LECTURE 14

Coordinate Transformations and the Method of Characteristics

Coordinate transformations enter the theory of PDE’s in at least two different ways.

On the one hand it is sometimes useful to make a change in coordinates in order to exploit a particular
symmetry of the system. For example, if one was attempting to determine the temperature distribution of
a circular disk immersed in a heat bath, one would find the boundary conditions are most easily expressed
in terms of polar coordinates.

Alternatively, as we have seen in our study of the wave equation, sometimes a change of variable (which
afterall is just a coordinate transformation) simplifies a PDE in such a way that we can actually write down
a general solution.

We will now explore what happens to a general second order linear PDE under a change of coordinates.

Suppose we start with a general second order linear PDE in n variables z;:
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Let y,, a =1,... ,n be another set of coordinates for R"™, related to the original coordinates by
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Define ®(y1,...,yn) by
(14.5) D(y) = ¢ (2(y)) -
In view of the relations (14.3), ® satisfies
(14.6) ¢(z) = @ (Z(y))
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(At this point I'm condensing my notation a bit; e.g., equation (14.6) should be interpreted as ¢ (z1,...,2,) =
P, @)oo Un(@1, . 20))).

The chain rule for functions of several variables 1s
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Reiterating the chain rule we get
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We can condense our notation a little more by rewriting (14.7) and (14.8) as
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If we now substitute the expressions (14.9) into the original PDE (14.1) we get

0 = oo 2ion Aig (=) Doy PavTaiiTeyj + 2oney Paasij)
+2im1 Bi (a1 Paliai) + CO+ F

(14.10)
= > S AR+ Y BY,+ CP+ F
where
(14.11) Ajézf - %2:1 %T}zl im@zaz@by S
a = i=1 2uj=1 “ijYazij T Zizl Biya;i

At first glance we seem to have only obfuscated matters: we have taken a general second order linear PDE,
performed a coordinate transformation, and ended up with an equation of exactly the same form, but whose
coefficients are considerably more complicated. However, the point to bear in mind is that the coordinate
transformation ¢; — y, is completely arbitrary at this point. In fact, it may well happen that by a judicious
change of coordinates the PDE will in fact simplify.

ExAMPLE 14.1. To see how such a judicious choice of coordinates might be found, let us consider anew the
case of the homogeneous wave equation:

(14.12) bet — P Ppp =0

Under a general coordinate transformation
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the wave equation becomes
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This PDE is certainly more complicated than (14.12); however, we are still free to choose Q: and 7 as we
please. Now note that if
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then both A’ and €’ will vanish. Suppose @_(1‘,15) is a solution of
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and consider the level curve in the zi-plane defined by
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Let & = f(t) be a local representation of this curve (as the graph of the function f of ¢). Then we have
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and so
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Comparing (14.20) with (14.17) we see that
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and so the level curve of @_(1‘, t) must be equivalent to the graph of a function of the form
(14.23) z = f(t) = —ct 4 constant

To make things as simple as possible, we can define @_(1‘, t) to be precisely the constant on the right hand
side of (14.23). Thus, we take
(14.24) (e t)=z+ct

Similarly, one can show that

1s a solution of
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Therefore, by setting
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we can arrange it so that the coefficients A" and C” in (14.14) vanish. In fact, for this particular choice of ¢
and 7, the coefficients D' and E’ also vanish. Hence under the coordinate transformation (14.24) the wave
equation reduces to

(14.26) (1—c*)®e; =0

As we have seen, one can easily write down the general solution of (14.26) as

(14.27) (¢n) =)+ 8
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a and [ being arbitrary functions. Converting back to our original coordinates we find the general solution

of (14.1) to be
(14.28) oz, t) = ax + ct) + Bz — ct)

Let me now summarize what we have accomplished. In the course of trying to discover a coordinate system
in which the wave equation might be simplest, we uncovered two distinguished types of curves

129 o) = 4o
n(z,t) = x—ct.
These curves are referred to as the characteristic curves of the wave equation and they define a coordinate

system for which the wave equation takes its simplest form. Thus, associated with the wave equation, there
is a preferred geometry that coming directly from the functional form of the PDE (14.12).

Homework Problem: 3.12.1



