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LECTURE 21

Green's Identities

Let us recall Stokes' Theorem in n-dimensions.

Theorem 21.1. Let F : Rn! R
n be a vector �eld over Rn that is of class C1 on some closed, connected,

simply connected n-dimensional region D � Rn. ThenZ
D

r �F dV =

Z
@D

F � n dS

where @D is the boundary of D and n(r) is the unit vector that is (outward) normal to the surface @D at
the point r 2 @D.

As a special case of Stokes' theorem, we may set

F = r�(21.1)

with � a C2 function on D. We then obtainZ
D

r2� dV =

Z
@D

r� � n dS :(21.2)

Recall that the identity (21.2) was essential to the proof that any extrema of a solution � of 2-dimensional
Laplace's equation

r2� =
@2�

@x2
+
@2�

@y2
= 0

must occur on the boundary of region. The analogous proposition about extrema for solutions of Laplace's
equation in n-dimensions is also true and again it is relatively easy consequence of (21.2).

Another special case of Stokes' theorem comes from the choice

F = �r :(21.3)

For this case, Stokes' theorem saysZ
D

r � (�r ) dV =

Z
@D

�r � ndS :(21.4)

Using the identity

r � (�F) = r� �F+ �r �F(21.5)

we �nd (21.4) is equivalent toZ
D

r� � r dV +

Z
D

�r2 dV =

Z
@D

�r � n dS :(21.6)

Equation (21.6) is known as Green's �rst identity.

Reversing the roles of � and  in (21.6) we obtainZ
D

r � r�dV +

Z
D

 r2�dV =

Z
@D

 r� � n dS :(21.7)
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92 21. GREEN'S IDENTITIES

Finally, subtracting (21.7) from (21.6) we getZ
D

�
�r2 �  r2�

�
dV =

Z
@D

(�r �  r�) � n dS :(21.8)

Equation (21.8) is known as Green's second identity.

Now set

 (r) =
1

jr� roj+ �

and insert this expression into (21.8). We then getZ
D

�

�
r2 1

jr� roj+ �

�
dV =

Z
D

1

jr� roj+ �
r2�dV

+

Z
@D

�
1

jr� roj � �
r�� �

�
r

1

jr� roj+ �

�
� ndS

�
:

Taking the limit �! 0 and using the identities

lim
�!0

r2 1

jr� roj+ �
= �4��n (r� ro)

lim
�!0

1

jr� roj+ �
=

1

jr� roj

lim
�!0

r
1

jr� roj+ �
= r

1

jr� roj

we obtain

�4�� (ro) =
R
D

1
jr�roj

r2�dV

+
R
@D

�
1

jr�roj
r�� �

�
r 1
jr�roj

�
�ndS

� :(21.9)

Equation (21.9) is known as Green's third identity.

Notice that if � satis�es Laplace's equation the �rst term on the right hand side vanishes and so we have

� (ro) = �1
4�

R
@D

�
1

jr�roj
r�� �

�
r 1
jr�roj

�
� ndS

�
= 1

4�

R
@D

�
� @
@n

1
r�ro

� 1
jr�roj

@�

@n

�
dS :

(21.10)

Here @
@n

is the directional derivative corresponding to the surface normal vector n. Thus, if � satis�es
Laplace's equation in D then its value at any point ro 2 D is completely determined by the values of � and
@�

@n
on the boundary of D.
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1. Green's Functions and Solutions of Laplace's Equation, II

Recall the fundamental solutions of Laplace's equation in n-dimensions

�n (r;  ; �1; : : : ; �n�2) =

�
log jrj ; if n = 2

1
rn�2

; if n > 2
:(21.11)

Each of these solutions really only makes sense in the region Rn� fOg; for each possesses a singularity at
the origin.

We studied the case when n = 3, a little more closely and found that we could actually write

r2

�
1

r

�
= �4��3 (r) =

�
0 ; if r 6= O

1 ; if r = O
(21.12)

In fact, using similar arguments one can show that

r2�(r) = �cn�
n (r)(21.13)

where cn is the surface area of the unit sphere in Rn. Thus, the fundamental solutions can actually be
regarded as solutions of an inhomogeneous Laplace equation where the driving function is concentrated
at a single point.

Let us now set n = 3 and consider the following PDE/BVP

r2�(r) = f(r) ; r 2 D
�(r)j@D = h(r)j@D

(21.14)

where D is some closed, connected, simply connected region in R3. Let ro be some �xed point in D and set

G (r; ro) =
�1

4� jr� roj
+ �o(r; ro)(21.15)

where �o(r; ro) is some solution of the homogeneous Laplace equation

r2�o(r; ro) = 0 :(21.16)

Then

r2G (r; ro) = �3 (r� ro) :(21.17)

Now recall Green's third identityZ
D

�
�r2	� 	r2�

�
dV =

Z
@D

(�r	� 	r�) � n dS :(21.18)

If we replace  in (21.18) by G (r; ro) we get

� (ro) =
R
D
�(r)�3 (r� ro) dV

=
R
D
�r2GdV

=
R
D
Gr2� dV +

R
@D

(�rG�Gr�) � n dS
=

R
D
Gf dV +

R
@D

�
h@G
@n

� G@�
@n

�
dS

=
R
D
Gf dV +

R
@D

h@G
@n
dS �

R
@D

G@�
@n
dS :

(21.19)

Up to this point we have only required that the function �o satis�es Laplace's equation. We will now make
our choice of �o more particular; we shall choose �o(r; ro) to be the unique solution of Laplace's equation
in D satisfying the boundary condition

1

4� jr� roj

����
@D

= �o(r; ro)j@D(21.20)

so that

G (r; ro)j@D = 0 :
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Then the last integral on the right hand side of (21.19) vanishes and so we have

� (ro) =

Z
D

G(r; ro)f(r) dV +

Z
@D

h(r)
@G

@n
(r; ro) dS :(21.21)

Thus, once we �nd a solution �o (r; ro) to the homogenenous Laplace equation satisfying the boundary
condition (21.20), we have a closed formula for the solution of the PDE/BVP (21.14) in terms of integrals of
G (r; ro) times the driving function f(r), and of @G

@n
(r; ro) times the function h(r) describing the boundary

conditions on �. Note that the Green's function G (r; ro) is �xed once we �x �o which in turn depends only
on the nature of the boundary of the region D (through condition (21.20)).

