
LECTURE 15

Characteristics and the Classi�cation of

Second Order Linear PDEs

Let us now consider the case of a general second order linear PDE in two variables;

0 =
P2

i;j=1Aij�xixj +
P2

i�1Bi�xi + C�+ F

= A11�x1x1 + 2A12�x1x2 +A22�x2x2 +B1�x1 + B2�x2 + C�+ F ;
(15.1)

where

�xi = @�

@xi

�xixj = @2�

@xi@xj
:

(15.2)

Suppose we make a general coordinate transformation

y1 = ~y1 (x1; x2)
y2 = ~y2 (x1; x2)
x1 = ~x1 (y1; y2)
x2 = ~x2 (y1; y2)

(15.3)

in which the functions ~ya ; xi, a; i = 1; 2 , are at least twice di�erentiable and the Jacobian

J

�
@~y

@x

�
=

@~y1
@x1

@~y2
@x2

�
@~y2
@x1

@~y1
@x2

(15.4)

is nowhere vanishing. Under such a coordinate transformation, equation (15.1) becomes

0 =
P2

a;b=1
A0ab�yayb +

P2

a=1
B0
a�ya + C�+ F(15.5)

where

A0ab =
P2

i;j=1Aij~ya;xi ~yb;xj
= A11~ya;x1 ~yb;x1 + A12 (~ya;x1 ~yb;x2 + ~ya;x2 ~yb;x1) +A22~ya;x2 ~yb;x2

B0
a =

P2

i;j=1Aij~ya;xixj +
P2

i=1Bi~ya;xi
= A11~ya;x1x1 + 2A12~ya;x1x2 + A22~ya;x2x2 + B1~ya;x1 +B2~ya;x2 :

(15.6)

and

~ya;xi = @~ya
@xi

~ya;xixj = @2~ya
@xi@xj

:
(15.7)

Up to this point everything is completely general. Let us now explore and see what conditions to place on
the coordinate transformation ya(x) in order that the coe�cient

A011 = A11~y1;x1 ~y1;x1 + 2A12~y1;x1 ~y1;x2 + A22~y1;x2 ~y1;x2(15.8)

of �y1y1 in (15.5) vanish identically.
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We shall proceed as in the previous lecture; however, �rst let us simplify our notation a bit by setting

x = x1

y = x2
~� = ~y1

~� = ~y2

We then have

A011 = A11
~�x~�x + 2A12

~�x~�y + A22
~�y ~�y

A012 = A11
~�x~�x +A12

~�x~�y +A21
~�y~�x + A22

~�y~�y
A022 = A11~�x~�x + 2A12~�x~�y + A22~�y~�y
B0
1 = A11

~�xx + 2A12
~�xy +A22

~�yy +B1
~�x +B2

~�y
B0
2 = A11~�xx + 2A12~�xy +A22~�yy + B1~�x +B2~�y

(15.9)

Suppose

~�(x; y) = const(15.10)

is a curve in the xy-plane along which (15.8) vanishes identically and let

y = f(x)

be a (local) representation of this curve as the graph of a function f of x; so that (15.10) is equivalent to

~� (x; f(x)) = const :(15.11)

Di�erentiating (15.11) with respect to x yields

@~�

@x
+ f 0

@~�

@y
= 0(15.12)

or

1

f 0
@~�

@x
+

@~�

@y
= 0 ;(15.13)

The condition that A011 vanish along the curve (15.11) is

0 = A11
~�x~�x + 2A12

~�x~�y + A22
~�y ~�y

= A11

�
�f 0~�y

�2
� 2A12f

0

�
~�y
�2

+ A22

�
~�y
�2

=
�
A11 (f 0)

2
� 2A22f

0 + A22

�
(�y)

2
:

(15.14)

Thus, if f is chosen to satisfy the di�erential equation

A11 (f
0)
2
� 2A22f

0 + A22 = 0 :(15.15)

then the coe�cient A011 will vanish.

Now the general solution of a �rst order ODE will inevitably be of the form

f(x) = F (x;C)(15.16)

where C is an arbitrary constant of integration. In order to recover a coordinate function ~�(x; y) corre-

sponding to f(x), let's �rst recall the graph of f(x) is supposed to coincide with a level curve of ~�(x; y). In
other words, the solution set of

y = f(x) = F (x;C)(15.17)

is to coincide with the solution set of an equation of the form

~�(x; y) = �0:(15.18)

Now suppose we can invert equation (15.16) to get C as a function of x and y,

C = ~F (x; y):(15.19)
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Then by taking

~�(x; y) = ~F (x; y)(15.20)

�o = C(15.21)

we obtain an equation of the form (15.18) that has the same solution set as (15.17). We thereby obtain a
suitable coordinate function.

