LECTURE 20

Green’s Functions and Solutions of Laplace’s Equation, I

In our discussion of Laplace’s equation in three dimensions
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(20.1) 0=V = 97 + o7 + 9.2

I pointed out one solution of special importance, the so-called fundamental solution

(20.2) S(x,y,2) = E = L
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Note that due to the singularity at the point (0,0,0), the solution (20.2) is really only a solution for the
region R3 — (0,0, 0). The nature of this solution when r — 0 is worth examining a little closer.

In terms of spherical coordinates
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we have
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where 7, é, 1/; are respectively, the unit vectors indicating the directions of tangent vectors to the corre-
sponding coordinate curves.

Applying the gradient V and the Laplacian V? to our solution (20.2) we get
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However, we should note again that these formula are not really valid when » = 0 (since ® is not continuous
when r = 0, we certainly cannot evaluate derivatives of ® when » = 0). To study the situation near r = 0,
let € > 0 be a small positive parameter and define
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Since r is never negative, ®, is perfectly regular thoughout R3, and obviously

(20.7) ® = lim ®,.
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Applying the Laplacian to @, yields
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Now let us now consider the volume integral of V2®, over R3. We have
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Notice the result we obtain is independent of ¢.

Thus, we have discovered a sequence of functions f.
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for which

) _ 0 , ifr #(0,0,0)

(20.11) !E}%fe(r) - { o0 , ifr= (0,0,0)
and for which
(20.12) fe(r)dV =1 Ye £ 0
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But properties (20.11) and (20.12) are exactly the properties that we demand for a sequence of functions
to define a three-dimensional delta-function. (See Lecture 7.)

Indeed, let g(r) be a differentiable function on R3 and consider the limit

lim g(r) fe(r)dV

e—0 R3

According to (20.11) the support of f.(r) for small € is concentrated around the origin. For example, if we
set

—10‘61"()<10_6 Vr>1
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and if we set e = 10~30
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In the limit the support of fc(r) the integrand is precisely the origin O. Thus,

lim [ g(x)/(x)dV = lim [ g(0)f(x)dr = 4(O)

e—0 R3 e—0 R3

And so we set

(20.13) 0(r) = lim (;_;vz (rie))
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with the understanding that the limit is to be taken only after integrating. By an abuse of notation one
sometimes writes

(20.14) v? (1) = —4763(r)

r

or even more generally,

(20.15) LS (r—r,)
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Okay, so what is the point of all this? Consider the non-homogeneous equation

(20.16) V20 = —drg(r)
with g(r) decaying faster than # as r — oo. Multiplying both sides of (20.16) by
1
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and integrating over R3 we get
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(In the second and third steps we have used an integration by parts formula coming from Gauss’s theorem).
We thus have the following solution to (20.16)

O(r) = /R |rg,(f)r|dv

is used to construct the solution ®(r) directly from the “source

Note how the integral kernel G (v, v') = ﬁ

function” g(r). More generally, an integral kernel that interpolates between source functions (inhomogeneous
terms) and solutions of a nonhomogeneous PDE is referred to as Green’s function for the PDE.



