
LECTURE 16

Characteristics and Cauchy Data

Let's again consider a general second order linear PDE in two variables, but now with Cauchy boundary
conditions;

A11�tt + 2A12�tx +A22�xx + B1�t +B2�x + C� = F

� (0; x) = f (x)
�t (0; x) = g (x) :

(16.1)

Notice that once values of � and �t are prescribed along the x-axis, then so are all their derivatives with
respect to x;

�x (0; x) = f 0 (x)
�xx (0; x) = f 00 (x)
�xxx (0; x) = f 000 (x)

...

�tx (0; x) = g0 (x)
�txx (0; x) = g00 (x)
�txxx (0; x) = g000 (x)

...

(16.2)

Note, however, that the Cauchy data by itself

� (0; x) = f (x)
�t (0; x) = g (x)

(16.3)

does not impose any restrictions on the higher derivatives of � and �t with respect to t.

Let us now rewrite the original PDE (16.1) in the form

A11�tt = �2A12�tx �A22�xx � B1�t � B2�x �C�+ F(16.4)

We now see that if A11 6= 0, we can solve (16.4) for �tt

�tt =
�1

A11
[2A12�tx +A22�xx + B1�t + B2�x +C�� F ] :(16.5)

Evaluating (16.5) along the x-axis we �nd

�tt (0; x) = �1

A11

[2A12�tx +A22�xx + B1�t + B2�x +C�� F ]
���
t=0

= � 1

A11

[2A12g
0(x) +A22f

00(x) +B1g(x) +B2f
0(x) + Cf(x)� F ]

(16.6)

Thus, so long as A11 6= 0, we can use the PDE to express the values of �tt along the x-axis in terms of the
the Cauchy data. Moreover, having determined �tt (0; x) as an explicit function of x, we can also compute
all of the values of �ttx; �ttxx; �ttxxx; : : : along the x-axis.

If we now di�erentiate (16.5) with respect to t we get

�ttt =
@

@t

�
�1

A11
[2A12�tx +A22�xx + B1�t + B2�x +C�� F ]

�
(16.7)

Notice that the right hand side involves only �rst and second derivatives of � with respect to t; so, in view
of (16.2) and (16.6), �ttt is completely determined along the x-axis by the Cauchy data.
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Continuing in this manner, we see that if A11 6= 0, the original PDE and the Cauchy data can be used to
calculate the values of the higher derivatives �tt; �ttt; �tttt; : : : along x-axis. We can now use the calculated
values of the derivatives of � with respect to t to construct a Taylor series solution of (16.1); viz.,

�(t; x) = � (0; x) + t�t (0; x) +
t2

2!
�tt (0; x) + � � �(16.8)

In fact, we have:

Theorem 16.1. (Cauchy-Kowalewski) If f (x) ; g (x) and all the functions A12

A11

; A22

A11

; B1

A11

; B2

A11

; C
A11

;
F
A11

have power series representations about the point (0; x), then the procedure outlined above constructs a

unique solution to the Cauchy problemPn

i;j=1Aij�xixj
+
P

2

i=1Bi�xi
+C� = F

� (0; x) = f (x)
�t (0; x) = g (x)

(16.9)

in some neighborhood of (0; x).

Note that this algorithm for constructing a power series solution of the PDE/BVP (16.1) depended crucially
on the hypothesis that A11 6= 0. Indeed, if this condition does not hold, we have absolutely no means of
determining the higher derivatives of � with respect to t in terms of the Cauchy data on the x-axis.

In fact, if A11 = 0, there may exist more than one independent solution with the same Cauchy data along
the x�axis; or they may exist no solution for a given set of Cauchy data along x-axis.

To see this, consider the following simple PDE/BVP

�tx = 0
� (0; x) = f(x)
�t (0; x) = g(x) :

(16.10)

The general solution of the �rst equation in (16.10) is

� (t; x) = � (t) + � (x) :(16.11)

Plugging this expression into the Cauchy boundary conditions yields

�(x) = f(x) + �(0)(16.12)

�0(t) = g(x)(16.13)

From the �rst equation we see that the Cauchy data determines determines the function � only up to an
constant. Thus, it would appear that we have an in�nite number of solutions of (16.10). On the other
hand, Equation (16.13) implies that both �0(t) and g(x) must be constants (via a Separation of Variables
type argument). We thus see that unless g(x) is equal to a constant we will be lead to an inconsistency. In
summary, there will exist no solution to (16.10) unless g(x) is constant, and if g(x) is constant then there
exist in�nitely many solutions.

We summarize these di�culties by saying that the Cauchy problem is not well posed (for Cauchy data along
the t-axis) if A11 = 0.

Let us now consider the more general case of a Cauchy problem where the Cauchy data is speci�ed along
some curve  : R! R

2 in the tx-plane;Pn

i;j=1Aij�xixj
+
P2

i=1Bi�xi
+C� = F

� ((t)) = f (t)
@�

@n
((t)) = g (t) ;

(16.14)

where @
@n

is directional derivative normal to the curve .
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If we reinterpret the curve  as a coordinate curve y1 (t; x) = 0 and interpret the directional derivative @
@n

as the partial derivative with respect to this coordinate, then we can cast the generalized Cauchy problem
(16.14) back into the original form (16.1);Pn

i;j=1A
0
ij�yiyj +

P
2

i=1B
0
i�yi + C� = F

� (0; y2) = ~f (y2)
�y1 (0; y2) = ~g (y2) :

(16.15)

Applying the Cauchy-Kowalewski theorem to (16.12) we can conclude that if ~f (y2) ; ~g (y2) and all the

functions
A0

12

A0

11

;
A0

22

A0

11

;
B0

1

A0

11

;
B0

2

A0

11

; C
A0

11

; F
A0

11

have power series representations about the point (0; y2), then the

procedure outlined above constructs a unique solution to the Cauchy problem (16.14) in some neighborhood
of (0; y2).

In particular, if  is curve along which A0
11

vanishes then the Cauchy problem will be ill posed. Now let us
recall our discussion of the coordinate transformations and the classi�cation of second order linear PDEs.

If the PDE in (16.14) is hyperbolic in a region R � R2, then by de�nition, the original functions A11, A12,
A22 satisfy

(A12)
2
�A11A22 > 0

and there exists two distinct families of curves along which A0
11

will vanish. Thus, if a PDE is hyperbolic in a
region R, there will exist two special curves �, through a given point x 2 R, for which the Cauchy problem
will be ill posed; the two coordinate curves for which A011 vanishes. These curves are called characteristics.
We conclude that the Cauchy problem is well posed along a curve  2 R if and only if  never coincides
with one of the characteristics �.

If the PDE in (16.14) is parabolic in a region R � R2, then by de�nition, the original functions A11, A12,
A22 satisfy

(A12)
2
�A11A22 = 0

and there exists only distinct family of coordinate curves along which A0
11

will vanish. Thus, if a PDE is
parabolic in R there will exist only one characteristic curve  passing through a given point x 2 R, and so
the Cauchy problem is well-posed along every curve through x except .

If the PDE in (16.14) is elliptic in a region R � R2, then by de�nition, the original functions A11, A12, A22
satisfy

(A12)
2
�A11A22 < 0

and there exists no curve  along which A0
11

will vanish. Thus, if a PDE is elliptic in R, the Cauchy problem
is always well-posed in R.

Homework: 5.7.1, 5.7.2, 5.7.3(b), 5.7.3(d), 5.7.6