Now let us now look at equation (15.15) a little more carefully. We are assuming that A11 6= 0; since
otherwise there would be no point in making a coordinate transformation. (15.15) is thus a quadratic
equation in f 0. Using the quadratic formula we �nd that (15.15) is actually equivalent to0

@f 0 � A12 +
q
(A12)

2
� A11A22

A11

1
A
0
@f 0 �

A12 �

q
(A12)

2
�A11A22

A11

1
A = 0 ;

so either f satis�es

f 0 =
A12 +

q
(A12)

2 �A11A22

A11

(15.22)

or

f 0 =
A12 �

q
(A12)

2
� A11A22

A11

:(15.23)

These di�erential equations are in practice very di�cult to solve; for the coe�cient functions on the right
hand sides will in general be expressions in which f appears non-linearly; this is perhaps more obvious when
one writes a more explicit expression for (15.22)

df

dx
(x) =

A12 (x; f(x)) +
q
(A12 (x; f(x)))

2 +A11 (x; f(y))A22 (x; f(x))

A11 (x; f(x))
:

However, even without explicitly solving equations (15.22), (15.23) we can identify three distinct cases.

Case I: (A12)
2
�A11A22 > 0.

In this case the expressions inside the radicals in equations (15.22) and (15.23) are strictly positive functions,
and so their square roots are well-de�ned real-valued functions of x. The general existence theorem for �rst
order ODE's guarantees the existence of solutions of (15.22) and (15.23) so long as the original functions
Aij were smooth functions of x and y. Let f+ be a solution of (15.22) and let f� be a solution of (15.23).

Since the equations (15.22) and (15.23) are distinct when (A12)
2
�A11A22 > 0, f+ and f� will constituent

distinct solutions of (15.15). We thus �nd two classes of curves

y = f+(x) +C1

y = f�(x) +C2

which can be interpreted as the level curves of two coordinate functions ~y1;�(x; y) for which A011 will vanish.
This case is referred to as the hyperbolic case.

Case II. (A12)
2 � A11A22 = 0

In this case, equations (15.22) and (15.23) reduces to a single di�erential equation

f 0 =
A12

A11

and so we can expect a single family of curves

y = f (x) + C

which are interpretable as the level curves of a single coordinate function ~� (x; y) for which A011 vanishes.
This case is referred to as the parabolic case.
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Case III. (A12)
2
�A11A22 < 0

In this case, the expression inside the radical is negative de�nite, and so f 0, and hence f , must be a complex-
valued function. But in this case, we will no longer be able to interprete the graph of f as a level surface of
a coordinate function (our coordinates must be real-valued functions). Therefore, if the original coe�cients
satisfy the inequality

(A12)
2
�A11A22 < 0

then there exists no coordinate system for which A011 = 0. This case is referred to as the elliptic case.

Similarly, we can construct a coordinate function ~�(x1; y) that will guarantee that the coe�cient A022 of ���

in (15.5) will vanish. Let y = g(x) be the graph of a function g of x corresponding to the curve

~�(x; y) = const(15.24)

and suppose ~�(x; y) satis�es

0 = A022 = A11~�x~�x + 2A12~�x~�y +A22~�y~y2;y :(15.25)

Then, the condition

~� (x; g(x)) = const(15.26)

allows us to replace the terms ~�x in (15.25) by �g0~�y, to get

0 =
�
A11 (g

0)
2
� 2A12g

0 + A22

�
(~�y)

2 = 0 :(15.27)

Thus, if y = g(x) is a level curve of the coordinate function ~�(x; y) and g satis�es the di�erential equation

A11 (g
0)
2
� 2A12g

0 + A22 = 0(15.28)

then the coe�cient of ��� in (15.5) will vanish.

Note that (15.28) is essentially the same di�erential equation as (15.15). The analysis of (15.28) proceeds

just as before and we �nd we have three basic situations, distinguished by the sign of (A12)
2
�A11A22.

Hyperbolic Case: (A12)
2
�A11A22 > 0

In this case, equations (15.15) and (15.28) have two independent solutions, f�. One of these, say f+, can

be used to de�ne a coordinate function ~� for which the coe�cient A011 vanishes identically, and the other
can be used to de�ne a coordinate function ~� for which A022 vanishes identically. One can thus de�ne a
coordinate system in which the original PDE (15.1) takes the form

2A012��� +B0

1�� + B0

2�� + C�+ F = 0 :(15.29)

It is easy to see that in the hyperbolic case, the coe�cient A012 never vanishes, and so we can rewrite (15.29)
as

��� +B00
1�� + B00

2�� + C00�+ F 0 = 0 :(15.30)

Equation (15.30) is referred to as the standard form of a hyperbolic PDE.

