
LECTURE 20

Green's Functions and Solutions of Laplace's Equation, I

In our discussion of Laplace's equation in three dimensions
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I pointed out one solution of special importance, the so-called fundamental solution
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Note that due to the singularity at the point (0,0,0), the solution (20.2) is really only a solution for the
region R3� (0; 0; 0). The nature of this solution when r! 0 is worth examining a little closer.
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we have
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where r̂, �̂,  ̂ are respectively, the unit vectors indicating the directions of tangent vectors to the corre-
sponding coordinate curves.

Applying the gradient r and the Laplacian r2 to our solution (20.2) we get

r� = r̂ @
@r

�
1
r

�
= �r̂

r2

r2� = 1
r2

@
@r

�
r2 @
@r

1
r

�
= 0 :

(20.5)

However, we should note again that these formula are not really valid when r = 0 (since � is not continuous
when r = 0, we certainly cannot evaluate derivatives of � when r = 0). To study the situation near r = 0,
let � > 0 be a small positive parameter and de�ne
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Since r is never negative, �� is perfectly regular thoughout R3, and obviously

� = lim
�!0

��:(20.7)

76



20. GREEN'S FUNCTIONS AND SOLUTIONS OF LAPLACE'S EQUATION, I 77

Applying the Laplacian to �� yields
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Now let us now consider the volume integral of r2�� over R3. We haveR
R3
r2��dV = limR!1

R R
0

R 2�
0

R �
0

�2�
r(r+�)3 r

2 sin(�)drd d�

= limR!1

R R
0

�8��r
(r+�)3

dr

= limR!1

R R+�
�

�8��(���)
�3

d�

= limR!1

�
8��
�
� 4��2

�2

����R+�
�

= �4� :

(20.9)

Notice the result we obtain is independent of �.

Thus, we have discovered a sequence of functions f�

f�(r) =
�1
4�
r2��(r) =

�

2�r(r + �)3
(20.10)
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But properties (20.11) and (20.12) are exactly the properties that we demand for a sequence of functions
to de�ne a three-dimensional delta-function. (See Lecture 7.)

Indeed, let g(r) be a di�erentiable function on R3 and consider the limit
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According to (20.11) the support of f�(r) for small � is concentrated around the origin. For example, if we
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In the limit the support of f�(r) the integrand is precisely the origin O. Thus,
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with the understanding that the limit is to be taken only after integrating. By an abuse of notation one
sometimes writes
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or even more generally,
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Okay, so what is the point of all this? Consider the non-homogeneous equation
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(In the second and third steps we have used an integration by parts formula coming from Gauss's theorem).
We thus have the following solution to (20.16)
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Note how the integral kernel G (r; r0) = 1
jr0�rj

is used to construct the solution �(r) directly from the \source

function" g(r). More generally, an integral kernel that interpolates between source functions (inhomogeneous
terms) and solutions of a nonhomogeneous PDE is referred to as Green's function for the PDE.