Example

Let us �nd the Green's function corresponding to the interior of sphere of radius R centered about the
origin. We seek to �nd a solution of �o of the homogenous Laplace's equation such that (21.20) is satis�ed.
This is accomplished by the following trick.

Suppose � (r;  ; �) is a solution of the homogeneous Laplace equation inside the sphere of radius R centered
at the origin. For r > R, we de�ne a function

~� (r;  ; �) =
R

r
�

�
R2

r
;  ; �

�
:(21.22)

I claim that ~� (r;  ; �) so de�ned also satis�es Laplace's equation in the region exterior to the sphere.

To prove this, it su�ces to show that

0 = r2r~� = @
@r

�
r2 @

~�
@r

�
+ 1

sin(�)
@
@�

�
sin(�)@

~�
@�

�
+ 1

sin2(�)
@2 ~�
@ 2(21.23)

or

@

@r

 
r2
@ ~�

@r

!
= �

1

sin(�)

@

@�

 
sin(�)

@ ~�

@�

!
�

1

sin2(�)

@2~�

@ 2
:(21.24)

Set

u =
R2

r
:(21.25)

so that

r = R2

u
~� (r;  ; �) = u

R
� (u;  ; �)

@
@r

= �du
dr

@
@u

= �R2

r2
@
@u

= � u2

R2

@
@u

(21.26)

and so

@
@r

�
r2 @

~�
@r

�
=

�
� u2

R2

@
@u

��
R4

u2

�
� u2

R2

@
@u

� �
u
R
�
��

= u2

R
@
@u

�
@
@u

(u�)
�

= u2

R

�
u@

2�
@u2

+ 2@�
@u

�
= u

R

�
@
@u

�
u2 @�

@u

��
= � u

R

�
1

sin(�)
@
@�

�
sin(�)@�

@�

�
+ 1

sin2(�)
@2�
@ 2

�
= �

�
1

sin(�)
@
@�

�
sin(�)@

~�
@�

�
+ 1

sin2(�)
@2~�
@ 2

�
(21.27)

Notice that

lim
r!R

~� (r;  ; �) = � (r;  ; �)(21.28)

This transform is called Kelvin inversion.
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Now let return to the problem of �nding a Green's function for the interior of a sphere of radius. Let

~r = r

�
R2

r
;  ; �

�
=
R2

r2
r :(21.29)

In view of the preceding remarks, we know that the functions

�1 (r) = 1
jr�roj

�2 (r) = R
r

1
j~r�roj

= ~�1(r)
(21.30)

will satisfy, respectively,

r2�1(r) = �4��3 (r� ro)

r2�2 (r) = �4�R
r
�3
�
R2r
r2

� ro

�
:

(21.31)

However, notice that the support of r2�2 (r) lies completely outside the sphere. Therefore, in the interior
of the sphere, �2 is a solution of the homogenous Laplace equation. We also know that on the boundary of
the sphere that we have

�1(r) = �2(r) :(21.32)

Thus, the function

G (r; ro) = R
r

1
4�j~r�roj

� 1
4�jr�roj

= 1
4�jRr r�

r

R
roj

� 1
4�jr�roj

(21.33)

thus satis�es

r2
rG (r; ro) = �3 (r� ro)(21.34)

for all r inside the sphere and

G (r; ro) = 0(21.35)

or all r on the boundary of the sphere. Thus, the function G (r; ro) de�ned by (21.33) is the Green's function
for Laplace's equation within the sphere.

Now consider the following PDE/BVP

r2�(r) = f(r) ; r 2 B
� (R; ; �) = 0 :

(21.36)

where B is a ball of radius R centered about the origin. According to the formula (21.21) and (21.33), the
solution of (21.36) is given by

� (ro) =

Z
B

G(r; ro)f(r) dV +

Z
@B

h ( ; �)
@G

@n
(r; ro) dS

=

Z
B

G(r; ro)f(r) dV

To arrive at a more explicit expression, we set

ro = (r cos( ) sin(�); r sin( ) sin(�); r cos(�))

r = (� cos(�) sin(�); � sin(�) sin(�); � cos(�)) :

Then

dV = �2 sin2(�) d� d� d�

dS = �2 sin2(�) d� d�

and after a little trigonometry one �nds

1

4� jr� roj
=

1

4�
p
r2 + �2 � 2r� (cos( � �) sin(�) sin(�) + cos(�) cos(�))

1

4�
��R
r
ro �

r
R
ro
�� =

R

4�
p
R4 + r2�2 � 2R2r� (cos( � �) sin(�) sin(�) + cos(�) cos(�))

:
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Thus,

�(r;  ; �) =

Z R

0

Z 2�

0

Z �

0

Rf(r;  ; �)r2 sin(�)drd�d 

4�
p
R4 + r2�2 � 2R2r� (cos( � �) sin(�) sin(�) + cos(�) cos(�))

�

Z R

0

Z 2�

0

Z �

0

f(r;  ; �)r2 sin(�)drd�d 

4�
p
r2 + �2 � 2r� (cos( � �) sin(�) sin(�) + cos(�) cos(�))

Homework: 9.3.1, 9.3.9