Parabolic Case. (A12)
2
� A11A22 = 0

In this case, we only �nd one real-valued function whose graph can be interpreted as the level curve of a
coordinate function ~� for which A011 vanishes identically. Lacking a second independent solution we can not
�nd a second coordinate function ~� for which A022 vanishes identically. The coe�cient A012, however, is

A012 = A11
~�x~�x +A12

�
~�x~�y + ~�y~�x

�
+ A22

~�y~�y :(15.31)
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Using the relations

~�x = �f 0 ~�y =
A12

A11

~�y

and setting

~�x = �g
0(x)~�y

we �nd

A012 =

�
A11

�
�
A12

A11

�
(�g0) +A12

��
�
A12

A11

�
� g0

�
+ A22

�
~�y~�y

=

 
A11A22 � (A12)

2

A11

!
~�y~�y

= 0 ;

and so actually by eliminating A011 we simultaneously eliminate A012 (in the parabolic case). Thus (15.1)
reduces to

A022��� + B0
1�� +B0

2�� + C0�+ F 0 = 0 :(15.32)

It is not hard to show that the coe�cient A022 does not vanish in this case, and so (15.32) can be rewritten
in the form

��� + B00

1�� + B00

2�� +C00�+ F 0 = 0 :(15.33)

Equation (15.33) is referred to as the standard form of a parabolic PDE.

Elliptic Case. (A12)
2
� A11A22 < 0

In this case, there is no choice of real coordinates that will allow the elimination of A011 and A022. However,
can arrange it so that A011 = A022 and A012 = 0. This is done as follows.

From (15.6) we have

A011 = A11
~�x~�x + 2A12

~�x~�y +A22
~�y~�y

A012 = A11
~�x~�x + A12

�
~�x~�y + ~�y~�x

�
+A22

~�y~�y

A022 = A11~�x~�x + 2A12~�x~�y +A22~�y~�y

(15.34)

Suppose we represent the level curves

~� (x; y) = const

~� (x; y) = const
(15.35)

as graphs of functions f1(x) and f2(x), respectively. Then we have

~�x = �f 01
~�y

~�x = �f 02~�y
(15.36)

Then (15.34) can be written as

A011 =
�
A11(f 01)

2 � 2f 01A12 + A22

�
~�y ~�y

A012 = [A11f
0
1f

0
2 �A12 (f

0
1 + f 02) +A22] ~�y~�y

A022 =
�
A11(f

0
2)
2 � 2f 02A12 + A22

�
~�y~�y

(15.37)

A012 will thus vanish if

0 = A11f
0

1f
0

2 �A12 (f
0

1 + f 02) +A22

for f 02 we get

f 02 =
A12f

0
1 � A22

A11f
0
1 � A12

:(15.38)
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The requirement that that A011 = A022, then leads to

0 =
�
A11(f

0
1)
2 � 2f 01A12 +A22

�
~�y ~�y

+
�
A11(f

0
2)
2 � 2f 02A12 +A22

�
~�y~�y

=
�
A11(f 01)

2 � 2f 01A12 +A22

�
~�y ~�y

+

�
A11

h
A12f

0

1
�A22

A11f
0

1
�A12

i2
� 2

h
A12f

0

1
�A22

A11f
0

1
�A12

i
A12 +A22

�
~�y~�y

(15.39)

In order to solve (15.39) for f 01 we need to know something about the relationship between ~�y and ~y2;y. It
will be su�cient for our purposes to simply set

~�y = ~�y :

This will have the e�ect of restricting the set of solutions of (15.39) - but afterall, we only need one solution.
Equation (15.31) now becomes

0 = A11(f
0
1)
2 � 2f 01A12 + A22 � A11

h
A12f

0

1
�A22

A11f
0

1
�A12

i2
+2
h
A12f

0

1
�A22

A11f
0

1
�A12

i
A12 � A22

(15.40)

Solving (15.40) for f 01 yields

f 01 =
A12

A11

�

p
A11A22 �A2

12

A11

(15.41)

or

f 01 =
A12 �

q
(A12)

2
� A11A22

A11

:(15.42)

The latter solutions (15.42) can be disgarded - for the expression inside the radical is negative by hypothesis
and so these solutions will not be real-valued. Plugging (15.41) into (15.38) yields

f 02 =
A12

A11

�

p
A11A22 � A2

12

A11

(15.43)

Note that in the equations (15.41) and (15.43), the expressions inside the radicals are positive in this case
and so the di�erential equations (15.41) and (15.43) are solvable in terms of real-valued functions and hence
are interpretable as functions whose graphs correspond to the level curves of coordinate functions ~y1 and ~�
for which A012 = 0 and A011 = A011.

