LECTURE 16

Characteristics and Cauchy Data

Let’s again consider a general second order linear PDE in two variables, but now with Cauchy boundary
conditions;

A + 2412000 + Asabpe + Bigy + Bagpy +Cop = F
(16.1) ¢(0,z) = f(x)
¢ (0,2) = g(x)
Notice that once values of ¢ and ¢; are prescribed along the z-axis, then so are all their derivatives with
respect to x;

¢ (0,2) = ['(x)
Sz (0,2) = " ()
Poze (0,2) = [ (2)
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(16.2)
$ur (0,2) = ¢ (2)
¢txx (Oa $) = g// (l‘)
0 g/// (x)

¢txxx ( 3 l‘) =

Note, however, that the Cauchy data by itself

¢ (0,2) = flx
(16.3) qthO,x; - g((x))

does not impose any restrictions on the higher derivatives of ¢ and ¢; with respect to ¢.

Let us now rewrite the original PDE (16.1) in the form

(16.4) A11¢e = —2A1900 — As2pe — B1oy — Bogpy —Co+ F
We now see that if A11 # 0, we can solve (16.4) for ¢y
-1
(16.5) Gre = 1 [2A4120t0 + A22¢0s + Bigr + Bagy + Co — FJ.
11

Evaluating (16.5) along the z-axis we find

éu (0,2) = X—lll [2A19¢tr + Asodpe + Broy + Bagy + Cp — F]L_O
= _A%l [2A12¢'(2) + Ao f"' (x) + Big(z) + Bof'(2) + C f(z) — F]
Thus, so long as A1; # 0, we can use the PDE to express the values of ¢4 along the z-axis in terms of the

the Cauchy data. Moreover, having determined ¢4 (0, ) as an explicit function of z, we can also compute
all of the values of ¢4z, drive, Pttzws, - - - along the z-axis.

(16.6)

If we now differentiate (16.5) with respect to t we get
g [-1
ot A11

Notice that the right hand side involves only first and second derivatives of ¢ with respect to ¢; so, in view
of (16.2) and (16.6), ¢ is completely determined along the z-axis by the Cauchy data.

(16.7) dert = [2A120t5 + As2gpy + B1ér + Bagy + Cp — F]
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Continuing in this manner, we see that if A17 # 0, the original PDE and the Cauchy data can be used to
calculate the values of the higher derivatives ¢y, diir, drier, - . . along z-axis. We can now use the calculated
values of the derivatives of ¢ with respect to ¢ to construct a Taylor series solution of (16.1); viz.,

2
(16.8) d(t,x) = ¢ (0,2)+te: (0,2) + %@t (0,2)+---

In fact, we have:

THEOREM 16.1. (Cauchy-Kowalewski) If f(x),g(x) and all the functions ﬁif ,ﬁff , 5111 ’5121 ,ALH,
ALH have power series representations about the point (0, ), then the procedure outlined above constructs a

unique solution to the Cauchy problem

ZZj:l Alj¢x,xj +Z?:1 Bl¢x, —|—C¢) = F
(16.9) S0y = fo)
¢t (0,1‘) = g($)

in some neighborhood of (0, ).

Note that this algorithm for constructing a power series solution of the PDE/BVP (16.1) depended crucially
on the hypothesis that A;; # 0. Indeed, if this condition does not hold, we have absolutely no means of
determining the higher derivatives of ¢ with respect to ¢ in terms of the Cauchy data on the z-axis.

In fact, if A;; = 0, there may exist more than one independent solution with the same Cauchy data along
the z—axis; or they may exist no solution for a given set of Cauchy data along z-axis.

To see this, consider the following simple PDE/BVP

¢tx = 0
(16.10) ¢(0,2) = f(e)
¢ (0,2) = g(z)

The general solution of the first equation in (16.10) is

(16.11) 6 (t,2) = a(t) + 8 ()
Plugging this expression into the Cauchy boundary conditions yields
(16.12) B(x) = f(z)+ a(0)
(16.13) () = g(x)

From the first equation we see that the Cauchy data determines determines the function « only up to an
constant. Thus, it would appear that we have an infinite number of solutions of (16.10). On the other
hand, Equation (16.13) implies that both a'(¢) and g(#) must be constants (via a Separation of Variables
type argument). We thus see that unless g(x) is equal to a constant we will be lead to an inconsistency. In
summary, there will exist no solution to (16.10) unless g(z) is constant, and if g(z) is constant then there
exist infinitely many solutions.

We summarize these difficulties by saying that the Cauchy problem is not well posed (for Cauchy data along
the #-axis) if 413 = 0.

Let us now consider the more general case of a Cauchy problem where the Cauchy data is specified along
some curve v : R — R? in the tz-plane;

S iy Aijbra; + Yiey Bits, +C¢ = F

(16.14) GG = f)
BOw) = e
where (f?—n is directional derivative normal to the curve ~.
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If we reinterpret the curve v as a coordinate curve y; (¢,2) = 0 and interpret the directional derivative (f?—n
as the partial derivative with respect to this coordinate, then we can cast the generalized Cauchy problem

(16.14) back into the original form (16.1);

EZ]’:1 Ag’jq)yzyj + Z?:I BZ{(I)yl +Ce =F -
(16.15) ¢(0,92) = fl(ya)
¢y1 (Oa yZ) = g (3/2)

Applying the Cauchy-Kowalewski theorem to (16.12) we can conclude that if f(yz) , 3 (y2) and all the

ions A1z A Bl By ¢ F
functions %, 3, 0 a7 » g ap; | . . :
procedure outlined above constructs a unique solution to the Cauchy problem (16.14) in some neighborhood

of (0,y2).

have power series representations about the point (0, y2), then the

In particular, if 4 is curve along which A’ vanishes then the Cauchy problem will be ill posed. Now let us
recall our discussion of the coordinate transformations and the classification of second order linear PDEs.

If the PDE in (16.14) is hyperbolic in a region R C R? then by definition, the original functions Ajq, Ajs,
Asgy satisfy
(A12)2 — A1 A2 >0

and there exists two distinct families of curves along which A}, will vanish. Thus, if a PDE is hyperbolic in a
region R, there will exist two special curves v, through a given point z € R, for which the Cauchy problem
will be ill posed; the two coordinate curves for which A}, vanishes. These curves are called characteristics.
We conclude that the Cauchy problem is well posed along a curve v € R if and only if 4 never coincides
with one of the characteristics v .

If the PDE in (16.14) is parabolic in a region R C R? then by definition, the original functions Aj1, Ajs,
Asgy satisfy

(A12)2 — A1 A9 =0
and there exists only distinct family of coordinate curves along which Af; will vanish. Thus, if a PDE is

parabolic in R there will exist only one characteristic curve v passing through a given point z € R, and so
the Cauchy problem 1s well-posed along every curve through z except .

If the PDE in (16.14) is elliptic in a region R C R?, then by definition, the original functions A1, A1a, A2z
satisfy

(A12)2 — A1 A2 <0

and there exists no curve 4 along which A}, will vanish. Thus, if a PDE is elliptic in R, the Cauchy problem
is always well-posed in R.

Homework: 5.7.1,5.7.2, 5.7.3(b), 5.7.3(d), 5.7.6



