y*)+ 2 (2 — vr)z

1 2 g2

\/xz + 42 4 (2 — vtg)® K [—vz —vir+ \/(c2 — o) (2 +y?)+ 2 (2 — vr)z]

we get

o /T+ ed(t—r)dr
2
dre? J \/(cz—vz)(xz—i—yz)—I—cz (z—m—)2
o 1

S (z,y,2,1) =

Ine fler o) (@2 + 92) + €2 (s — )?