Summarizing, in the elliptic case, where (A12)
2
�A11A22 < 0, we cannot �nd coordinates for which A011 = 0

or A022 = 0; however, we can �nd coordinates functions for which A012 = 0 and A011 = A022. Doing so, we
obtain

A011��� + A011��� +B0
1�� +B0

2�� +C0� + F 0 = 0 :(15.44)

Since A011 6= 0, we can divide (15.44) by A011, thus obtaining

��� + ��� + B00

1�� +B00

2�� + C00�+ F 00 = 0 :(15.45)

Equation (15.45) is the standard form of an elliptic PDE.
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1. Summary: Classi�cation of 2nd Order Linear PDEs

Hyperbolic Case: (A12)
2
�A11A22 > 0

In this case, we found two distinct real-valued solutions f 0� of the relation

A11 (f
0)
2
� 2f 0A22 + A22 = 0 :(15.46)

One of these, say f 0+, once integrated could be used to de�ne a coordinate function ~� for which the coe�cient
A011 vanishes identically, and the other can be used to de�ne a coordinate function ~� for which A022 vanishes
identically. One can thus construct a coordinate system in which the original PDE (15.1) takes the form

2A012��� +B0
1�� + B0

2�� + C�+ F = 0 :

Observing that, in the hyperbolic case, the coe�cient A012 never vanishes, and so we rewrote (15.29) as

��� +B00
1�� + B00

2�� + C00�+ F 0 = 0 :(15.47)

Equation (15.47) is referred to as the standard form for a hyperbolic PDE.

Parabolic Case. (A12)
2
� A11A22 = 0

In this case, we could �nd only one real-valued solution f 0 of (15.46). Using this solution we could construct

a coordinate function ~� for which A011 vanished identically, but lacking a second independent solution we
could not �nd a second coordinate function ~� for which A022 vanishes identically. However, we also showed

that by choosing ~� so that A011 vanished identically, we simultaneously forced A012 to vanish identically.
Thus (15.1) was reduced to

A022��� + B0

1�� +B0

2�� + C0�+ F 0 = 0 :

Then observing that the coe�cient A022 could not vanish as well, we �nally reexpressed (15.1) as

��� + B00
1�� + B00

2�� +C00�+ F 0 = 0 :(15.48)

Equation (15.48) is referred to as the standard form for a parabolic PDE.

Elliptic Case. (A12)
2
� A11A22 < 0

In this case, there is no choice of real root f 0 of (15.46). Since we could not interprete the graph of a
complex valued function as coinciding with a level surface of a coordinate function ~yi, we concluded that
in the elliptic case one can not �nd coordinates ~� and ~� such that the either of the coe�cients A011 or A

0
22

vanish. However, we could arrange it so that A012 = 0 and A011 = A022 6= 0. In so doing we convert (15.1) to
the form

A011��� + A011��� +B0

1�� +B0

2�� +C0� + F 0 = 0 :

Since A011 6= 0, we could then divide by A011, to get

��� + ��� + B00
1�� +B00

2�� + C00�+ F 00 = 0 :(15.49)

Equation (15.49) is the standard form of an elliptic PDE.

Of course, if this classi�cation of PDE's is to really make any real sense, it should be independent of the
choice of coordinates (that is, we should make sure that if we change coordinates we do not change the a
PDE's type). Using the relations

A0ab =
2X

i;j=1

Aij~ya;xi ~yb;xj

one �nds that

(A012)
2
� A011A

0
22 =

�
(A12)

2
�A11A22

��
~�x~�y � ~�x~�y

�2
:(15.50)
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The expression �
~�x~�y � ~�x~�y

�2
is the square of the Jacobian of the coordinate transformation. Since the Jacobian is assumed to vanish
nowhere, this expression is always positive. Thus, the left hand side of (15.50) is positive, negative or zero

precisely when (A12)
2
�A11A22 is, respectively, positive, negative or zero. Thus, this classi�cation of second

order linear PDE's is independent of the choice of coordinates.

Example 15.1. The wave equation

@2�

@t2
� c2

@2�

@x2
= F (x; t)

is an example of a hyperbolic PDE.

Example 15.2. The heat equation

@�

@t
� �2

@2�

@x2
= F (x; t)

is an example of an parabolic PDE.

Example 15.3. Poisson's equation

@2�

@x2
+

@2�

@y2
= F (x; y)

is an example of an elliptic PDE.


